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WSANSs and the Future Internet

Smart Dust and the first generation of WSANs
Shift to next generation WSANs and the loT
The Internet of People

Analytics for loT WSAN systems

Capturing and employing collective behaviours
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The Internet today
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showing the major ISPs. Data collected 28 June 1999
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The Internet of Things
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Device evolution

WeC (1999) René (2000) DOT (2001)

MICA (2002) Speck (2003)
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Problems and evolution

Smart Dust faces significant problems
— Energy harvesting

— Maintenance

— Programmability at the system level

Mobility seen as significant for robustness/performance

Popularity and proliferation of mobile networks

— 400M sensors in mobile phones in 2014

Shift of emphasis to smart-phone centric networks
— e.g. sensor clouds around smart-phone core

Shift of focus on data and human dynamics
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The Internet of People

Business Week
March 2009
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Core ingredients

* Humans carry sensors and actuators on personal
devices

» These devices interact with embedded systems such
as building networks, Smart Dust, Personal Area
Networks and RFID

» The loT captures and processes the data
- Maintain, infer, characterize and provide intelligence
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New problems emerge

+ loT sensor network systems generate automatically massive
data sets

- How to tell what is important and what is not
- How to find significant information

« One solution we currently investigate in our group

— To combining behaviours, preferences, or ideas of a group of people to
create novel insights

— aka collective intelligence
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Significant locations

|dentify significant places

Use mobile phone location records
|dentify hot-spots of activity

Time specific

Commercially available through Sense
Networks

Track real-world consumer behaviour
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RFID Analytics

RFID-tagged products and locations
Scan traffic at specific chock points

Analyse traffic and identify hot-spots
or problem areas

Visual tools
Different spatial resolution
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Social networks

« Observe social networks in the
real World O%@Sb Grad[Position]
. QU @
- Tag and rank location of @@@gm_ oston
individual - pig
. . «® 9" 0@
 Ildentify meetings through . @ O@

. . . ( A New Grad[Position]
collocation or device-to-device @.So0c @ S s
Interaction D@  e00q¢°.

 Create social network graph s @Y
. e
« Conduct analysis g 8

- Reality mining data set
Shen et al, UC Davies
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Patterns of behaviour

- ldentify typical behaviours
- Possibly context and task specific
« Applications in navigational assistance,
personalisation, recommendations
- Best-trails i.e. most popular pathways
followed
— GPS data from London Zoo
- Daily activity patterns
— Reality Mining data

- -
58

Aug 1, 2004 Sep Oct Nov Dec Jan Feb Mar  Mar31, 2005
Week

Shen et al, UC Davies
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Prediction
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Krumm et al

Microsoft Research
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Navigational assistance

- Find best route between two places s
- Use data from an expert data set
- Taxi drivers are considered experts in ) (P

this task

- Navigate like a cabbie

- Similarities of geographic navigation I -
and web navigation

Navigationzone.net

: @ [“llondonknowledgelab



Reduce a complex data set to typical
behaviours

GSM tracks over metropolitan area
Cluster typical behaviours in profiles
Use road graph to identify sequences
Topological descriptions of space are

more efficient

: @ [“llondonknowledgelab
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Summarization

| Inianbarepen

Adrienko et al
Fraunhofer |AIS
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Our group’s point-of-view

-« Spatiality/physicality sets most constraints, thus the starting
point
+ Reality is a semantic-spatiotemporal environment
— pervasive computing technology to capture user behavior
— identify significant landmarks and pathways
— trail-based processing

 Core ingredients
— trails
— metrics of significance
— suffix-tree based algorithms

: @ [“llondonknowledgelab
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A landmark is

* Alocation

— A scanning station

— A popular place

— A nodal point according to Space Syntax
- A person

— A mobile phone-carrying individual

— A mote-tagged conference attendee
- A (physical or data) object

— A URI

— An RFID-tagged artefact

: @ [“llondonknowledgelab
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Identifying landmarks

* A-priori

— Defined by system-specific characteristics

— Bluetooth, WLAN, GSM etc access point

— RFID, mote or other tag

— Construction of space graph e.g. Space Syntax
 A-posteriori

— ldentify significance through use

— e.g. Minimum Volume Embedding Algorithm

: @ [“llondonknowledgelab
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Experiments on 3 main data sets

» Dartmouth University

— campus-wide wifi network
* Reality Mining

— User movement over a mobile phone network
- Cityware

— Bluetooth scanning at Bath

Dataset Interactions |Users Landmarks
Dartmouth 1,782 931 4 745 b23
Reality Mining 2536 034 o4 a2 b2a
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Landmark analytics
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Best trails using different metrics

frequency, time, orientation, hybrid

and constraints

<)

start and end at specific landmark
passes through specific landmark
minimum, maximum, exact trail length
time of day, week, month etc

nodes tagged with specific meta-data
user-specific

[“llondonknowledgelab
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Trail analytics

AcadBldg13AP12



Birkbeck

UNIVERSITY OF LONDON

Examples (1/4)

Top-10 trails by
frequency

Dartmouth data set
-~ Wi-Fi associations

3-year period
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Examples (2/4)
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Exact length 3

Cityware data set, 3-month period
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Examples (3/4)

Hard to interpret visually
Nodes are individuals

Trails show patterns of contact
Top-10 trails by frequency

At least 7 different landmarks

Intel imote data set
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Examples (4/4)

Concept drift: best-trail evolution over time
Reality-mining data set
Popular trails algorithm

Mobile phone (cellular and Bluetooth) over 9
months
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Hit and Miss results

H&M for Reality Mining
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Using all trails in the data set. Using best trails only.
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Identify individual without ID
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Summary

* New model for WSANs

Data capture and connectivity to the loT
Significant developments in recent years
Analytics, prediction, classification
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