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Abstract

Over the past decade, the radial basis function method has been shown
to produce high quality solutions to the multivariate scattered data inter-
polation problem. However, this method has been associated with very
high computational cost, as compared to alternative methods such as fi-
nite element or multivariate spline interpolation. For example, the direct
evaluation at M locations of a radial basis function interpolant with N
cedntres requires O(MN) floating-point operations. In this paper we in-
troduce a fast evaluation method based on the Fast Gauss Transform
and suitable quadrature rules. This method has been applied to the
Hardy Multiquadric, the Inverse Multiquadric and the Thin-plate Spline
to reduce the computational complexity of the interpolant evaluation to
O(M + N) floating-point operations. By using certain localisation prop-
erties of conditionally negative definite functions this method has several
performance advantages against traditional hierarchical rapid summation
methods which we discuss in detail.

1 Introduction

A problem frequently occurring in science and engineering is the approx-
imation of a function f , the value of which is known only on a relatively
small set of points. One way to obtain such an approximation is by inter-
polation: Given the values fi of f at the points xi ∈ R

d, i = 1, 2, . . . , N ,
determine a function s that satisfies the conditions

s(xi) = f(xi) = fi, i = 1, 2, . . . , N.

Usually, the choice of solution method specifies a class of functions S,
with the interpolant s ∈ S uniquely identified by computing a number
of free parameters, so that s satisfies the interpolation conditions, and
possibly meets further restraints or has particular properties required by
the application.

In the one-dimensional case, the graph of f belongs to the two-dimensional
Euclidean space and the problem may be restated in geometric terms.
Given a set of points pi, i = 1, 2, . . . , N , from an unknown target curve,
construct a curve which approximates the original, in the sense that it
passes through all the data points. A common solution for this problem is
cubic spline interpolation, that is, choosing an interpolant from the space
S of piecewise polynomials of degree three that have a smooth first deriva-
tive and a continuous second derivative both within and at the boundary
of the interpolation interval.
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For the two-dimensional case, a comparative study [16] of interpolation
methods indicated that the most accurate and visually attractive results
are produced by the so-called Hardy Multiquadric and the Thin-plate
Spline methods. At that time, only numerical evidence supported the
suitability of these methods for interpolation. Since then a significant
amount of analytical work has been carried out and today radial basis
functions are a well established method of multivariate scattered data
interpolation.

1.1 Interpolation with Radial Basis Functions

Radial basis function interpolants have the form

s(y) =

N∑

i=1

λiϕ(‖y − xi‖), (1)

with λi real coefficients, xi points in R
d called centers, ‖ · ‖ the Euclidean

norm and ϕ the basis function. The function ϕ : R
+ → R is univariate

and radially symmetric with respect to the norm, in the sense that it has
the symmetries of the unit ball in R

d. The coefficients λi are chosen so
that the interpolation conditions are satisfied. Recently, different p-norms
have been considered in the literature, but here we will discuss only the
Euclidean norm, since it is the one used in the majority of applications.

Useful choices of ϕ include the Gauss kernel

ϕ(r) = e−c r2

,

the Euclidean distance
ϕ(r) = r,

the Hardy Multiquadric

ϕ(r) =
√

r2 + c2, (2)

the Inverse Multiquadric

ϕ(r) =
1√

r2 + c2
, (3)

and the Thin-plate spline

ϕ(r) = r2 log r. (4)

The radial basis function method can be thought of as an extension
of univariate splines to several variables. Assuming that the points xi are
organised in ascending order, the linear spline is composed by the line
segments

s(y) =
(xi+1 − y)fi + (y − xi)fi+1

xi+1 − xi
, xi ≤ y ≤ xi+1,

or else

s(y) =

N∑

i=1

λi|y − xi|,

the λi’s being defined by the interpolation equations.
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In matrix notation, solving the radial basis function interpolation prob-
lem is equivalent to solving the system of linear equations

Aλ = f, (5)

where A is the interpolation matrix

Aij = ϕ(‖xi − xj‖), (6)

λ is the vector of coefficients (λ1 λ2 . . . λN)T and f is the vector of
function values (f1 f2 . . . fN)T .

One of the features that makes radial basis function interpolation a
useful technique is the fact that a unique interpolant is guaranteed under
weak conditions on the location of the centers. These properties have been
discussed in detail in [29] and are also summarized in this paper in section
2.2. One exception to this is the Thin-plate Spline whose corresponding
interpolation matrix A in (5) may be singular. For example, if the centers
xi for i = 2, . . . , N , are points on the circle of unit radius in R

2 and x1

is the center of the circle, then the first row and column of A consist
entirely of zeros. This difficulty may be resolved by adding a polynomial
of degree one to the Thin-plate Spline interpolant and then demand that
the centers are unisolvent, that is the only polynomial of degree one which
vanishes at every center is the zero polynomial. Of course, extra conditions
must be introduced because of the extra degrees of freedom added. The
interpolation conditions become

∑N

j=1
λjϕ(‖xi − xj‖) + p(xi) = fi, i = 1, 2, . . . , N,∑N

j=1
λjp(xj) = 0, for every p ∈ Π1(R

2).
(7)

with Π1(R
2) the set of polynomials in two real variables of total degree

less than or equal to one. In this case, there is a unique vector λ and a
unique polynomial p satisfying (7).

