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Moreover, in some cases the aim is not only toyaeabut
Abstract rather to affect user behaviour, for example iny@ére

[13] researchers try to develop tools for deploying

pervasive computing systems based on the relafjpnsh
Many pervasive computing applications involve theetween space and user behaviour by recording ditret
recording of user interaction with physical anditdig devices at specific locations. All projects facenoaon
resources in the environment. Such records carsée © problems in understanding the captured data and
establish context histories that can be subsequess#d analyzing these series of interactions in order to
for user behaviour analysis, pattern recognitionnderstand the systems usage or provide contexteawa
prediction, and the provision of context aware m&. In  services. Even though these and other projects wark
this paper we use trails as the principal datagssiog the analysis of series of interaction in pervasive
primitive for analysis and prediction. We defingrail as computing space no unified approach exist thatwallo
the sequence of recorded interactions with the gsive system usage analysis, pattern recognition andigieu
computing space. Trails contain patterns of spazsgel for a plethora of different applications under one
and they can be used for the provision of differeptobabilistic model.
services, space usage analysis or sociologicatnrtion .
of people using the environment simultaneously.iiTra [N this paper, we address the need for such a
analysis requires considerable storage and conipusht Unified approach which allows the analysis of dfet
resources to discover such patterns. Moreover nglesi Pervasive system datasets. We propose a trail based
method exists that identifies significant trailssed on Probabilistic data model and a collection of alguris
different metrics for a variety of different peris Which can be used to understand the use of spaee in
computing application. In this paper, we introduce&rail Pervasive computing environment identify pattermel a
based analysis approach, an associated model ér ke predictions. A unique feature of our modehat it
representation of trails and trail aggregates, suitable Can extra(;t patterns bgsed on different mgtrlcs. mbdel
data structures for efficient storage, filteringlaetrieval. ¢@n consider and weight different metrics that ¢an
Also, we propose several related algorithms a,qgcorded from thg pervasive sy_stem envwonment.sé’ he
associated metrics for ranking and identifying gigant Metrics can be time of interaction or any otherdkif
trails. We use these techniques in 2 different casdies Sensor reading. The techniques proposed are geavedtal
to extract valuable information about the pervasiystem Can be employed at any level of abstraction and
environment usage and evaluate the summarizakifigy incorporate whatever types of user or service auns

the predictive power of our model. are deemed appropriate. _
We develop our approach based on the notion of

landmark which we take to be the position of a ificgnt
1 Introduction entity within a landscape or any type of wirelessource

a user can interact with. We capture interactiogtsvben

users and landmarks by observing wireless
Pervasive computing systems often provide facdlitie communication between a user device and a device
record interactions between different devices oysital embedded in a landmark, although our methods do not
objects and users. In some cases, such recordingdépend on the specifics of the technology used camd
purposeful in that the aim of the research is &midy and cater for RFID, Wi-Fi, Bluetooth, or any other tyjpé
analyze human social behaviour or understand atitim wireless sensor network technology.
of the particular environment monitored. For exasmpl We organize series of interactions with
Reality Mining [3] and Wireless Rope [12] attemjpt tlandmarks intotrails which contain both spatial and
understand interactions between users and fixetiots. temporal information. In particular, we record theation
Other projects, for instance Senseable City [13¢ tlnese of each interactive session for each user and each



landmark, the distance between user and landmadk accuracy based on a weighted sum of users primary
possibly the orientation if this is supported bye theigenbehaviors. Even though this is a highly adeura
technology. All of which we subsequently use tccakdte prediction the experiment was conducted from a kmal
some of our proposed outputs for analysis, ranking number of different states of behavioufHome,
prediction. Elsewhere, Work, No Signal, Off}.

