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Abstract. We present a new approach for the detection of complex
events in Wireless Sensor Networks. Complex events are sets of data
points that correspond to interesting or unusual patterns in the under-
lying phenomenon that the network monitors. Our approach is inspired
from time-series data mining techniques and transforms a stream of real-
valued sensor readings into a symbolic representation. Complex event
detection is then performed using distance metrics, allowing us to detect
events that are difficult or even impossible to describe using traditional
declarative SQL-like languages and thresholds. We have tested our ap-
proach with four distinct data sets and the experimental results were
encouraging in all cases. We have implemented our approach for the
TinyOS and Contiki Operating Systems, for the Sky mote platform.
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1 Introduction

Our approach is aimed at the extremely resource-constrained devices known as
motes ; motes combine a radio component, a microcontroller, an array of sensors
and an energy source (e.g. battery). They are designed for operating unattended
for long periods of time (typically for as long as their energy source lasts). Our
target platform for which we are developing code is the TMote Sky motes [1].

The event-driven model in sensor networks broadly prescribes that individual
or groups of sensor nodes should react programmatically to events, very much
in the same manner a traditional DBMS reacts to violating transactions. The
database abstraction for sensor networks offers the capability of querying with
the use of a declarative SQL-like language and specifying reactive functionality
with the use of triggers and predicates. The problem arises from the fact that the
use of predicates and thresholding with relational and logic operators, are not
expressive enough to capture most of the complex events that occur in sensor
networks. Complex events are sets of data points that constitute a pattern;
this pattern shows that something interesting or unusual is occurring in the
underlying process monitored. While viewing the sensor network as a database



is useful for running queries over streaming data, it offers little help in detecting
interesting patterns of complex events.

A separate problem arises when users do not know in advance the event
type they are looking for. A benefit of our approach is that it also allows non-
parametric event detection. In this sense, motes become context-aware and they
are capable of detecting relative change. Practically, this is implemented with a
concept borrowed from Machine Learning: motes go through a learning phase
that is known to be normal. During this phase, they continuously compare strings
(that correspond to temporally adjacent sets of readings) and compute distances
among them. Once the learning phase is complete, these distances are used
for non-parametric detection — the distances effectively constitute the normal
context; a distance never seen before represents some unseen and new change.

Another mode of operation offered by our approach is approximate event
detection: users can search for events that are like other events by submitting
an event template. Practically, the template (that is a set of real-valued read-
ings) gets translated into a string representation and submitted to the relevant
motes. Streaming sensor readings are then transformed to strings and compar-
isons are performed against the template. A distance (between the template
and the newly-generated string representations of streaming readings) that ap-
proaches zero signifies that the reporting mote is experiencing a very similar
event to the one submitted. Of course a zero distance denotes that the exact
same event has occurred.

Perhaps the strongest point of our approach is that it makes motes context-
aware: since they can sense relative change they can adjust the sampling fre-
quency dynamically and prolong their lifetime by conserving power resources.
Furthermore, optimisation of sleep scheduling can ensure that in periods of low
activity the majority of the nodes are asleep. If distances start to increase, then
explicit wake-up messages can be sent to sleeping nodes tasking them with sens-
ing, processing or sending.

In the sections to follow, we will discuss in great detail our approach and
we will provide a high-level description of our algorithm. We will present results
from our experiments with sensor data sets, and we will conclude by outlining
future plans (including an indoor test deployment).

1.1 Target Applications

Our approach can be beneficial to a fairly large selection of applications, namely:

– Pervasive Health Monitoring. One aspect of this has to do with monitor-
ing the activity of human organs over time (such as ECG, EEG, etc.) and
projects such as [2]. An example of a Complex Event is a heart attack — if
there is any pattern in the signal just before the heart attack. then a detected
event can help save lives. The other aspect has to do with Pervasive Health-
care Monitoring [3, 4]: monitoring patients at their sensor-equipped homes
rather than hospitals. Any “abnormal” behaviour can flag an event — for
instance an elderly person not getting up at their normal time may indicate



illness. The system can react to this by informing a social worker to visit
or call. We are also testing our approach to a patient classification problem
using the same distance metric for similarity / dissimilarity. The data comes
from patients suffering from Cystic Fibrosis and healthy controls. Data has
been collected using the Cyranose 320 electronic nose — a device with 32
sensors that can be used for bacterial classification [5].

– Environmental (Outdoor or Indoor) Monitoring. Normally, this involves mon-
itoring physical attributes of the environment such as temperature, humid-
ity, light, etc. Examples include: meteorological stations, wildfire monitoring
(and projects such as the Firebug [6, 7], indoor monitoring (projects such
as the Intel Lab Deployment [8] of which data we have used for our experi-
ments).