For the d-dimensional case, the resulting linear system is
(

A Q
QT 0

)(
λ
h

)
=

(
f
0

)
(8)

with A defined in (6), and Q defined by

Q =




p1(x1) . . . pdm(x1)
...

...
...

p1(xn) . . . pdm(xn)


 ,

where {pk : k = 1, 2, . . . , dm} is a basis of Πm(Rd) and

dm = dim Πm(Rd) =

(
d + m

d

)
.

Two-dimensional Thin-plate Spline interpolation has extra advantages:
the resulting interpolant is optimal in the sense that it is the differentiable
function minimising the integral

∫

R2

|fxx|2 + 2|fxy |2 + |fyy|2dxdy.

In addition to providing an effective way to define the degrees of free-
dom in the general interpolation problem, this property implies smooth-
ness for the resulting surface. Further, the interpolant is rotation and
scale-invariant and thus one obtains the same surface independent of the
physical units used.
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1.2 Computation with Radial Basis Functions

Although the radial basis function method has been applied successfully in
a wide variety of scientific and engineering problems, its widespread adop-
tion has been hindered by the associated high computational cost. Indeed,
the solution of the interpolation equations (5) directly requires O(N 3)
floating point operations, while the form of the interpolant (1) implies
that evaluating s at M points y1, y2, . . . , yM , directly requires O(MN)
operations.

Indeed, the high computational cost associated with the radial basis
function method (compared against alternative methods such as finite el-
ements or multivariate splines) has been identified as early as Franke’s
survey [16]. An initial attempt to reduce the computational complexity
of the evaluation task was made by Powell [33]. The minimisation prop-
erty of the Thin-plate Spline was used to devise a fast method to evaluate
interpolants on a grid. A simpler solution to the same problem but for
any radial basis function was suggested by Arad [3]: when the centers of
interpolation are on a grid then there are far less than O(N 2) distinct
inter-point distances, which may be precomputed. Then, the evaluation
task may be performed by table lookups rather than floating point com-
putation.

Of course, a new approach is required if the interpolant is not to be
evaluated on a grid but at scattered points. Beatson and Newsam [8] first
noted the similarities between the computational structure of the N -body
problem and the evaluation of a Thin-plate Spline (and in consequence, of
any other radial basis function) interpolant, thus initiating research in the
construction of fast evaluation methods, based on the extensive research
literature on rapid N -body simulations. In [8], the Laurent and Taylor
expansions required by the Fast Multipole Method (fmm) of Greengard
and Rokhlin [23, 24] were constructed. These results1 were used by Powell
[34] to construct a fast algorithm for the evaluation of Thin-plate Spline
interpolants. This method uses a decomposition of the set of interpolation
centers similar to Appel [2] and the method has observed computational
complexity of O(N log N) for fairly uniform distributions of centers. More
recently, Beatson has implemented a full fmm based on the results of [8]
with reported performance characteristics similar to that discussed in [23].
A variant of this method whereby the coefficients of the multipole expan-
sion are not calculated directly but approximated is discussed by Suter
[44]. Finally, in [11] the multipole expansions required for computation
with generalised multiquadrics have been calculated.

The relation between the Hardy Multiquadric and N -body compu-
tations has received a physical justification. Indeed, Hardy [28] relates
the solution of an interpolation problem to simulation of the Earth’s ge-
omagnetic field by a biharmonic potential. This has the advantage that
the Earth is considered as a solid rather than a hollow body, as happens
when using the harmonic potential.

A rapid algorithm for evaluation of radial basis function interpolants
may reduce the computational cost of certain methods used for the fast
solution of the interpolation equations. Indeed, Baxter [5] points out that

1Note that the Laurent expansions calculated in [34] are erroneous. Formula (3.7) of [34]
must be corrected using the multipole expansions calculated in Theorem 4.2 of [8]: Following

the notation of [34], replace |J | (the total number of centers) with
∑N

i=1
λi (the sum of the

coefficients of the interpolant). However, the numerical results reported in the final section of
[34] are correct.
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when the centers form a regular grid, matrix-vector products Ax with A is
the interpolation matrix, may be computed in O(N log N) operations via
the Fast Fourier Transform. Products of this kind are required in iterative
methods, like the Conjugate Gradient algorithm.