Our selection of trail records is not coincidental The ideas described in this paper are highly
since trails have been used as the basis for qafdin influenced from the area of web navigation. Trailsveb
between humans for centuries in different formsr Foavigation have been used to provide user specific
example, navigation trails provide route informatiand applications (e.g. advertising) and an in depthwvad a
record information about paths to potential desiims. web page’s usage. The same principles apply toapany
Aggregating multiple trails acquired over time a&sca computing systems where the interaction of useith wi
particular environment is the technique humansnoftee objects is interpreted the same way as users follpweb
to develop complete maps of a particular landscape page links. Many researchers have focused on differ
subsequently assist navigation, especially in tirdext of data models to represent the sequence of http sexjire
exploration [5]. Oral trails are also quite common efficient data models. For this type of data mining
human coordination and are best represented aatinag problem the main techniques used are differentstyqfe
which are replayed and recast repeatedly to incatpo Markov models, clustering and association ruleshese
new knowledge [11]. techniques combined.

We process trails to extract common patterns 86 proven by different real word tests in [16] Markov
behaviour using our software engine which implemmenthain structures have predictive capabilities aredsaited
our unified model and associated data structurde Tor prefetching pages, targeting ads and persataliz
logical flow of our systems is presented in FiglijeThe but the accuracy is limited to sort patterns. [hgkystem
engine consists of a parser and a sectioning tool fs described where a Hypertext Probabilistic Gramisa
reading data collected from the pervasive computinged where the prediction is made by the n prelyjous
environment and fragmenting them into a suitablenfd  visited pages. Other researchers use clusteritmitpoes
that represent trails; a probabilistic tree datacstire to simplify and enhance the accuracy of their medel
which represent the recorded trails. The queryreng a Pitkow et al. [15] infers a Markov model from aleation
framework for the definition of metrics used toadhate of longest repeating sub-sequences, another syR2ém
the best route under different circumstances duringes different browsing sessions which are categdri
navigation; and associated mechanisms that canlatdc and then each cluster is a state in the Markowncimaidel.
such routes efficiently. Finally the results canvi@wed Lan and al. [9] propose a system where associatit@s
by using an appropriate interface. are used to identify dependencies between pairs of

In section 2 we present related work, section ®cuments. Another work that is using associatidesris
presents our trail representation model, in sectiothe described in [9] similar to [10] but it is related web
guery engine we use to query model and in secBoaisd server caching.

6 we discuss the experiments we conducted.

3 Trail Representation

Query Engine To store this interaction history between pervasiystem
Landmarks objects we need to introduce a directed graph where
e Trail vertices represent sensor network nodes and edges
0] € Parser : .
Fsessions || Representation Trails «f Interface represent paths between these nodes. Two vertiodgeg)
(Suffix Tree) . . .
N[ Filtering | are salt_j to be connectgd _when there is a corresppnd
_ interaction record that indicates that the two taadks
have been visited in sequence by at least one lEsethe

remainder of the discussion we will use the terms
landmarks, nodes and vertices interchangeably.|&imi

we will use the terms edges, paths, links or tréis
represent the connection between landmarks.

2 Related Work P The links between landmarks are always directed
There are a number of pervasive computing systeﬁ%d the landmarks are weighted W'Fh dlﬁerent usage
which allow data analysis, pattern recognition adagtada.ta. Example of th? metadata fields can ieclud
prediction. A project closer related to our workhe MIT unique id for_the user, a tlmt_astamp repre_sentmgn/\lhe
Reality Mining project [3]. In reality mining notip of user came into range or interacted with an object,
eigenbehaviours is introduced. Eigenbehaviours use da{gne_stamp representing When the user went qu.trtg‘_e,aa
from many subjects for a series of days. From th gsitive integer representing frequency of wsuial_lthe .
recordings a set of vectors is calculated that ritese distance betwe_en the user "’!”d landmark du_rlng their
human behaviour between a group of people andaisis interactive session, the orientation of the useeiation to
possible to construct behaviours of individualseaasn the Sensor node, etc. Higher order metaqlqta canbals
these eigenbehaviors. With these techniques th# d, for Instance the compound prob_ablhty thdi_n_la
subsequent behaviours could be predicted with gote WiIl be followed given the user has arrived to @afic

Figure 1) Architecture of the Ranking Engine



node following a particular path of fixed lengthtkin the
network.

It should be noted that not all landmarks will be

capable of providing all this information, nor daemake
sense to store all the possible metadata fieldslfdypes
of landmarks. In any case, calculating the weidhtsn

the raw system logs requires considerable compuiati
effort and poses several challenges in reconcihng

ordering the log records. An example of the chajésn
involved is the fact that a sensor network is k& be
heterogeneous and with only approximate
synchronization.