– Athlete Performance Monitoring. Approaches like the SESAME project [9]
use motion sensors (such as accelerometers) in order to monitor attributes
related to the performace of elite athletes. A Complex Event in this case
can be a pattern that denotes a change in performance — for instance a
sub-optimal start to a sprint.

To generalise the above, our approach can benefit any system or process that
exhibits long periods of normality and relatively much smaller periods of rare
events.

2 Conversion of Streaming Sensor Data to a Symbolic

Representation

For the conversion to string we use the Symbolic Aggregate Approximation
(SAX) algorithm [10, 11] which is a very mature and robust solution for mining
time-series data. SAX creates an approximation of the original data by reducing
its original size while keeping the essential features — this fact makes it a good
choice for the sensor network setting because it offers the advantage of data nu-
merosity reduction which is a very desirable property since it can contribute to
saving power (sensors transmit a string which is a reduced approximation of the
original data set).

The distance between SAX-representations of data has the desirable prop-
erty of lower-bounding the Euclidean distance. Lower-bounding means that for
two time-series sets Q and C there exist symbolic representations Q̀ and C̀ re-
spectively such that DLB(Q̀, C̀) ≤ D(Q, C) where D(Q, C) is the Euclidean
distance.

Once the time series has been converted to a symbolic representation, other
distance metrics & algorithms can be applied for measuring similarity as well as
for pattern-matching. We have tested a variety of metrics such as the Hamming
Distance, Levenshtein Distance, Local & Global Alignment, Kullback-Leibler
Divergence and Kolmogorov Complexity (as described in [12]).



3 Escalation: Applying SAX to Streaming Sensor Data

We have combined SAX and the distance metric used by SAX with an algorithm
that detects complex events without the need of the user supplying an explicit
threshold. The algorithm learns what constitutes an interesting change, very
much in the machine learning sense. The main beenfits of introducing such an
approach to sensor networks are:

– Dynamic Sampling Frequency Management. This refers to the ability to au-
tonomously make a decision on whether to increase or decrease the sampling
frequency. The decision is based upon the rate of change.

– Parameter Free Detection. This refers to event-detection without supplying
thresholds or generally an event description.

– Successful Detection of Complex Events. This refers to the ability to detect
complex events that are impossible to describe or capture using traditional
techniques such as triggers and thresholding.

Firstly, longevity in a sensor network is of crucial importance, so by monitor-
ing how quickly attribute values change a sensor node can make an autonomous
decision to increase or decrease the sampling frequency accordingly. Our algo-
rithm essentially compares a symbolic representation of a current set of values
to a previous one and calculates the distance. If the distance is zero or a very
small number then the sampling frequency can be reduced. Conversely, sampling
frequency can be doubled as soon as the distance starts to increase and moreover
local broadcasts can be made to neighbouring nodes in order to issue wake-up
calls or increase sampling frequency commands. This way the sleep schedule of
nodes can be naturally adapted to the rate of the physical change. This advan-
tage is important because it can significantly prolong the useful lifetime of the
sensor network. In addition it means that sleep scheduling can be optimised and
the biggest percentage of the network can be asleep for the majority of the time.
If, for example, the network is split into regions, then only two nodes per region
need to be awake at any given time. The second node acts as a verifier or a
fail-over for the first node.

Secondly, specifying a threshold based on user experience or expectancy can
be an arbitrary process. A small threshold means that the nodes are overwork-
ing and similarly a high threshold may mean that interesting changes are lost.
Moreover, threshold are susceptible to outliers. Thresholding is also fairly fixed
in nature; the threshold is either compiled into a binary image at pre-deployment
or it is injected as a VM command at runtime. Either way it involves human
intervention to the system. Our algorithm offers complex detection by allowing
the user to either specify the pattern they are looking for and then search for
proximity to that pattern (in terms of approximate string matching) or having
the node make an autonomous decision on what is interesting based on monitor-
ing some normal data. This second advantage allows us to successfully detect a
whole class of events with no programming effort — all the user will have to do
is to press start (or to be precise compile the binary image into the node) and



the node will autonomously do the rest. There is no need for specifying what
events to look for by using cumbersome and error-prone code. The node will
take care of learning normality and then deducing what is not normal.