In fact, the preconditioned CG method was used by Dyn, Levin and
Rippa [13, 14] to solve the interpolation equations. However, since the CG
algorithm requires a positive (or negative) definite matrix, the method is
unstable for most radial basis functions of interest. A remedy for this
situation for the Hardy Multiquadric was proposed by Baxter [5, Chapter
6], where at the end of each iteration of the CG method the residual
is projected onto the space < e >T with e = (1 1 . . . 1), where the
interpolation matrix is indeed negative definite. The modified method
ensures the stability of the conjugate gradient method. More recently, in
a series of papers Beatson, Powell, Goodsell and Faul [9, 10, 20, 15, 35]
have developed an iterative algorithm which employs estimates of the
characteristic function.

In this paper, we introduce a method for the rapid evaluation of ra-
dial basis function interpolants that can be used for all usual radial ba-
sis functions discussed in this and previous sections. In addition to its
general applicability and contrary to fmm and treecodes this method is
non-hierarchical. This fact allows for very scalable implementations on
high performance computers, in particular multiprocessors and clusters
of workstations. The remainder of this paper is organized as follows:
in section two, first we discuss the Fast Gauss Transform of Greengard
and Strain [25] and then we summarize some properties of radial basis
functions, which form the core of our algorithm. Then, in section three
we proceed to present the rapid evaluation algorithm itself as well as its
implementation. The paper concludes with a report on some numerical
experiments and with observations on the performance of our method.

2 Preliminaries

Our rapid evaluation method for radial basis functions is based on certain
integral representations (such representations are established in Theorems
1, 2 and 3 for the most common radial basis functions) which are used
with the Fast Gauss Transform and suitable quadrature rules, to estimate
the value of the interpolant at a point. In the following paragraphs we
discuss the individual building blocks of the algorithm.

2.1 The Fast Gauss Transform

Here, we briefly discuss the Fast Gauss Transform (fgt) of Greengard
and Strain [25] as appropriate for the fast radial basis function evaluation
method. In the d-dimensional fgt we require the use of multi-index no-
tation. The d-tuple β = (β1, β2, . . . , βd) ∈ N

d is called a multi-index and
is useful for indexing in the context of a d-dimensional Euclidean space.
We use the notation β ≥ p, p ∈ N, if βh ≥ p for 1 ≤ h ≤ d. Thus, for any
x ∈ R

d, we define

|β| = β1 + β2 + . . . + βd,

β! = β1!β2! . . . βd!,

xβ = xβ1

1 xβ2

2 . . . xβd

d .
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The multi-dimensional Hermite functions hβ(x) are

hβ(x) = hβ1
(x1)hβ2

(x2) . . . hβd
(xd) (9)

where hk with k ∈ N is a classical Hermite function and x = (x1, x2, . . . , xd).
The aim of the fgt is to evaluate efficiently sums of the form

N∑

i=1

λi exp
(
−s‖y − xi‖2

)

at M distinct points y1, y2, . . . , yM . By shifting the origin and re-scaling,
we may assume that all the interpolation centers and all the evaluation
points lie within the unit hypercube B0 = [0, 1]d. This is a a convenient
normalisation and does not restrict the generality of the method.

We may express a Gaussian in R
d as the Hermite expansion

e−s‖y−x‖2

=
∑

β≥0

1

β!

(√
s(x − C)

)β
hβ

(√
s(y − C)

)
. (10)

For centers x1, x2, . . . , , xN ∈ R
d inside box B B = {y ∈ [0, 1]d :

‖y−C‖∞ < r/
√

2s} of side length r
√

2/s for some r < 1 (cf. [25, Lemma
2.1]) centred at C, we can precompute the moments

Aβ =
1

β!

N∑

i=1

λi

(√
s(xi − C)

)β
, (11)

which we can then use to evaluate the Gaussian sum at a point y by

N∑

i=1

λi exp
(
−s‖y − xi‖2

)
=

∑

β≥0

Aβhβ

(√
s(y − C)

)
. (12)

By truncating the infinite series on the right of (12) after the first pd

terms, we introduce the error

|Ep| ≤ Q

(1 − r)d

d−1∑

k=0

(
d

k

)
(1 − rp)k

(
rp

√
p!

)d−k

, (13)

with Q =
∑N

i=1
|λi|. Note that this error estimate (calculated in detail

in [38]) and the error estimate of [25, Lemma 2.1] coincide when d = 1
but they are distinct in higher dimensions. Of course, similar reasoning
can be directly applied to Lemmata 2.2 and 2.3 of [25] to obtain the
corresponding error estimates.

Thus, the first ingredient of the fgt is the approximation (12) to the
Gaussian in terms of the moments (11) of the centers which when trun-
cated after pd terms introduces the associated error estimate (13). The
second ingredient of the fgt is the decomposition of the computational
space B0 into subboxes B of side length r

√
2/s parallel to the axes, for

some fixed parameter r. Each centre is assigned to the subbox B that
contains it and contributes only to the pd moments of subbox B. At the
end of the precomputation step, the pd moments for each of the subboxes
B have been computed. The precomputation requires O(pdN) operations.