Our probabilistic data structure differs from a

time

It is one of the top n trails in respect of average
time (or some other temporal statistical measure)
spent interacting with the landmarks in the trail.

It is one of the top n trails in respect of the
relevance of the landmarks to some chosen
semantics (for example related to a specific
spatial sub-area of the physical space that carries
some possibly arbitrary user-defined
significance).

It is one of the top n trails in respect of onehef
above criteria in a chosen time period

It is one of the top n trails in respect of onehef
above criteria for a chosen team sub-grouping.

Markov chain from the fact that probabilities are

calculated based on a number of previous intenastimnd
this does not comply with the Markov property. émnbs
of this graph, which is central to our approacligrare
represented as sequence of nodes. For efficierecgriiph
is stored as a probabilistic suffix tree [18] enteh with
metadata needed to encapsulate different informaatral
metrics relevant to each interaction [14]. An examgf
such a representation is shown in Figure 2. Thécehof
this data structure has been guided by our desire
develop a system that can maintain all captun
information while being able to rapidly respondatgreat
variety of queries, virtually being capable of resging to
requests about any number of possible times, spade
semantics related criteria.

4 Query Engine

The query engine is responsible for extracting guagt
based on user defined metrics from the probaluilidita
representation. The data related information ietasto
two major criteria. Queries related to the usage
Landmarks and queries based on the interactids.trai

4.1 Landmarks

An advantage of the probabilistic suffix tree dsifaicture
is that from the first level nodes we can extrdtttlze
available information that is related on specifindmarks.
Because of the suffix tree properties, the rootenadll
have as children one instantiation of each landnaaudk
each of these nodes will contain the entire histafryhe

These criteria request different subsets of thasddtso
different filters are used to extract a subtrethefoverall
data structure which is later ranked.
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Figure 2) Suffix tree for the ABCABCD and BCEABCD
trails with an example of the information assodatéth a
gpde. The numbers next to the nodes represent the
counters. Each node is also associated with additio
metadata used to answer and rank significantdregties

Trail Frequency: The probability of a trail T = is given
by T =n,,n,,...,n_;, N, is given by:
count(T)

count(root(T))
Where count(T) denoted the number of times

P(T) =

landmark usage. This property exists due to tfeat the trail T was followed, i.e. its count iretisuffix

incremental addition of trails during the tree ujeda
process. Taking this suffix tree property as anaathge
we can extract information related to a specifierlss
interaction with the landmark or overall statistizsed on
different metadata stored in the nodes.

4.2 Trail Ranking

A trail represented by a sequence of interactiata/den
nodes is said to be significant if it satisfies @nenore of
the following criteria:

e |tis one of the top n trails in respect of trail
popularity.

tree, androot(T)is the root node of the suffix tree. Note
that count(root(T)) is the total count of all landmarks

in the tree, i.e. the sum of counts of the firselenodes in
the tree. Because there are nodes that finisheinmiddle
of other trails we have to add dummy nodes withnteu
equal to the counter of the parent node minus tine of
the counters of the children nodes, in order to thet
probability of the sum of the leaf nodes of thefiguiree
equal to one.

The pruned suffix tree is defined to be a sub-tree of the

suffix tree, whose root is the samerast(T), the root of
the original suffix tree. Let S be a pruned suffiee, and
let {T,,T,,...,T,.} be the set of all trails in S such that



each trail T, corresponds to a trail in S starting from it Model Evaluation

root and ending at one of its m leaf nodes. Thé@dity From our experimental evaluation we present a serfe
of Siis thus . different outputs that give an understanding of the
pervasive system environment usage. Moreover we
P(S) = Z P(T) (1) present the summarizability of the model, the digance
=1 of patterns based on different metrics and their
Where P(T; ) is given according to the counts of the  consistency in a dataset of considerable size.llFinae
original suffix tree. want to evaluate the predictive power of our model.

Now, let A,0< A <1 be a parameter, denotin
the probability mass we require in the pruned gufiee.