Lastly, we have mentioned earlier that events in sensor networks are concep-
tually different than events in conventional DBMS: in sensor networks we deal
with signals or streams of continuous real-time data. We do not deal with trans-
actions. So a complex event in that sense is a set of data points that satisfies
some condition e.g. this condition could be a state change. Or to use an alter-
native description, a complex event is a pattern that its frequency of occurrence
is greatly different from that which we expected, given previous experience or
observations [11]. By using SAX with the sensor network data, we are able to
detect such complex patterns with good accuracy.

Algorithm 1 Complex Event Detection Algorithm

1: variables counter, bufferSize, distanceBufferSize, saxWindow, stillLearning;
2: call initialise (set values to the above, set stillLearning to true)
3: while (stillLearning is true) do

4: get data from sensors;
5: if counter ≤ bufferSize then

6: fill buffer with data; break;
7: else

8: update buffer with new reading and shift elements;
9: extract two subsections from buffer (say, a and b);

10: call SAX passing a and b and update distances (if dist(a,b) 6= 0);
11: if distance buffer is fully populated then

12: stillLearning = false;
13: select maximum distance observed during learning phase;
14: end if

15: end if

16: end while

17: while true do

18: get data from sensors;
19: update buffer with new reading and shift elements;
20: extract two subsections from buffer (say, a and b);
21: call SAX passing a and b and update distances (if dist(a,b) 6= 0);
22: if dist(a,b) ≥ maximum distance set in learning phase (line 13) then

23: report distance and counter (representing timestamp) or do some other action
24: end if

25: end while

3.1 High-Level Description

Let us start by describing the algorithm is pseudocode. We have developed 2-
3 variants of this, but the basic idea is the same: namely, monitor distances
during learning phase, choose minimum, maximum or average distance, and



then compare adjacent string representations. If their distance is greater than
the maximum distance observed during training, then it is highly likely that an
event is occurring.

There is a further variation of the algorithm that offers the escalation func-
tionality, in that it calls a third optional phase to investigate a reported complex
event even further. This is implemented by a function call on line 23 (not shown).
The whole of the readings set is passed to this function, and the subsections are
expanded in order to distinguish true from false positives. This way, the sen-
sitivity (high true positive rate) and selectivity (low false positive rate) of the
algorithm are maximised. Empirically, from running our experiments we notice
that an escalation phase is not always necessary as in most cases the algorithm
will detect the exact point of the event with great accuracy.

Summarising, there are two main phases to the algorithm, with an optional
third;

– Learning Phase, where the algorithm keeps track (learns) of the distances it
has seen.

– Initial Detection Phase during which SAX is called to convert adjacent sets of
numeric readings to strings and calculate their distance. An event is flagged
if the distance between two strings is greater that the maximum distance
observed during learning.

– Escalation Phase is a temporally deferred operation that varies the window
size over the numeric sets and produces progressively larger strings. It is
used to increase the accuracy of the algorithm (by pruning false positives).

Essentially, the algorithm puts the sensor in an infinite loop that forces them to
convert readings to strings, compute their distance and test it against a distance
learned during the initial learning phase. Each phase is further discussed below.

Learning Phase During this phase the algorithm keeps track of distances be-
tween strings. The set of observed distances during the normal period is then used
to select the maximum distance that will be used for future event detection. Zero
distances are dropped automatically — from experience with our experiments,
most of the time distances are 0 or 0.5; 0.5 represents a 1-character difference
in the string; by default adjacent characters have a distance of zero, eg. a and
b have a 0 distance, but a and c have a distance of 0.5. The algorithm can be
modified to drop 0.5 distances and choose not to store them as they represent
minor changes.

When the learning phase completes — after a given time period elapses —
the maximum distance observed is selected. The learning phase passes through
1

4
of the total data in our experiments, and in the sensor-mote implementation

this is not known in advance, so either the user of the system has to specify a
fixed learning phase duration or otherwise the algorithm can set an arbitrary
learning limit and test it against a counter incremented every time the timer
fires (after some arbitrary time period has elapsed, stop the learning phase).
The learning phase will largely depend on the data type monitored: for instance



if we monitor light readings, then a reasonable choice for a learning phase would
be twenty-four hours since in a day-night cycle we would record most of light
variations and their relative distances.

Once the maximum distance is set in the learning phase it doesn’t change.
This is the way the algorithm works at the moment, and it is also a potential
limitation. We intend to investigate ways that introduce reinforcement learning
in the near future. Once we have the maximum (learned) distance we can enter
the second phase of the algorithm which is continuous (it is a function called for
every new reading entering the set).