For the estimation of the fgt at a particular evaluation point y con-
tained in subbox D, we need to consider the influence of only some of
the nearest neighbour boxes of D. Indeed, due to the exponential decay
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1: choose r and p to guarantee the required precision
2: subdivide B0 into boxes B of side length at most r

√
2/s

3: for each centre xj do

4: find the box C that contains xj

5: compute the contribution of xi to the moments Ak of C defined by (11)
6: end for

7: for each evaluation point yi do

8: find the box D that contains yi

9: for all (2n + 1)d nearest neighbours of D do

10: accumulate the sums (12)
11: end for

12: end for

Algorithm 1: The Fast Gauss Transform. Accepts as input the parameter s,
N centers xi with the associated weights λi and M evaluation points yj , and
returns the value of (10) at the points yj .

of the Gauss kernel, its effect on subboxes away from its centre may be
insignificant within certain accuracy. For example, taking into account
only the (2n + 1)d nearest neighbours to D, introduces error bounded by

Qe−2r2n2

. Hence, for r = 1/2 and n = 6 relative accuracy of 10−7 is ob-
tained. We will call the set of (2n+1)d nearest neighbours the interaction
list of box D. Thus, in order to estimate the Gaussian sum on the left
side of (12) at point y, we have to accumulate the pd moments for each
of the boxes B in the interaction list of D. Evaluation at a single point
requires O((2n + 1)dpd) operations.

Overall, the calculation of (10) may be performed using Algorithm
1. Step 5 requires O(pd) operations per centre and thus Step 3 requires
O(pdN) operations overall. Step 10 requires O(pd) per evaluation point
per box and thus Step 7 requires O(pd(2n + 1)dM) in total. Hence, the
computational complexity of the algorithm is O(pdN + pd(2n + 1)dM).

2.2 Conditionally Negative Definite Functions

As noted earlier, radial basis function interpolation is possible under rel-
atively weak conditions on the positions of the centers. To construct a
radial basis function interpolant it is necessary to solve the linear system
of equations (5) on page 3, but so far we have not commented on the
non-singularity of the matrix A. Moreover, in the case of the Thin-plate
Spline solvability of the interpolation problem requires that the matrix
A in (8) on page 3 be non-singular for all vectors λ satisfying (7), and
the polynomials p ∈ Πm(Rd) be uniquely determined by their value on
X = {x1, . . . , xN}, that is if p(xi) = 0 for all xi ∈ X then p = 0. Mic-
chelli [30] answers this question by proving almost positive (or negative)
definiteness of the interpolation matrix for several of the radial basis func-
tions, including the Hardy Multiquadric, the Inverse Multiquadric and
the Thin-plate Spline. In doing so, Micchelli constructs integral forms
for these radial basis functions, which we will use to develop our rapid
evaluation method.

To state Micchelli’s results about conditionally positive (or negative)
functions we recall that a function f is said to be completely monotonic
on (0,∞) provided that it is in C∞(0,∞) and (−1)m ·f (m)(x) ≥ 0 for x ∈
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(0,∞) and m = 0, 1, 2, . . .. Also, a real valued function f of a real variable

is said to be positive definite if the inequality
∑N

i,j=1
λiλjf(xi − xj) ≥ 0

holds for every choice of the real numbers xi and λi. Schoenberg gener-
alised this definition so that for example, a radially symmetric function
ϕ(‖x‖2) = Φ(x), Φ : R

d → R is said to be positive definite on R
d if the

inequality
∑N

i,j=1
λiλjΦ(xi − xj) ≥ 0 holds for any xi ∈ R

d and real

numbers λi [41].
Let Πm(Rd) denote the linear space of all polynomials of total degree

less than or equal to m. A function Φ : R
d → R is conditionally positive (or

negative) definite of order m on R
d, if for all sets X = {x1, x2, . . . , xN} ∈

R
d with N distinct points and all vectors λ = (λ1 λ2 . . . λN )T ∈ R

N

subject to the conditions

N∑

i=1

λip(xi) = 0, p ∈ Πm−1(R
d),

the quadratic form
N∑

i=1

N∑

j=1

λiλjΦ(xi − xj),

is non-negative (or non-positive) and vanishes only when λ = 0. Micchelli
[30] related the conditional positive definiteness of the radially symmetric
functions Φ(x) = ϕ(‖x‖2) to complete monotonicity of derivatives of ϕ.
In particular, Φ is conditionally positive (negative) definite of order m
for any d if the derivative of order m of ϕ(r1/2), r ≥ 0, is completely
monotonic.

In addition to proving the feasibility of interpolation, the relation to
conditionally positive (or negative) functions implies a means to represent
a radial basis function as an integral of a Gaussian by a suitable measure.
For example, Schoenberg [40] proved that Bochner’s Theorem [41] implies
that a function ϕ that is radially symmetric and positive definite on all
R

d must satisfy

ϕ(r) =

∫ ∞

0

e−sr2

dµ(s), (14)

with µ : [0,∞) → R a finite positive Borel measure. Furthermore, due
to a theorem by Schoenberg [40], ϕ is a conditionally negative definite
function of order one on every R

d if and only if there exists a Borel measure
µ : [0,∞) → R such that

ϕ(r) = ϕ(0) +

∫ ∞

0

1 − e−sr2

s
dµ(s), (15)

and µ has the properties

∫ 1

0

dµ(t) < ∞ and

∫ ∞

1

t−1dµ(t) < ∞.