In the extreme case when=1, the pruned suffix tree To measure the sumarisability of our model we wee t

will be equal to the original suffix tree, but whén< 1it ~different techniques, the spearman footrule [4]hwet
becomes more selective in the trails that it costaive distance parameter, which measures the distaneeéet

now give the pseudo-code of an algorithm, desighat&vo ranked lists and the overlap between two Iists.our

._experiments we will extract the top-m trails, ofgaen
POPULAR TRAILS(T, 1) that returns a pruned SUfﬂxlength sorted by a trail weight or other query daists

tree, S, whose probability equal to or just abdvevhere and each trail is represented as a list of landsaithkere

gs.l Summarizability

T is the suffix tree built from the log file. each position in the list represents the place hef t
landmark in the trail.

[POPULAR TRAILS(T , 1)] The footrule metric is defined as follows. For two
1. begin lists of traiks L;and L, both withm number of elements
g' Sr:brfftg ); and Lis the union of this list. We have functions
4. mark root(S) as visited: f(l).and g(i), wherei € L that retL.Jrn the ranking of a
5. while probs< A do trail 1 in the list and iffor example,| does not exist in
6. let ni be a node that has not yet been visited in L, then f (i) = m+1The footrule metric now is
7. T and such that the trailif T starting from f (i) - (|)|
8. root(T ) and ending athas the highest F(L,L,)=1- ZieL 9
9 probabilityP(T; ) according to (1) among v MAX
10. all traiIsTj starting from root(T ) and ending 5.2 Predictive Power
11 atanodé, in T that has not been visited; To investigate the predictive power of the modelhaee
12. mark N in T as visited; divided the data into a training set and a testigigWe try

_ to predict the last landmark of each trail in thsting set
13. add n; as a leaf node to S; from the trails collected in the training set. Bhsm the
14. prols:= P(S) according to (1); information stored in the probabilistic suffix tredata
15.end while structure we are able to predict the next landnadigr a
16.return S; series of landmark interactions. In order to prethie next
17.end. landmark using the visit frequencies, we preseatiuber

with a ranked list of landmarks according to their
Time: Like the frequency trail algorithm we define therobability in the suffix tree, combined with thattern

normalized time of a trail = n,N,,...,n_,,N by matching method of [6]. Suppose that we have 4, trai
Time(T) T=t,t,..t,,,t, from our test set of trails, whetig
N(T) = SJm(Ti mes(LeafNodes)) 1<i < n, are landmarks, and we wish to predict the next

where Ti (T) denotes the time spent on trail T ang;\ndmark in the sequence, ig.,. Then Algorithm called

. , ) Predict, based on [6], is given below, where $iésguffix
Sum(Times(LeafNodes)) is the sum of time spenty e pilt from the training set of trails.

stored in the leaf nodes which is the total amaifrtime
users spent interacting with the landmarks. Again f[Predict(T,S)]

A,0< A <ldenoting the mass, we can use a modified begin
version of the Popular Trails algorithm to calcaldtest 2.l€ts be the longest suffix of T in S;

trails by the time spent on them. 3.ifsisempty o .
%i.e. no historical information is available on s;
4 return the top-10 most popular landmarks;

%these will be children of the root of the tree.
5. else % s is non-empty;



6. return a ranked list of the most popular most popular trails followed and how user behaviour

7. landmarks directly reachable from s ; might change over time. We provide this kind of yue
8.end if results to present the wide range of different gpseour
9.end engine can execute and the different levels ofrabsbn

and detail. We want to produce an overall view lod t
The first metric we use for prediction score is litd different kind of queries and information we extrlom
Miss (H&M) rule where the prediction result is thek the probabilistic suffix tree.
with the highest probability. The scoring of thistnic We start our experimental testing for the
counts the number of correct predictions, i.e.citres 1 Dartmouth dataset by conceptually categorising the
for a correct prediction and O for a false predictiThe different buildings by type (academic, administati
second metric is Mean Absolute Error (MAE) whiclathletic, library, residence, and sociology). Frtira first
returns a ranked list 1-r where r is the actudd timat was level nodes we can identify the type of buildingd ame
followed and the MAE is calculated by r-1. Hit aktiss can add up the landmark usage to provide informatio
is a strict metric that predicts based on the Hghehe type of buildings with most user usage of theeless
probability when MAE returns the position of youmnetwork (Figure 3).
prediction in a ranked list of possible predictiomkich
have the top-n probabilities.