Initial Detection Phase SAX is called to convert adjacent regions of the
readings set and calculate the distance of the two strings. The readings set is
essentially a sliding window of the streaming sensor data. It is stored in a data
structure of a fixed size; every single new reading that enters the structure at the
front, causes the oldest reading at the back to be dropped, working very much
like a FIFO queue. In addition, this phase is optimised by not calculating dis-
tances for identical strings; these are dropped in silence. Generally there are two
alternatives for this stage: to either call the conversion and distance comparison
function at every timer tick (as shown on the algorithm) or to call it every t

timer ticks. In the latter case, t has to be equal to the size of the readings set
to ensure no events are undetected and a detection latency is introduced which
is at worst t timer ticks. At the time of this writing we are investigating the
trade-offs between the two alternatives.

Escalation Phase The Escalation Phase is an optional, temporally deferred
phase that searches through the whole readings set in order to determine if the
underlying process continues to change in the future — the detection phase indi-
cates if something has changed and the point of the change while the Escalation
phase essentially determines whether the point of change was a true or false
positive and whether the physical process continues to change. Usually, a defer
period of 5 data points (or timer fires) is enough to distinguish a true from a
false positive, but this largely depends on the sampling frequency.

During the Initial Detection Phase we pass two temporally adjacent subsec-
tions of the buffer to the conversion and comparison function — we do not pass
the entire readings set (unless we use the every t timer ticks variant described
in the previous phase). The reason we pass subsections to the function and not
the entire set is because we aim to minimise the computation overhead; since we
choose to call the function at every timer tick, we must ensure that the function
completes before the timer expires. We also need to cater for other components
such as the radio and ADC competing for CPU time.

If we choose to call the Escalation Phase, we post a task that is added to
the queue. It takes the entire readings set and searches through it to determine
whether the event was a true positive and if the process continued to change or if
it stopped. The searching is done by varying the SAX window size, starting with
a small value and progressively increasing it until the size of the set is reached.



The compression ratio is also, optionally, reduced. For instance if the previous
phase was using a 4 : 1 compression, this phase can reduce compression to 2 : 1
to produce more accurate results. Both of these actions (increasing the SAX
window and reducing the compression) will expectedly produce higher distances.
If these distances are sufficiently higher than the initial detection distance, then
we can report that the process monitored either continues to change and/or
that the initial detection was a true positive. Sufficiently higher is quantified
by multiplying the initial detection distance by a factor empirically learned and
dependent upon the process monitored and the data type.

The performance of this phase will very much depend upon the type of the
event and process monitored. If an underlying process changes gradually from
a normal state a to an abnormal state b, and then it remains in this abnormal
state which is stable in terms of difference between data points, the escalation
call will able to confirm the change, provided the change from state a to b is in
the readings set. The size of the readings set is limited by the sensor’s RAM and
therefore if the defer period from the occurrence of the event (change of states
from a to b) is large, and all the readings in the set are now stable the escalation
phase will flag the report as a false positive as distance will be smaller than
the initial reported distance. This indicates that the escalation phase can not
be a general-purpose call but it has to be tailor-made to the underlying process
monitored and the the event type.

4 Experimental Results

All the experiments in this section were ran in MATLAB using real sensor data
that was fed to the algorithm in a streaming fashion with the use of a Timer

object to simulate sensor network data acquisition.

4.1 Data from an Indoor Deployment

The majority of the experiments were ran on the Intel [8] data set, which is a
collection of approximately 2.3 million readings from 54 sensor nodes collecting
temperature, relative humidity, light and voltage. On our experiments we have
used all the readings from all the nodes except voltage readings. Voltage is quite
well-behaved in a sense that voltage readings do not fluctuate greatly. In contrast,
light is the most unpredictable attribute and it tends to fluctuate a lot, partly
due to human factors (e.g. a person switching a light on or off).

Due to space limitations, we will not discuss the outcome of every single
experiment; instead we will present a few selected cases.

In the example shown on Figure 1 (a), we are searching for a specific pattern
— we are looking in a week’s segment of data for a pattern that is not included
in that week but the most similar pattern is found. The search for a pattern
works in the following manner: we take a set of data points which we convert
to a string. This string represents the pattern we are searching for. Searching is
accomplished by comparing this string to a string representation of the entire
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(a) Temperature Readings at node 4
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(b) Temperature Readings at node 27

Fig. 1. Temperature Readings at nodes 4 and 27 — (a) approximate detection — in
this case we are searching for a pattern (the readings of one day) in the readings for
one week; the closest match is shown delimited by the two vertical lines and (b) non-
parametric detection of a synthetic event; the spike in the graph represents an abrupt
change in values — we successfully detect the exact point of change.

dataset (this can be done by using alignment algorithms instead of standard
distance used in most of our trials); if distance becomes zero then it means that
the exact same pattern has repeated (e.g. the event has occurred). If distance
approaches zero then it means that a very similar pattern is observed. In the
second example (Figure 1 - (b)) we did not supply a pattern but instead we were
looking for the most interesting change. The most interesting change in this case
is the spike shown on the figure — which was successfully detected. Searching
for the most interesting change is the non-parametric version of the algorithm
that trains on a normal set and then uses distances learnt for future detection
(described in more detail in section 3.1).