The above conditions being required for the integral to be finite. Finally,
at least for some higher order conditionally negative definite functions it
is possible to construct expressions similar to (14) and (15). For example,
in [29] we have shown that the Thin-plate Spline may be written as

ϕ(r) =
r − 1

2
+

1

2

∫ ∞

0

e−s e−s(r−1) + s(r − 1) − 1

s2
ds. (16)
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We can use Micchelli’s results to make useful observations about the
interpolation matrix of several Radial Basis Functions. For example, the
Gauss kernel and the Inverse Multiquadric are (radially symmetric) posi-
tive definite function on R

d then the corresponding interpolation matrices
are positive definite. The Euclidean distance and the Hardy Multiquadric
are conditionally negative definite functions of order one on R

d and thus
the corresponding interpolation matrices have one positive and N −1 neg-
ative eigenvalues, provided that the centers are distinct and there are at
least two of them. Finally, the Thin-plate Spline is a conditionally posi-
tive definite function of order two on R

d. The particulars of the associated
representations have been detailed elsewhere [29] and here we will only
refer to the relations we need to develop our rapid summation schemes:

Theorem 1 For centers {xi}N
i=1 and y in R

d we have

N∑

i=1

λi√
||y − xi||2 + c2

=
1√
π

∫ ∞

0

e−sc2

√
s

N∑

i=1

λie
−s‖y−xi‖

2

ds.

Theorem 2 For centers {xi}N
i=1 and y in R

d we have

N∑

i=1

λi

√
‖y − xi‖2 + c2 = c

N∑

i=1

λi +

+
1

2
√

π

∫ ∞

0

e−sc2

√
s

(∑N

i=1
λi −

∑N

i=1
λie

−s‖y−xi‖
2

s

)
ds.

Theorem 3 For centers {xi}N
i=1 and the corresponding coefficients {λi}N

i=1

such that
∑N

i=1
λi =

∑N

i=1
λixi = 0 and y in R

d we have

N∑

i=1

λi‖y − xi‖2 log ‖y − xi‖ =
1

2

N∑

i=1

λi‖xi‖2 +

1

2

∫ ∞

0

e−s

s2

( N∑

i=1

λie
−s(‖y−xi‖

2−1) + s

N∑

i=1

λi‖xi‖2

)
ds.

3 Rapid Evaluation Algorithm Descrip-

tion

In this section we discuss the basic steps of the rapid evaluation algorithm.
Without loss of generality, we will discuss the algorithm for the Inverse
Multiquadric method and we will return to the details required for other
radial basis functions in the following paragraphs. We assume that we
have already calculated the solution to the interpolation problem, that is
we have computed the coefficients λi so that

s(y) =

N∑

i=1

λi√
‖y − xi‖2 + c2

, (17)

satisfies the N interpolation conditions for a set of centers x1, x2, . . . , xN

in R
d for data values f1, f2, . . . , fN and we consider the task of evaluating

(17) at a set of M points y1, y2, . . . , yM . Performing this calculation di-
rectly requires O(MN) operations. Our aim is to reduce the complexity
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of the evaluation task by developing a rapid summation scheme. Without
loss of generality we will assume that c2 = 1 and that all the centers and
the evaluation points are contained in the unit hypercube B0 = [0, 1]d.

Applying Theorem 1 to 17 we have

s(y) =
1√
π

∫ ∞

0

e−t

√
t

N∑

i=1

λie
−t‖y−xi‖

2

dt. (18)

Using (18) we can approximate s using a q-term generalised Gauss-Laguerre
quadrature rule

s(y) =
1√
π

q∑

k=1

wkf(tk), (19)

where

f(t) =

N∑

i=1

λie
−t‖y−xj‖

2

. (20)

Thus, rather than evaluating the sum of Inverse Multiquadrics (17) at an
overall cost of O(MN) operations, we may evaluate q sums of Gaussians
(20) (one for each quadrature node tk) via the Fast Gauss Transform in
O

(
q(N + M)

)
operations. Recall that the decrease in the computational

complexity of the latter task is due to the decoupling of the precomputa-
tion of the moments of the points xi and the estimation of the interpolant
at points yj through the already computed moments.

Of course, the quadrature introduces the error

|εq | =
q!

(2q)!
Γ(q +

1

2
)f (2q)(ξ), 0 < ξ < ∞.

The quadrature nodes tk are the zeros of the generalised Laguerre poly-
nomial L

(−1/2)
q (t) and the weights may be computed by the formula

wk =
q!Γ(q + 1/2)tk(

L
−1/2
q+1 (tk)

)2
.