Campus Usage

6 Experimental Testing

50%
45%
40%
35%
30%

We are going to investigate two datasets colleftech
the Dartmouth campus wireless network [8] and data
collected from the Reality Mining [3] project. Weaione

Academic, 20%

Residence, 50%
Administration, 10%

year worth of Dartmouth data where the user commect 26% 2 g =
with the wireless network has been recorded and the | 2% £ 5 =
Reality Mining project recorded users’ mobile phone 15% = % =
connection with cell towers for more than a yearotder 10% -

to interpret the pervasive environment log filewitrails 5%

we need to divide them into sessions. A sessidkefimed 0

as a finite sequence of landmark visits
u=R,P,,...,P,with P € Landmarksand represents

I
the experience of the user in the pervasive comguti The next experiment (Figure 4) investigates the
environment. How the data are divided into sessionsmber of overall users during different hours afeg in
depends on the type of data we are dealing withtaed the Dartmouth dataset. Again this query is answéad
two main factors are location and time. For bottasets first level nodes and by using the time informatioer
we have set a time limit of 5 hours of inactivitydaa trail user access the engine can calculate the numivesitoirs
length limit 10. Table 1) Summarizes the charasties of per landmark during a certain time period.
the collected data sets. From the collection ofsehe
sessions we create the probabilistic suffix treeutsed in
section 3. From our experimental testing we want to
present some pervasive system analysis information,
investigate the presence of patterns between diffgrarts
of the dataset and we are going to present thetauns
appearance of patterns based both on the mettiecnef
and trail frequency. Finally we are going to préstme
results from the prediction experiment we conducted

Figure 3) Landmark category usage in Dartmouth

300

250

Murnber of vigitors
— r
o =
= =]

=1
=]

Dataset Interactions Users  Landmarks =

Dartmouth 1782931 4745 623

Reality Mining 2536034 89 32628 % s 'ﬁmeﬁm.sam‘f 2 2
Table 1) Dataset Characteristics Figure 4) Number of overall visitors during eachuhof

the day in Dartmouth

6.1 Overall Analysis . .

From our query engine we present one of the ranking
In this subsection we present a number of diffecemputs engine’s output trail set, from the Dartmouth datag
and information we can extract by using the intaetl Figure 5). The best trails based on their popuylaaite
trailed based analysis of pervasive computingsralVe presented. We filtered the data based on theirtheand
want to get an overall idea of the landmark ushgey the trails of length 10 where only considered. We repne
use of the environment change over time, what hee trails by using different colours per trail anddamarks are

placed based on their original location, to presesgr



movement in the university campus. From the avkblab
output we can identify as most popular trails stusle
moving between Residence, Academic and Library| 30

buildings

Restwassontm 94

Figure 5) Query Engine result for one day data ftben
Dartmouth dataset. The 10 best trails of lengthwhére
extracted

In figure 6) we present an analysis of user Trails
behaviour change. We provide three consecutive msont
of trail distribution that a user followed. Thedréor each
month can be constructed by extracting from theralve

2nd Month

Popularity

Trails

3rd Month

FPopularity

Figure 6) User behaviour change in monthly bases

tree nodes where the user id number containinghén t o
nodes is equal to the id number of the user and théSummarizability of the model

timestamps indicate that the interaction occurrednd a¢ mentioned before in order to compare the ranking

the specified time period.

From the produced output we can identify traila

evaluate the summarization ability of our model are
oing to use 2 metrics: the spearman footrule dmed t

which appear throughout the three months and we @@Ryjap metric. Overlap measures the percentageaite

identify change in the users behaviour in the thmahths

where new trails are introduced.

