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Abstract. We present an algorithm that makes an appropriate use of
a Kalman filter combined with a geometric computation with respect to
the localisation of a pollutant-emitting point source. Assuming resource-
constrained inexpensive nodes and no specific placement distance to the
source, our approach has been shown to perform well in estimating the
coordinates and intensity of a source. Using local gossip to directionally
propagate estimates, our algorithm initiates a real-time exchange of in-
formation that has as an ultimate goal to lead a packet from a node
that initially sensed the event to a destination that is as close to the
source as possible. The coordinates and intensity measurement of the
destination comprise the final estimate. In this paper, we assert that this
low-overhead coarse localisation method can rival more sophisticated and
computationally-hungry solutions to the source estimation problem.

Key words: Source Localisation, Spatial Event Detection, Estimation,
Kalman Filters.

1 Introduction

We live in days of elevated risk that terrorists could acquire Chemical, Biological
and Radiological (CBR) weapons to attack major cities. In a world of easy avail-
ability of CBR raw materials in hospitals of failed states, the greatest concern
for citizens of urban centres is not over an attack by a nuclear warhead but with
a “dirty-bomb” that would contaminate a wide area, trigger widespread panic
and cause severe disruption [12]. Government agencies, such as the Home Office
in the UK, are involved in “resilience” programmes, set to cost GBP 3.5bn per
year by 2011, with the aim to “ensure that, in the event of a terrorist incident

the response from all concerned will be quick and effective, so that lives can be

saved and the impact on property and the environment minimised” [15].
The principal concern of such programmes is the detailed response strategy in

the case of a CBR attack. For this, accurate assessment and modelling of hazards
[5] are essential. Modelling can be split to the following two subproblems: forward
and inverse. While the forward problem involves the dispersion prediction and
hazard assessment given a known location of a point source emitting pollutants in
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space, the inverse problem involves locating this source given some measurements
of the pollutants in the atmosphere. The quick localisation of an attack source
can assist the specialist personnel in neutralising the threat as well as predicting
the dispersion cloud and evacuating citizens away from it.

In this paper, we consider a scenario where a number of low-cost, resource-
constrained sensor nodes, such as the TMote Sky [3], are deployed in an urban
area with the task of detecting the presence of certain pollutants in the atmo-
sphere. There exist real-world deployments, such as the U.S. Federal Sensor-
Net’s [16] testbeds at Washington DC and New York City, that aim to serve the
aforementioned objective. Following the detection of the pollutant — a problem
addressed by our earlier work on event detection [23] — the goal is to compute
an estimate of the source’s location and intensity.

We use an iterative in-network approach that does not rely on powerful
nodes or network-wide collection and offline processing. Our method involves
a pre-determined number of initiating nodes that independently sense the spa-
tial event. Each of these nodes, begins a procedure that aims to route a packet
intelligently towards the source of the spatial event. The ultimate aim is that
after a small number of hops the packet should be at a node very close to the
source of the spatial event — we will call this the destination node. By taking
the location coordinates and measurement at the destination node, we have a
coarse estimate of the source’s location and intensity.

The method is designed to operate as close to real-time as possible and to
be lightweight in terms of network communication. To address the latter point,
we use directional local gossip to propagate event state information. This is
somewhat akin to the Trickle [10] algorithm that uses polite gossip to bring
network consistency with respect to a set of global shared parameters. Our al-
gorithm starts with the initiating node making a guess of the spatial event state
at single-hop neighbouring nodes and sending it to the local broadcast address.
Nodes hearing the broadcast reply with their own measurements. The estima-
tion error is calculated and the node that minimises the error is selected as the
next hop and its measurement is used to correct the initial prediction made.
This “predict-correct” cycle is in fact a straightforward Kalman filter. The node
selected as next hop receives the filter parameters and repeats the steps. The
procedure is continued iteratively, recording the network path along the way
and it exits when a node runs out of unvisited neighbours that are likely to lead
any closer to the source. The exact details of the algorithm will be described in
section 2.2.

In the remainder of this paper, we will formalise the problem and we will
discuss the requirements for a solution. We will then present our algorithm for
decentralised in-network point-source estimation together with discussion of a
test case and experimental simulation results. We will conclude by reviewing
selected related work together with future plans.
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1.1 Problem Statement & Requirements

We consider a single static point source that emits a pollutant of chemical or
radiological nature. This source is located at the unknown coordinates (xs, ys)
in the two dimensional coordinate system. The presence and intensity of the
pollutant in the atmosphere is sensed by N sensor nodes located at (xi, yi)
coordinates with i = 1, 2, . . . , N . The goal is to devise a computational method
that estimates the coordinates (x̂s, ŷs) and intensity of the source, within some
error ǫ.