Overall, the fast evaluation of Inverse Multiquadric interpolants may
be performed by Algorithm 2. In order to identify exactly the structure
of the iterations, we summarise the Hermite expansion required by a two-
dimensional fgt here. Indeed, for a point C ≡ (c1, c2) the Gauss kernel
can be approximated by

e−t‖x−y‖2

=

p∑

n1,n2=0

An1,n2
hn1

(
√

t(x1 − c1))hn2
(
√

t(x2 − c2)), (21)

with the moments An1,n2

An1,n2
=

1

n1!n2!

N∑

j=1

λj

(√
t(xj1 − z1)

)n1
(√

t(xj2 − z2)
)n2

. (22)

Hence, in two dimensions the precomputation of the moments (Steps 9-11
of Algorithm 2) requires O(qp2) operations per centre. The evaluation
of the moments at a single point (Steps 17-19 of Algorithm 2) requires
O(qp2(2n + 1)2) operations. Overall, the two-dimensional fast evaluation
algorithm requires O(qp2N + qp2(2n + 1)2M) operations.
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1: choose q and p to guarantee the required precision
2: compute the weights wk and nodes tk of the Gauss-Laguerre

quadrature rule (19)
3: for each quadrature node tk do

4: subdivide B0 into boxes of side at most
√

2/tk
5: end for

{start first stage: precompute moments}
6: for each centre xj do

7: for each quadrature node tk do

8: find the box C which contains xj

9: for β < p do

10: compute the contribution of xj to the moments Aβ

of box C using (11) on page 6
11: end for

12: end for

13: end for

{start second stage: evaluate moments}
14: for each evaluation point yi do

15: for each quadrature node tk do

16: find the box B that contains yj

17: for each of the (2n + 1)d nearest neighbours of B do

18: accumulate the series (12) on page 6 truncated after pd

terms to obtain an approximation to the Gaussian with parameter
tk

19: end for

20: accumulate the contribution of the k-th point of the quadrature rule
(19)

21: end for

22: end for

Algorithm 2: Fast Summation of Inverse Multiquadrics. Accepts as input the
N points xi, the associated weights λi and M evaluation points yj , and returns

the value of s(y) =
∑N

i=1
λi

(
‖y − xi‖

2 + 1
)
−1/2

at the points yj .

In the d-dimensional setting, precomputation of the moments requires
O(qpd) operations per centre and the evaluation at one point O(qpd(2n+
1)d) operations. Overall, the d-dimensional fast evaluation algorithm re-
quires O(qpdN + qpd(2n + 1)dM) operations.

In section 2 we established that integral representations similar to
(18) may be constructed for conditionally negative (or positive) definite
functions. In particular, Theorems 2 and 3 show such constructs for the
Hardy Multiquadric and the Thin-plate Spline correspondingly. In the
following section, we discuss suitable quadrature rules for these cases.
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3.1 Numerical Integration

Perhaps the most popular interpolatory quadrature formula is the formula
of Gauss type [12]

∫ ∞

0

w(t)f(t)dt ≈
q∑

k=1

wkf(tk), (23)

where the tk and the wk have been determined so that the formula is
exact for all f ∈ Π2q−1. For the weight function w(t) equal to:

w(t) = tae−t, a > −1, (24)

we obtain the generalised Laguerre formula [12]:

∫ ∞

0

tae−tf(t)dt =

q∑

k=1

wkf(tk) +
q!Γ(q + a + 1)

(2q)!
f (2q)(ξ), (25)

for some ξ ∈ (0,∞). The nodes tk are the zeros of the Laguerre polyno-

mials L
(a)
q (t). The weights are given by the formula

wk =
q!Γ(q + a + 1)tk(

La
q+1(tk)

)2

Let us now consider the use of Gauss-Laguerre formulae for the eval-
uation of the integral of Theorem 2. For simplicity let c2 = 1, then the
general case can be treated similarly by the change of variable u = sc2.
We have

N∑

i=1

λi

√
‖y − xi‖2 + 1 = c

N∑

i=1

λi +
1

2
√

π

∫ ∞

0

e−s

√
s

f(s)ds (26)

with

f(s) =

∑N

i=1
λi −

∑N

i=1
λie

−s‖y−xi‖
2

s
.

Hence, setting a = − 1
2

we can use (25) to estimate (26) in O(q) function
evaluations. The quadrature introduces the error

|εq| ≤
q!Γ(q + 1/2)

(2q)!
f (2q)(ξ), 0 < ξ < ∞.

The Gaussian quadrature nodes and the corresponding weights may be
computed using one of a number of standard methods, for example using
Gautschi’s orthopol package [18].