1st Month

Popularity

10 4

Trails

returned from the ranking that exists in both raniisen
the spearman footrule takes into account the rgnidrihe
trails. For this experiment we take into account al
returned trails and we set as parameter to retails bnly

of a certain length and we retrieve the 10 bedstbmsed
on landmark popularity. We run the query twice dmk
the results based on frequency of trails and tipgnson
the trails. We want to set such a non strict quiefinition

to have an overall evaluation view of the datasets.
Because both dataset are about one year worthi@fda
divided the datasets into training and test tratssTest
trail sets consist of the final month and the trséh of the
rest of the dataset. In figure 7) and 8) we pregbat
overlap and spearman footrule results of our datzesed
on different trail lengths.
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Figure 7) Overlap Trails based on frequency
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Figure 8) Spearman footrule based on frequency

In figure 7) we present the overlap for the frequen
ranking query and in figure 4) the time ranking iquén
figure 7), for the Dartmouth dataset we see a cta1sty
of 6/10 trails to be present for all trail lengtkcept length
two, the footrule metric is similar to the overlapd it
shows some difference between the ranking of t
discovered trails.

We also experimented with time based queri
for the Dartmouth dataset (Figures 9 and 10) arghe
though we see at the overlap that the percentadeaibf
results present on both testing and training datasefew,
around 20% and 50%. From the spearman footruleese
that these trails are returned on the same ranfang
training and testing datasets ability of our mdaglusing
the metrics discussed at the previous section.

Spearman - Time

03
0ns

Overlap - Time
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305

Owarlap X

20%
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Simr oF Teail

Figure 10) Overlap Trails based on Time query

6.3 Predictive Power of the model

To investigate the predictive power of our model wité

use cross validation to compare the prediction oy
based on the metrics discussed in section 5. Fglig
and 12) present the results produced from hit aisd and
Figure 13) the MAE testing of the data. All grajinesent
that prediction gets better when we take into antou
previous history of the user movement. For H&M e s
that predicting the 4th and 5th step produces ntoae
70% prediction accuracy from the Dartmouth dataset.
Even though the Reality Mining dataset producesr poo
results we discarded prediction improves by remgvin
unexpected events. We define unexpected eventsibss t
with probability lower than a certain threshold. Rigure
12) we have removed trails based on different trail
probability. By removing trails with probability 48 than
10% the prediction accuracy rises from 50% to 70%.

a0.00%
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60.00%
S0.00%
40.00%

S0.00%

Hit And Micc X
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Figure 11) Hit and Miss for different model orders
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Figure 9) Spearman footrule based on Time query
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Figure 12) H&M for Reality Mining data after remog
unexpected events

Even though for small trails H&M producesComplex Social Systems. Personal

using model based clustering In Proceedings of the Sixth
International KDD conference pages 280-284, 2000

[3]. N. Eagle and A. PentlandReality Mining: Sensing
and Ubiquitous

unreliable prediction results with MAE predictiors i Computing, Vol 10, 4, 2006.

accurate for smaller trails and for both datasétst
Dartmouth we can predict trails in a list of togeB first
order models and for longer trails the correct Itemways
appear in the list of top-2 results. For RealitynMg first
order models is inaccurate and the correct resuh the
top-15 but again for longer trails the result iglie top-3
for order 2 and 3 and after that the correct ptéaiic
exists in the top-2 list.

—4— Dartmouth

—&— Reality Mining

R Y

O—= B M0 O — b0 &
P T S S S TR S S S S W W S |

MAE

Order of Model

Figure 13) Mean Absolute Error for different model
orders
Generally H&M is a strict metric and it require
some user interaction history before producing esteu
results. On the other hand with MAE returns a 6§t
possible predictions and we can see that even math
history at all we can get the correct result imah list of
possible predictions.

1 Conclusion and Future Work

In this paper we proposed a model for trail-basealyesis
for pervasive computing systems, which can iderttiéjl

patterns based on different metrics. We have ptedea(ECHISE 2006). Irvine, CA, 17 September, 2006,

experimental results based on two datasets andawe
evaluated the summarizability and predictive poofesur
probabilistic suffix tree data model. Our experitatn
results present the flexibility of our model to guze
different kind of outputs based on different levels
abstraction, presented high rate of prediction #mel
presence of patterns based on different metriasfufore
work we are experimenting with different predictio
measures and we are working on a classificatioorilgnm
for pattern matching. An application and an API also
under construction that will allow other researshére
use of our probabilistic model.
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