
ANALYSIS, RANKING AND PREDICTION IN PERVASIVE
COMPUTING TRAILS

D. Papadogkonas, G. Roussos, M. Levene

School of Computer Science and Information Systems,
Birkbeck College, University of London,

London WC1E 7HX, U.K.
Email: {dikaios,gr,mark}@dcs.bbk.ac.uk

Keywords: pattern recognition, prediction, ranking

Abstract

Many pervasive computing applications involve the
recording of user interaction with physical and digital
resources in the environment. Such records can be used to
establish context histories that can be subsequently used
for user behaviour analysis, pattern recognition,
prediction, and the provision of context aware services. In
this paper we use trails as the principal data processing
primitive for analysis and prediction. We define a trail as
the sequence of recorded interactions with the pervasive
computing space. Trails contain patterns of space usage
and they can be used for the provision of different
services, space usage analysis or sociological information
of people using the environment simultaneously. Trail
analysis requires considerable storage and computational
resources to discover such patterns. Moreover no single
method exists that identifies significant trails based on
different metrics for a variety of different pervasive
computing application. In this paper, we introduce a trail
based analysis approach, an associated model for the
representation of trails and trail aggregates, and suitable
data structures for efficient storage, filtering and retrieval.
Also, we propose several related algorithms and
associated metrics for ranking and identifying significant
trails. We use these techniques in 2 different case studies
to extract valuable information about the pervasive system
environment usage and evaluate the summarizability and
the predictive power of our model.

1 Introduction

Pervasive computing systems often provide facilities to
record interactions between different devices or physical
objects and users. In some cases, such recording is
purposeful in that the aim of the research is to identify and
analyze human social behaviour or understand utilization
of the particular environment monitored. For example,
Reality Mining [3] and Wireless Rope [12] attempt to
understand interactions between users and fixed locations.
Other projects, for instance Senseable City [17], use these

interactions to analyze and describe the way we use cities.
Moreover, in some cases the aim is not only to analyze but
rather to affect user behaviour, for example in Cityware
[13] researchers try to develop tools for deploying
pervasive computing systems based on the relationship
between space and user behaviour by recording Bluetooth
devices at specific locations. All projects face common
problems in understanding the captured data and
analyzing these series of interactions in order to
understand the systems usage or provide context aware
services. Even though these and other projects work on
the analysis of series of interaction in pervasive
computing space no unified approach exist that allows
system usage analysis, pattern recognition and prediction
for a plethora of different applications under one
probabilistic model.

In this paper, we address the need for such a
unified approach which allows the analysis of different
pervasive system datasets. We propose a trail based
probabilistic data model and a collection of algorithms
which can be used to understand the use of space in a
pervasive computing environment identify patterns and
make predictions. A unique feature of our model is that it
can extract patterns based on different metrics. The model
can consider and weight different metrics that can be
recorded from the pervasive system environment. These
metrics can be time of interaction or any other kind of
sensor reading. The techniques proposed are general and
can be employed at any level of abstraction and
incorporate whatever types of user or service interactions
are deemed appropriate.

We develop our approach based on the notion of
landmark which we take to be the position of a significant
entity within a landscape or any type of wireless resource
a user can interact with. We capture interactions between
users and landmarks by observing wireless
communication between a user device and a device
embedded in a landmark, although our methods do not
depend on the specifics of the technology used and can
cater for RFID, Wi-Fi, Bluetooth, or any other type of
wireless sensor network technology.

We organize series of interactions with
landmarks into trails which contain both spatial and
temporal information. In particular, we record the duration
of each interactive session for each user and each

landmark, the distance between user and landmark and
possibly the orientation if this is supported by the
technology. All of which we subsequently use to calculate
some of our proposed outputs for analysis, ranking and
prediction.

Our selection of trail records is not coincidental
since trails have been used as the basis for coordination
between humans for centuries in different forms. For
example, navigation trails provide route information and
record information about paths to potential destinations.
Aggregating multiple trails acquired over time across a
particular environment is the technique humans often use
to develop complete maps of a particular landscape and
subsequently assist navigation, especially in the context of
exploration [5]. Oral trails are also quite common in
human coordination and are best represented as narratives
which are replayed and recast repeatedly to incorporate
new knowledge [11].

We process trails to extract common patterns of
behaviour using our software engine which implements
our unified model and associated data structures. The
logical flow of our systems is presented in Figure 1). The
engine consists of a parser and a sectioning tool for
reading data collected from the pervasive computing
environment and fragmenting them into a suitable format
that represent trails; a probabilistic tree data structure
which represent the recorded trails. The query engine is a
framework for the definition of metrics used to calculate
the best route under different circumstances during
navigation; and associated mechanisms that can calculate
such routes efficiently. Finally the results can be viewed
by using an appropriate interface.

In section 2 we present related work, section 3
presents our trail representation model, in section 4 the
query engine we use to query model and in sections 5 and
6 we discuss the experiments we conducted.