Formally, given zi sensor measurements collected at coordinates (xi, yi) the
goal is to estimate the vector v̂ :

[

x̂s ŷs Î
]T

where Î is the intensity estimate as it would be measured 1 meter from the
source [5].

The complexity of a proposed solution for this problem varies significantly
depending on the assumptions made. In our case we assume a single static point
source in R

2 and a steady-state dispersion model. The latter point refers to a
simplified gas concentration model, adapted from [7], where measurements are
time-averaged and constant with respect to time. Furthermore, we assume that
the nodes are aware of their own location coordinates.

The solution to the source localisation problem needs to be lightweight both
in terms of computation and communication. It needs to operate in a decen-
tralised manner without relying upon powerful nodes or offline processing and it
needs to be capable of converging to an estimate rapidly — typically under two
minutes.

Our approach tolerates both non-uniform distributions and, due to the fact
that our estimation algorithm employs a Kalman Filter, a degree of measurement
and process noise.

2 Iterative Source Location Estimation

2.1 The Kalman Filter

The Kalman Filter is an optimal, in the least squares sense, estimator of the
true state of a dynamic linear system that its measurements are corrupted by
white uncorrelated noise. In our context the Kalman filter is used to estimate
the vector v̂. In its simplest form, a Kalman filter, is based on the following five
equations:

x̂k
− = Ax̂k−1 + wk−1 (1)

P k
− = AP

k−1
AT + Q (2)
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Kk = P k
−HT (HP k

−HT + R)−1 (3)

x̂k = x̂k
− + Kk(zk − Hx̂k

−) (4)

Pk = (I − KkH)P k
− (5)

Where x̂k
− is the a priori state estimate, x̂k is the a posteriori state estimate,

A is the state transition matrix, w is the white, zero-mean, uncorrelated noise,
P k

− is the a priori error covariance, P k is the a posteriori error covariance,
Q is the process error covariance, R is the measurement noise covariance, H

is the measurement matrix, zk is the measurement taken at time k and K is
the Kalman Gain. Equations 1 and 2 are the Time Update (Predict) equations.
Equations 3 to 5 are the Measurement Update (Update or Correct) equations.

The goal of the Kalman filter is to formulate an a posteriori estimate x̂k

as a linear combination of an a priori estimate x̂k
− and a weighted difference

between an actual measurement zk and a measurement prediction Hx̂k
− as

shown in equation 4 [20].
Due to space limitations we will not discuss the particulars of the Kalman

Filter in more detail; the interested reader can refer to [17], [20], [22] for an
extensive review.

2.2 In-network Estimation

Our localisation algorithm makes appropriate use of a Kalman filter on the basis
of the assumptions of section 1.1. The process starts at an individual node —
this can be a choice from a pre-determined set of nodes that sense the event
independently. The desired outcome is to start a “walk” of the sensor field by
visiting (i.e. sending a packet to) other nodes.

Once the event is sensed, the initiating node makes an initial guess of the
measurement at adjacent single-hop nodes. Since no other information is avail-
able this guess equals to a linear transformation of the local measurement. The
node then tasks the one-hop unvisited neighbours to send their measurements.
This is achieved by a local broadcast. We will see later how the local broadcast
is avoided once nodes reach a consensus regarding the quadrant direction of the
source. Once the replies with the measurements have been collected the innova-
tions Zn = (zk

(i) − Hx̂k
−) are calculated. Note that x̂− is the initial estimate

made by the initiating node and measurement zk
(i) has now a superscript i to

indicate which neighbouring node has reported it. Then the minimum innovation
argmin

z

(zk
(i) − Hx̂k

−) is calculated and node i is selected as the next hop.