Alternatively, we may consider the weight functions

w(t) =
e−tc2

√
t

, c ∈ R, (27)

and construct a Gaussian quadrature rule with respect to (27) rather than
the classical Gauss-Laguerre weight function (24). However, in this case
we no longer have an explicit formula for the quadrature weights and we
need to employ an alternative method for their estimation, for example
the so-called method of orthogonal reduction [17]. In this case, we can use
routine d1mach from Gautschi’s orthopol package [18] and also note
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that the formula below provides appropriate approximations to the inner
product

∫ ∞

0

e−tc2

√
t

u(t)v(t)dt =
1

c

∫ ∞

0

e−s

√
s

u(
s

c2
)v(

s

c2
)ds ≈ 1

c

m∑

k=1

w̃ku(
sk

c2
)v(

sk

c2
),

as needed by the orthopol package.
Finally, let us consider the evaluation of Thin-plate Spline interpolants.

Theorem 3 implies that

N∑

i=1

λi‖y − xi‖2 log ‖y − xi‖ =
1

2

N∑

i=1

λi‖xi‖2+

+
1

2

∫ ∞

0

e−t

t2

( N∑

i=1

λie
−t(‖y−xi‖

2−1) + t

N∑

i=1

λi‖xi‖2

)
. (28)

Numerical evidence implies that using Gauss-Laguerre quadrature (a =
0) for the function

f(t) =

∑N

i=1
λie

−t(‖y−xi‖
2−1) + t

∑N

i=1
λi‖xi‖2

t2
,

does not guarantee the required precision. Thus, an alternative approach
is required. Indeed, first we make the change of variable t → 1−r

r
so that

the semi-infinite integration interval is mapped on [0, 1], that is

∫ ∞

0

f(t)dt =

∫ 1

0

f(
1 − r

r
)r−2dr, (29)

where f is the function

f(t) =

∑N

i=1
λie

−t(‖y−xi‖
2−1) + t

∑N

i=1
λi‖xi‖2

t2
.

In this case we estimate the value of interpolant s using Kronrod
quadrature [12, p. 77] which overcomes one of the main shortcomings
of Gaussian quadrature. Indeed,when proceeding from the n-point to the
m-point Gaussian rule with n < m, all functional values are discarded
(with the possible exception of the midpoint for n odd), since the nodes
of the n-point rule do not include any of the nodes of the m-point rule.
The Kronrod scheme overcomes this problem to some extent, by aug-
menting the n-point rule with n + 1 nodes selected so that the resulting
quadrature is exact for polynomials in Π3n+1.

We use the Kronrod scheme to estimate the Thin-plate Spline integral
(28) using (29) to map the infinite interval [0,∞) to the finite [0, 1]. Then,
we use the Kronrod scheme on a partition of [0, 1] that guarantees the
required accuracy. To estimate the accuracy provided by a particular
quadrature rule on a certain subinterval we use the difference between the
Gauss and the corresponding Kronrod scheme estimates on that interval.
The Kronrod quadrature interval [−1, 1] may be mapped to any interval
[a, b] by applying the following transformation

∫ b

a

f(t)dt =

∫ 1

−1

b − a

2
f(

b + a + (b − a)x

2
)dx.
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4 Numerical Results

In this section we discuss the performance of the fast evaluation method
on a representative selection of test problems. In all test problems we
report the maximum observed relative error ε defined as

ε = max
1≤j≤M

||fj − sj ||2
||fj ||2

,

where fj is the exact and sj the computed interpolant value at evaluation
point yj . In all test problems, the interpolant coefficients λj have been
randomly selected in the interval [−1, 1].

Test Problem 1. For the first test case we consider one-dimensional
Hardy Multiquadric interpolation. The N centers and the M evaluation
points are chosen from the uniform distribution on the unit interval. The
method scales linearly with respect to N and M (Table 1). Although of
little practical significance, this test problem is included here to show the
scaling of the method with respect to the number of dimensions.

Test Problem 2. The second test case is two-dimensional Inverse
Multiquadric interpolation (Table 2). The evaluation points coincide with
the centers and are uniformly distributed on the unit square. The observed
accuracy of the computation is O(10−14). The results for this case are also
shown in graphical format in Figure 1.

Test Problem 3. This is a case of two-dimensional Hardy Multi-
quadric interpolation with track data. The centers are positioned within
one tenth of the diagonal of the unit square and within it. The observed
relative error of the calculation is O(10−7) (Table 3).

Test Problem 4. This is case of two-dimensional Hardy Multiquadric
interpolation we investigate the case N << M which often occurs in
practical applications. The N centers are positioned within 1/10 unit
along the diagonal of the unit square and the M evaluation points are
are uniformly distributed in the unit square. The observed relative error
of the calculation is O(10−7) (Table 4). The reported timings show the
approximate and direct evaluation of the Hardy Multiquadric interpolants.
This test case highlights the fact that the method does not appear to
be sensitive to the relative values of M and N . Indeed, the observed
computational complexity of the method is linear with either M or N .

N = M approximate(sec) direct(sec)
300 0.013 0.016
500 0.015 0.028

1, 000 0.027 0.108

Table 1: Performance of the fast evaluation method (d = 1). The N centers
and the M evaluation points are uniformly distributed in the unit interval. The
table shows times in seconds for the approximate and direct evaluation of the
Hardy Multiquadric interpolants at observed relative accuracy of O(10−14).