Similarly for humidity (Figure 2 (a)), we were searching for interesting changes
(in this instance, a synthetic event corresponding to the spike shown in the fig-
ure) without supplying a pattern or a threshold. One can see in the diagram
that the change is correctly identified (shown by the small bounding box and
arrow).

The Light attribute is somewhat different in a sense that it changes fre-
quently and the changes are aperiodic — for example they occur whenever a
human switches a light on or off. Having said that, our algorithm using SAX
still performed well enough on the Light attribute. In some cases there were a
few false positives, but no false negatives. This is shown in Figure 2 (b) that
contains a false (first bounding box) and a true positive (second bounding box).

Overall, we were satisfied that the algorithm can successfully detect complex
events of different sizes on different attributes. We had no false positive reports
for Temperature and Humidity attributes, and real and synthetic events were
detected accurately (accuracy in this sense refers to reporting the event very near
at the beginning of its occurrence, typically within 4−8 data points). On the light
attribute we had approximately 13 per cent false positives and 2 per cent false
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(a) Humidity Readings at node 1
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Fig. 2. Humidity and Light Readings at node 1 — (a) non-parametric detection of
a synthetic event correctly identified, shown by the arrow and (b) non-parametric
detection - the first match is a false positive (shown by the first bounding box) and the
second match is the true positive. The false positive was discarded in the escalation
phase of the algorithm, as the second match was reported with a much higher distance
than the initial detection

negatives. This is not entirely surprising especially if we take into account the
arbitrary value changes that are largely unpredictable. Outdoor environmental
monitoring data is usually more well behaved and changes can be predicted more
accurately.

Finally it is worth mentioning that we have experimented with both synthetic
and real events (we have used synthetic events in the parameter-free scenario,
while we have used real events in the pattern-matching scenario).
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(a) ECG — normal turning to Super Ven-
tricular
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(b) ECG — normal turning to Malignant
Ventricular

Fig. 3. ECG — Two different ECG datasets that start normal but change at point
512. We successfully detected the point of change in both cases.



4.2 ECG Data

We have also tested our approach on ECG data obtained from [13]. We have
tested two cases (Figure 3), the first one being a normal ECG that turns to
Super Ventricular and the second case was normal ECG turning to Malignant
Ventricular. The detection was accurate in both cases and our algorithm using
SAX managed to detect the exact points of change.

5 Future Work

We have implemented a simple first version of our algorithm for the TMote Sky
platform [1]. The current implementation runs on both the TinyOS2 [14] and
the Contiki OS [15–17]. The current implementation runs solely on motes, so
we are not assuming a tiered architecture but rather aiming autonomous oper-
ation. However, we aim to investigate the performance cost in comparison with
a tiered architecture where are all the motes report readings to a base-station
that is not resource-constrained. The base-station will then perform the symbolic
conversion and distance comparison and will make workload decisions and task
the motes accordingly. One simplified execution scenario may involve tasking
motes in areas of the network with high activity (e.g. reporting values that de-
note eventful underlying processes) to sample at higher frequencies while tasking
motes in areas of the network with low activity to sample readings at low fre-
quencies. Sleep scheduling decisions can be made based on distance information
too; for example if distances over reported readings are more or less constant
then a percentage of motes can be asleep or at a Low-Power Listen state —
conversely when something interesting occurs (denoted by increasing distances
over reported readings) explicit wake-up calls can be issued.

Our aim is to explore the trade-offs between the autonomous operation and
tiered architecture. In addition we will also investigate the performance difference
between the two operating systems; the TinyOS execution model is somewhat
different to that of ContikiOS; as a result we expect a noticeable performance
difference.

The work presented is work-in-progress and we continue to evaluate our ap-
proach with different data sets. At the time of this writing we are running exper-
iments on motion sensor data [18] collected by the Mitsubishi Electric Research
Labs (MERL) — this data is approximately 30 million raw motion readings
collected by over 200 sensors during a year. We are also using hospital patient
data to identify Cystic Fibrosis patients from breath samples collected using the
Cyranose 320 [19] (essentially this is a classification rather than event-detection,
but nevertheless we intend to evaluate the usefulness of our approach for different
application settings).