When node selection takes place, the selector sends to the selectee a collection
of filter parameters so the latter can continue the process. This allows each node
in the network to run a lightweight application and only when necessary to be
tasked to perform the estimation. We will refer to this collection of parameters
as particle, since it resembles a travelling particle that facilitates a task.
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Algorithm 1 Particle Localisation Algorithm

1: variables Estimate Error Covariance P , Measurement Noise Variance R, Process
Variance Q, State Transition Matrix A, Measurement Matrix H , Initial Estimate
x̂k

−, maxhopcount=1, netpath[], counter c = 0;
2: Project state estimate x̂k

− ahead (Eq. 1).
3: Project error covariance P k

− ahead (Eq. 2).
4: Task unvisited neighbours within maxhopcount to report measurement.
5: for (each of replies received) do

6: calculate innovations (zk
(i)

− Hx̂k
−)

7: end for

8: Select as next hop the node that minimises the innovation.
9: Compute the Kalman gain (Eq. 3).

10: Correct (Update) estimate with measurement zk
(i) (Eq. 4).

11: Correct (Update) the error covariance Pk (Eq. 5).
12: Compute relative error.
13: if abs(relative error) >=multiple·(E[Rel Error]) then

14: exit

15: else

16: Add local address to netpath[c] and increment c.
17: Send particle to selected node (line 8) and task it to start at Line 1.
18: end if

The typical stopping condition is linked to the estimation relative error (line
13); for instance, when the estimation relative error exceeds a multiple of the
mean relative error the process halts. A sharp rise in the relative error usu-
ally reveals that the particle has moved outside the plume or to an area where
measurements differ significantly given the initial estimates.

Moreover, a variation of the algorithm has been developed that when the
relative estimation error becomes high then a selector node considers candidate
next-hop nodes that are more than one hop away. The same local broadcast is
issued but the maximum hopcount is increased to a pre-determined value i.e. to
<= 3. This effectively means that the selector will receive more measurement
replies — to be precise it will receive (2h+1)2−1 where h is the number of hops.
Since there are more measurements available it is more likely to find a candidate
for next hop that will keep the error low.

The typical use of this localisation algorithm is to employ many particles for
robustness. With n particles we add a geometric computation — not shown in
the above listing for the sake of simplicity — to establish a consensus regarding
the quadrant in which the source is located. This operates as follows: after a
small number of hops (i.e. ≤ 10), a convex hull is evaluated for the particles’
coordinates. Recall that the convex hull is the boundary of the minimal convex
set containing a finite set of points (i.e. the N particle coordinates). Provided
that particles commence at nearby locations (i.e. ≤ 4 hops away from each
other) the convex hull can be evaluated without a significant communication
overhead. The mean direction of movement is given by calculating the centroid
of the convex hull (Figure 3(a)). Only a coarse quadrant direction is necessary
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Fig. 1. An example of the particle path (a) shown by the darker line. Starting at
(1, 1) it moves towards the source at (95, 95). It reaches a distance of 2.83 away after
93 hops. On (b) the estimation error is shown. While, initially it is reducing as the
particle approaches the source it increases gradually and then sharply — the sharp
rise indicates that the measurements are not in line with expectations and it is the
stopping condition.

at this point. This is the quadrant in which N particles estimate the source
location and it constitutes the consensus. Once the consensus becomes known,
there is no need for local broadcasts. Instead, the estimates are sent directly to
the neighbours in the consensus direction. This achieves an improvement both
in terms of communication — 3

4 less messages at each hop — and estimate
accuracy.

3 Evaluation

Given that empirical evaluation using realistic conditions is problematic due to
the hazardous application scenarios, we have evaluated the correctness of the
algorithm via simulations in MATLAB. We have considered a specific test case
of a time-averaged gas plume over a 100-by-100 square grid according to the
model described in [7] and the assumptions of section 1.1. The performance
criteria used were: (a). the Euclidean distance to the true source and (b). the
length of the path taken from the start to the end point that comprised the final
estimate. The former criterion is associated with estimation accuracy while the
latter is a measure of speed, communication cost and efficiency. Moreover we
have employed a naive algorithm that selects the maximum reading as the next
hop as a baseline benchmark.

Figure 1 exhibits the simplest case involving a single particle starting at an
arbitrary location and iteratively moving towards the source region of the spatial
event until it reaches at (93, 93), a distance of 2.83 away from the true source — a
useful estimate of the true coordinates and an intensity estimate within ǫ = .0121
of the true intensity. Taking into account that network-wide broadcasts were not
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Fig. 2. Comparison of our particle localisation algorithm with a maximum selection
naive algorithm. The x-axis is labelled with starting coordinates. All paths ended at a
distance less than 4 (Euclidean) to the real source, but our approach resulted in shorter
(in the case of (50, 88), up to a factor of 9) paths.

required and only local communication between a very small percentage of the
nodes was involved, we assert that the method is lightweight and respects the
constraints of the devices. In addition, although the starting coordinates can
be any point in two-dimensional space, for the sake of demonstrating one of
the strengths of the algorithm in this discussion we will assume starting points
located fairly far from the source.