14



N = M fast(sec) direct(sec)
1,000 1.15 1.5
2,000 1.37 6.12
4,000 1.81 24.41

16,000 4.26 364.42
20,000 5.44 576.74

Table 2: Performance of the fast evaluation method (d = 2). The N centers
coincide with the M evaluation points and are uniformly distributed in the
unit square. The table shows times in seconds for the approximate and direct
evaluation of the Inverse Multiquadric interpolants.
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x 104

100
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)

Figure 1: Graphic representation of Table 2, comparing the performance of the
direct and the fast method. Dotted line is the fast method. The y axis is
logarithmic.

15



N = M approximate(sec) direct(sec)
100 0.04 0.01
200 0.05 0.05
500 0.10 0.25

1,000 0.16 1.03
5,000 0.60 25.69

10,000 1.22 103.53
100,000 11.78 2,080.00
500,000 59.54 10,300.00

Table 3: Performance of the fast evaluation method (d = 2). The N centers
are positioned within 1/10 unit along the diagonal of the unit square and the
M = N evaluation points are are uniformly distributed in the unit square. This
test case highlights the fact that the method does not appear to be sensitive
to the particular distribution of centres and no observable differences are noted
to the uniformly distributed case. The table shows times in seconds for the
approximate and direct evaluation of the Hardy Multiquadric interpolants.

M approximate(sec) direct(sec)
100 0.03 0.01
200 0.05 0.05
500 0.07 0.25

1,000 0.11 1.03
5,000 0.33 25.69

10,000 0.64 103.53
100,000 6.02 2,080.00
500,000 28.54 10,300.00

Table 4: Performance of the fast evaluation method for N << M (d = 2). The
N centers are positioned within 1/10 unit along the diagonal of the unit square
and the M = N evaluation points are are uniformly distributed in the unit
square. In this case N is set to 200. The table shows times in seconds for the
approximate and direct evaluation of the Hardy Multiquadric interpolants.
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N = M approximate(sec) direct(sec)
700 0.92 0.83
800 1.00 1.04
900 1.01 1.33

1,000 1.07 1.62
5,000 2.73 41.24

10,000 4.87 166.96
100,000 43.31 3,340.00
300,000 130.52 10,020.00

Table 5: Performance of the fast evaluation method (d = 3). The N centers
and the evaluation points are are uniformly distributed in the unit cube. The
table shows times in seconds for the approximate (O(10−5) relative accuracy)
and direct evaluation of the Hardy Multiquadric .

N = M approximate(sec) direct(sec)
1,000 6.42 1.62
5,000 16.38 41.24

10,000 29.22 166.96
100,000 259.86 3,340.00
300,000 783.12 10,020.00

Table 6: Performance of the fast evaluation method (d = 3). The N centers
and the evaluation points are are uniformly distributed in the unit cube. The
table shows times in seconds for the approximate and direct evaluation of the
Inverse Multiquadric.
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Figure 2: Performance on the DEC Alpha cluster.

Test Problem 5. This is a case of three dimensional Hardy Mul-
tiquadric interpolation. The centers and the evaluation points are dis-
tributed uniformly in the unit cube. The observed relative accuracy of the
method is O(10−5) (Table 5). This test case indicates that the method
scales well with d in accordance with the predicted complexity of the
algorithm.

Test Problem 6. This is a case of three dimensional Inverse Mul-
tiquadric interpolation. The centers and evaluation points are uniformly
distributed in the unit cube. The observed relative accuracy of the method
is O(10−7). This computation may also be seen as the force calculation
step of a N -body problem with the Plummer potential (Table 6). We
expect thus that the algorithm developed in this paper may be used ef-
fectively in other contexts in addition to the evaluation of Radial Basis
Functions.

Test Problem 7. This is a parallelized version of the rapid summa-
tion algorithm. The test environment is a high performance cluster of
workstations assembled from commodity components using sixteen high
end Digital Unix workstations connected over fast Ethernet and organized
in a star topology and using an mpi-2 environment. Synchronisation was
implemented with allreduce operations in a spmd model. Even on rela-
tively small problems (N = M = 32, 000) the method scales very well.
In this case, the i/o is local at the filesystem of each workstation and
data are distributed and collected using standard operating system ser-
vices rather than a distributed filesystem. The actual performance of the
method is shown in Figure 2. Note that for a problem of similar size the
best scalable implementation of a treecode achieves approximately 65%
efficiency. On the other hand, the fast evaluation method examined here
achieves in excess of 94% efficiency.

5 Conclusions

In this paper we have constructed a rapid evaluation method for radial
basis function interpolants. The algorithm is based on a fundamental
property of conditionally negative (or positive) definite functions. It em-
ploys the fgt to compute Gauss kernel sums and a suitable quadrature
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rule. The method has been shown to be especially well suited for high
performance computing, in particular computation on clusters of work-
stations.
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