Our plans for future work are further discussed in the subsections below.

Dynamic Sampling Frequency Management As mentioned in section 3,
this refers to the desired ability for individual nodes to make autonomous de-
cisions about the Sampling Frequency, based on the distances monitored over



adjacent symbolic representations of readings. A high relative distance means
that the underlying physical process monitored is undergoing some change. We
mention the word relative because distance is very much relative to the attribute
being monitored and other application-specific factors. Please note that not ev-
ery application will be able to benefit from this. For example monitoring an ECG
requires more-or-less static sampling frequency and the minimum is bound by
the time it takes for a single heartbeat. Other applications such as environmen-
tal monitoring can benefit greatly from adjustments in the sampling frequency.
From our experience with the experiments on the Intel Lab data set, we notice
that distance for great periods of time is zero or less than one (for example
the light attribute during the night is almost constant — having the motes to
sample at a fixed interval during nighttime is wasteful). During those times, the
sampling frequency can be decreased until change starts to occur again. Once
distance begins to increase, sampling frequency can be increased accordingly.
And this brings us to the next point.

Local Group Coordination So far in our discussion we have assumed that
our algorithm is ran autonomously and in isolation by single nodes. And this is
currently the case, but in the near future we aim to explore local coordination
in such a way that the sensor field is split into regions where only two nodes
are adequate to cover a specific region. The number two may seem arbitrary,
but we choose two nodes so one can act as a fail-over (other choices are also
valid). This can a huge energy-saving impact, especially on dense deployments.
In simple terms, it means that the majority of the nodes in the network can be
asleep for most of the time. The two awake nodes per region effectively monitor
distances and can issue wake up calls to the rest of the nodes if they sense a big
change. “Big” is defined by observing a normal period and learning what con-
stitutes normal change (in terms of distances), as described in section 3.1. This
form of sleep-scheduling can be performed in-the-network without any human
interaction at all.

Reinforced Learning We also aim to explore the possibility for reinforced
learning in the machine learning sense. At present, our algorithm trains for
some time and then, when it has learned an appropriate value for distance, it
stops. We are planning to test our hypothesis for reinforcement learning, where
learning is an ever-lasting process and new readings can affect the distance used
for event detection.

Plan an Indoor Deployment We plan to deploy a number of motes running
our algorithm to monitor changes in temperature (and other attributes) in one
of the university buildings.

Evaluate the Potential Use of Markov Models We have already imple-
mented an approach based on Markov Models in MATLAB. However, main-
taining the two matrices (transition and emission) needed by such a model is a



computationally-intensive process. We plan to investigate if an implementation
for the sensor motes is feasible. Event-detection using probabilities is an alter-
native to the algorithm we currently use (which is distance-based rather than
probability-based).

Our first priority is to implement and evaluate dynamic sampling frequency
management and group coordination. The latter is a by-product of the former,
and in our opinion the two combined can bring significant energy savings to
networked sensors by making them context-aware and responsive to change.

6 Related Work

The approach by [20] is the one that come conceptually closer to our framework:
in that work the authors classify gestures by comparing them to strings and
performing string matching. The main difference with our approach is that we
primarily aim for complex event detection and in addition we do generalise our
approach for many application scenarios. In addition we offer non-parametric
event detection. In the remainder of this section we will discuss other work that
is related or has affected our own research.

One of the first papers that presented an Event-Based Approach was Directed
Diffusion [21]. In that approach a node would request data by sending interests
which are conceptually similar to subscriptions in a publish/subscribe system.
Data found to match those interests is then sent towards that node. A different
framework that is based on event classification, is the Online State Tracking [22]
approach. This technique consists of two phases: the first phase is the learning
process where new sensor readings are classified to states and the second phase
is the online status monitoring phase during which nodes are collaborating to
update the overall status of the network. This is interesting work in a sense that
it moves away from individual nodes’ readings and views the whole network as
a state machine.