Figure 2 shows the benchmark comparison to the naive algorithm; this small
set of random starting points suggests correct and efficient behaviour. The fact
that all paths taken by the 8 particles achieved a distance less than 4 to the true
source in less than 100 hops seems to suggest quick convergence to appropriate
estimates. Furthermore, in various test runs our algorithm did not seem to be
affected by the local maxima that caused the naive maximum selection algorithm
to move in circular fashion and result in long paths.

Figure 3(a)) shows the typical operation of the algorithm with n particles and
the geometric addition that computes the consensus quadrant direction of move-
ment shown by the arrow. Using the consensus, individual particles only send
estimates towards that quadrant direction reducing communication and achiev-
ing more robust estimates. By adding this geometric aspect to the stochastic
estimation nature of the algorithm we factor a level of error tolerance in the
approach: as long as the majority of the particles move in the right direction,
we guarantee that energy will not be wasted in erroneous propagation decisions
that can not possibly lead to an accurate estimate.
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(a) Mean Direction of Movement (b) Corruption of measurements by
Noise

Fig. 3. (a) Two convex hulls evaluated for 8 particles after 10 and 20 hops respectively.
Marked with an asterisk are the centroids of the polygons (consensus). (b) Particle
starting at (10, 30) and heading towards the source — measurements are corrupted by
random noise.

Lastly, our approach shows tolerance to small measurement noise. This was
tested by corrupting the gas concentration measurements by random noise of
small magnitude (i.e. N(0, .0001)) (Figure 3(b)) — this had no impact to the
estimation performance of the filter. However, increasing the noise magnitude
results in inconsistent behaviour and requires adaptation of the filter parameters
which we will not discuss here any further due to space limitations.

4 Related Work

Coarse grained localisation techniques can be as simple as the Centroid Calcula-

tion or Point-in-Triangle (PIT) methods [9]. A refinement of the PIT technique
is the Approximate Point in Triangle (APIT) described in [6]. A geometric ap-
proach based on the circles of Apollonius is described in [4]. A robust to noise
and measurement errors data fusion algorithm that extends the latter approach
is presented in [2].

A different family of methods is based on the well-understood Time Difference
of Arrival (TDoA) localisation. There is a geometric and a numerical solution
to this problem — more information on the details of TDoA solutions can be
found in [11], [13], and [21].

Another solution is based on Maximum Likelihood Estimation (MLE): the
least squares minimisation of the estimate of vector v̂ can be solved by gradient
descent or numerically according to the methodologies of [5] and [14].

Lastly, the Kalman filter has been employed in radioactive source localisation
in [5]. The difference with our approach is that we perform the estimation in-the-
network while [5] assumes offline processing. A combination of a Kalman filter
with Time of Arrival (ToA) is presented in [8] while a distributed Kalman filter
for wireless sensor networks is presented in [18].
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5 Future Work & Discussion

To validate the correctness of the simulation results, at the time of this writing,
we are in the process of implementing the algorithm in a network-specific simu-
lator [1]. This simulator accepts TinyOS code and allows evaluating the impact
of many real-world network-specific parameters such as density, distribution and
so on.

Concluding, we have presented an iterative point-source coarse localisation
algorithm that operates in-the-network and does not require powerful nodes or
network-wide collection and offline processing. A straightforward Kalman filter
is at the heart of the algorithm that iteratively computes the source estimate.
Using this approach has the following advantages:

– Efficient paths in terms of length and distance to the source, when compared
to a naive maximum selection algorithm.

– Robustness which is introduced by using multiple particles and a geometric
approach to establish mean direction of movement. This direction consen-
sus facilitates both reduction in communication and improved accuracy of
estimates.

– Lightweight, real-time properties that neither involve the entire network nor
make any assumptions about individual placement of nodes.

– Noise resilience due to intrinsic characteristics of the Kalman filter make
our approach robust to errors introduced by the inexpensive circuitry and
sensory equipment.

Finally, the recursive nature of the Kalman filter makes it a good match for op-
eration in resource-constrained devices — approaches such as [19] use optimised
implementations — and a valid generic solution to the CBR source localisation
problem.
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