Another event-based technique based on thresholding is Approximate Caching
[23] whereby nodes only report readings if they satisfy a condition. A more re-
cent paper [24] suggests a mixture of hardware and software as a solution for
detecting rare and random events. The event types they consider are tracking
and detecting events using the eXtreme Scale Platform (XSM) mote equipped
with infrared, magnetic and acoustic sensors. Central to their architecture is
the concept of passive vigilance, which is inspired from sleep states of humans
where the slightest noise can wake us up when we are asleep. This is implemented
with Duty Cycling and recoverable retasking. A similar approach [25] proposes a
sleep-scheduling algorithm that minimises the surveillance delay (event detection
delay) while it maximises energy conservation. Sleep scheduling is coordinated
locally in a fair manner, so all nodes get their fair share of sleep. A minimal
subset that ensures coverage of the sensing field is always awake in order to be
able to capture rare events. Sleep scheduling is related to our approach since we
aim to introduce Dynamic Sampling Frequency Management and base upon it
a sleep coordination mechanism. This was discusses in more detail in section 5.



A first paper that addresses the need for complex event detection is the
one by Girod et al [26]. In their work the authors suggest a system that would
treat a sequence of samples (a signal segment) as a basic data type and would
offer a language (WaveScript) to express signal processing programs as declara-
tive queries over streams of data. The language would be able to execute both
on PCs and distributed sensors. The data stream management system (called
WaveScope) combines event-stream and data management operations. Unfor-
tunately, the paper describing the system is a position paper so there is only
a high-level description of the architecture (and no current implementation or
mention of plans).

A paper that falls under both the Event-Based and the Query-Based subcat-
egory, is the one describing REED [27]; REED is an improvement on TinyDB
[28]. Basically it extends TinyDB with its ability to support joins between sensor
data and static tables built outside the network. The tables outside the network
describe events in terms of complex predicates. These external tables are joined
with the sensor readings table, and tuples that satisfy the predicate indicate
readings of interest (eg. where an event has occurred).

A somewhat different method that supports geographic groupping of sensor
nodes was presented in Abstract Regions [29, 30]. Abstract Regions is essentially
a family of spatial operators for TinyOS that allows nodes to form groups with
the objective of data sharing and reduction within the groups by applying ag-
gregate operators such as min, max, sum, etc. The work by [31] extended the
types of aggregates supported by introducing (approximate) quantiles such as
the median, the consensus, the histogram and range queries. Support for Spatial
Aggregation was also suggested by [32] where sensor node would be grouped
and aggregates would be computed using Voronoi diagrams. Another approach
[33] models the sensor network as a distributed deductive declarative database
system. Their suggested method allows for composite event detection, and the
declarative language used (SNLog) is a variant of Datalog.

7 Conclusions

We have presented our approach for detecting complex events in sensor net-
works. Complex events are sets of data points hiding interesting patterns. These
patterns are difficult or even impossible to capture using traditional techniques
such as thresholds. Moreover, often the users of the system may not know what
they are looking for, a priori.

We use SAX to convert raw real-valued sensor readings to symbolic repre-
sentations and then we use a distance metric for string comparison. Our frame-
work can either perform exact-matching or approximate-matching of some user-
supplied pattern. Moreover, it can perform non-parametric event detection; in
this case the user need not specify anything. The sensor trains for some time
and over some data that is known to be normal and it learns appropriate values
for distance. Then, once training is finished, the learned distances are used for
the detection phase.



Our implementation currently runs on the Tmote Sky platform on TinyOS2,
but we have an implementation for ContikiOS for comparison purposes. Our
approach appears to match very well the unique resource constraints of sensor
networks.

Acknowledgements

The authors would like to thank Dr Eamonn Keogh who patiently answered our
questions regarding SAX and provided relevant code and test data.

References

1. MoteIV Corporation: TMote Sky,
http://www.moteiv.com/products/tmotesky.php

2. Katsiri, E., Ho, M., Wang, L., Lo, B.: Embedded real-time heart variability anal-
ysis. In: Proceedings of 4th International Workshop on Wearable and Implantable
Body Sensor Networks. (2007)

3. MIT House n Project: http://architecture.mit.edu/house n/

4. Biosensornet: Autonomic Biosensor Networks for Pervasive Healthcare,
http://www.doc.ic.ac.uk/~mss/Biosensornet.htm

5. Dutta, R., Hines, E., Gardner, J., Boilot, P.: Bacteria classification using Cyranose
320 electronic nose. In: BioMedical Engineering Online. (2002)

6. Doolin, D., Sitar, N.: Wireless sensors for wildfire monitoring. In: Proceedings of
SPIE Symposium on Smart Structures and Materials. (2005)

7. Firebug: Design and Construction of a Wildfire Instrumentation System Using
Networked Sensors, http://firebug.sourceforge.net/

8. Madden, S.: Intel Lab Data, http://berkeley.intel-research.net/labdata/

(2004)
9. Hailes, S., Coulouris, G., Hopper, A., Wilson, A., Kerwin, D., Lasenby,

J., Kalra, D.: SESAME: SEnsing for Sport And Managed Exercise,
http://www.sesame.ucl.ac.uk/.

10. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: Proceedings of ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery. (2003)

11. Keogh, E., Lin, J., Fu, A.: HOT SAX: Efficiently Finding the Most Unusual Time
Series Subsequence. In: Proceedings of IEEE International Conference on Data
Mining. (2005)

12. Keogh, E., Lonardi, S., Ratanamahatana, C.A.: Towards parameter-free data min-
ing. In: Proceedings of the tenth ACM SIGKDD international conference on Knowl-
edge discovery and data mining. (2004)

13. Keogh, E.: The Time Series Data Mining Archive,
http://www.cs.ucr.edu/ eamonn/TSDMA/index.html

14. TinyOS: An open source OS for the networked sensor regime,
http://www.tinyos.net/tinyos-2.x/doc/html/overview.html

15. Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-time dynamic linking for
reprogramming wireless sensor networks. In: SenSys 06: Proceedings of the 4th
international conference on Embedded networked sensor systems. (2006)

16. Dunkels, A.: The Contiki OS, http://www.sics.se/contiki/



17. Dunkels, A., Schmidt, O., Voigt, T., Ali, M.: Protothreads: simplifying event-
driven programming of memory-constrained embedded systems. In: SenSys 06:
Proceedings of the 4th international conference on Embedded networked sensor
systems. (2006)

18. Workshop on Massive Datasets: MERL Data,
http://www.merl.com/wmd/

19. Smiths Detection: Cyranose 320,
http://www.smithsdetection.com/eng/1383.php

20. Stiefmeier, T., Roggen, D., Trster, G.: Gestures are strings: Efficient online gesture
spotting and classification using string matching. In: Proceedings of 2nd Interna-
tional Conference on Body Area Networks (BodyNets). (2007)

21. Govindan, C.I.R., Estrin, D.: Directed diffusion: A scalable and robust communi-
cation paradigm for sensor networks. In: Proceedings of the Sixth Annual Inter-
national Conference on Mobile Computing and Networking. (2000)

22. Halkidi, M., Kalogeraki, V., Gunopulos, D., Papadopoulos, D., Zeinalipour-Yazti,
D., Vlachos, M.: Efficient online state tracking using sensor networks. In: MDM
’06: Proceedings of the 7th International Conference on Mobile Data Management
(MDM’06). (2006)

23. Olston, C., Loo, B.T., Widom, J.: Adaptive precision setting for cached approxi-
mate values. In: Proceedings of SIGMOD Conference. (2001)

24. Dutta, P., Grimmer, M., Arora, A., Bibyk, S., Culler, D.: Design of a wireless sensor
network platform for detecting rare, random, and ephemeral events. In: IPSN
’05: Proceedings of the 4th international symposium on Information processing in
sensor networks. (2005)

25. Cao, Q., Abdelzaher, T., He, T., Stankovic, J.: Towards optimal sleep scheduling
in sensor networks for rare-event detection. In: IPSN ’05: Proceedings of the 4th
international symposium on Information processing in sensor networks. (2005)

26. Girod, L., Mei, Y., Newton, R., Rost, S., Thiagarajan, A., Balakrishnan, H., Mad-
den, S.: The Case for a Signal-Oriented Data Stream Management System. In:
CIDR 2007 - 3rd Biennial Conference on Innovative Data Systems Research. (2007)

27. Abadi, D.J., Madden, S., Lindner, W.: Reed: robust, efficient filtering and event
detection in sensor networks. In: VLDB ’05: Proceedings of the 31st international
conference on Very large data bases. (2005)

28. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisi-
tional query processing system for sensor networks. ACM Trans. Database Syst.
30(1) (2005)

29. Welsh, M.: Exposing resource tradeoffs in region-based communication abstrac-
tions for sensor networks. SIGCOMM Comput. Commun. Rev. 34(1) (2004)

30. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. In:
NSDI’04: Proceedings of the 1st conference on Symposium on Networked Systems
Design and Implementation. (2004)

31. Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: new
aggregation techniques for sensor networks. In: SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems. (2004)

32. Sharifzadeh, M., Shahabi, C.: Supporting spatial aggregation in sensor network
databases. In: GIS ’04: Proceedings of the 12th annual ACM international work-
shop on Geographic information systems. (2004)

33. Chu, D., Tavakoli, A., Popa, L., Hellerstein, J.: Entirely declarative sensor network
systems. In: VLDB’2006: Proceedings of the 32nd international conference on Very
large data bases. (2006)