Figure 1) Architecture of the Ranking Engine

2 Related Work

There are a number of pervasive computing systems
which allow data analysis, pattern recognition and
prediction. A project closer related to our work is the MIT
Reality Mining project [3]. In reality mining notion of
eigenbehaviours is introduced. Eigenbehaviours use data
from many subjects for a series of days. From these
recordings a set of vectors is calculated that describes
human behaviour between a group of people and it is also
possible to construct behaviours of individuals based on
these eigenbehaviors. With these techniques their
subsequent behaviours could be predicted with up to 90%

accuracy based on a weighted sum of users primary
eigenbehaviors. Even though this is a highly accurate
prediction the experiment was conducted from a small
number of different states of behaviour, {Home,
Elsewhere, Work, No Signal, Off}.

The ideas described in this paper are highly
influenced from the area of web navigation. Trails in web
navigation have been used to provide user specific
applications (e.g. advertising) and an in depth view of a
web page’s usage. The same principles apply to pervasive
computing systems where the interaction of users with
objects is interpreted the same way as users following web
page links. Many researchers have focused on different
data models to represent the sequence of http requests in
efficient data models. For this type of data mining
problem the main techniques used are different types of
Markov models, clustering and association rules or these
techniques combined.
As proven by different real word tests in [16] [7] Markov
chain structures have predictive capabilities and are suited
for prefetching pages, targeting ads and personalization
but the accuracy is limited to sort patterns. In [1] a system
is described where a Hypertext Probabilistic Grammar is
used where the prediction is made by the n previously
visited pages. Other researchers use clustering techniques
to simplify and enhance the accuracy of their models.
Pitkow et al. [15] infers a Markov model from a collection
of longest repeating sub-sequences, another system [2]
uses different browsing sessions which are categorized
and then each cluster is a state in the Markov chain model.
Lan and al. [9] propose a system where association rules
are used to identify dependencies between pairs of
documents. Another work that is using association rules is
described in [9] similar to [10] but it is related to web
server caching.

3 Trail Representation

To store this interaction history between pervasive system
objects we need to introduce a directed graph where
vertices represent sensor network nodes and edges
represent paths between these nodes. Two vertices (nodes)
are said to be connected when there is a corresponding
interaction record that indicates that the two landmarks
have been visited in sequence by at least one user. For the
remainder of the discussion we will use the terms
landmarks, nodes and vertices interchangeably. Similarly
we will use the terms edges, paths, links or trails to
represent the connection between landmarks.

The links between landmarks are always directed
and the landmarks are weighted with different usage
metadata. Example of the metadata fields can include a
unique id for the user, a timestamp representing when the
user came into range or interacted with an object, a
timestamp representing when the user went out of range, a
positive integer representing frequency of visitation, the
distance between the user and landmark during their
interactive session, the orientation of the user in relation to
the sensor node, etc. Higher order metadata can also be
used, for instance the compound probability that a link
will be followed given the user has arrived to a specific

node following a particular path of fixed length within the
network.

It should be noted that not all landmarks will be
capable of providing all this information, nor does it make
sense to store all the possible metadata fields for all types
of landmarks. In any case, calculating the weights from
the raw system logs requires considerable computational
effort and poses several challenges in reconciling and
ordering the log records. An example of the challenges
involved is the fact that a sensor network is likely to be
heterogeneous and with only approximate time
synchronization.

Our probabilistic data structure differs from a
Markov chain from the fact that probabilities are
calculated based on a number of previous interactions and
this does not comply with the Markov property. In terms
of this graph, which is central to our approach trails, are
represented as sequence of nodes. For efficiency the graph
is stored as a probabilistic suffix tree [18] enhanced with
metadata needed to encapsulate different information and
metrics relevant to each interaction [14]. An example of
such a representation is shown in Figure 2. The choice of
this data structure has been guided by our desire to
develop a system that can maintain all captured
information while being able to rapidly respond to a great
variety of queries, virtually being capable of responding to
requests about any number of possible times, space and
semantics related criteria.

4 Query Engine

The query engine is responsible for extracting patterns
based on user defined metrics from the probabilistic data
representation. The data related information is based into
two major criteria. Queries related to the usage of
Landmarks and queries based on the interaction trails.

4.1 Landmarks

An advantage of the probabilistic suffix tree data structure
is that from the first level nodes we can extract all the
available information that is related on specific landmarks.
Because of the suffix tree properties, the root node will
have as children one instantiation of each landmark and
each of these nodes will contain the entire history of the
landmark usage. This property exists due to the
incremental addition of trails during the tree update
process. Taking this suffix tree property as an advantage
we can extract information related to a specific user's
interaction with the landmark or overall statistics based on
different metadata stored in the nodes.

4.2 Trail Ranking

A trail represented by a sequence of interactions between
nodes is said to be significant if it satisfies one or more of
the following criteria:

• It is one of the top n trails in respect of trail
popularity.

• It is one of the top n trails in respect of average
time (or some other temporal statistical measure)
spent interacting with the landmarks in the trail.

• It is one of the top n trails in respect of the
relevance of the landmarks to some chosen
semantics (for example related to a specific
spatial sub-area of the physical space that carries
some possibly arbitrary user-defined
significance).

• It is one of the top n trails in respect of one of the
above criteria in a chosen time period

• It is one of the top n trails in respect of one of the
above criteria for a chosen team sub-grouping.

These criteria request different subsets of the dataset so
different filters are used to extract a subtree of the overall
data structure which is later ranked.

Figure 2) Suffix tree for the ABCABCD and BCEABCD
trails with an example of the information associated with a
node. The numbers next to the nodes represent the
counters. Each node is also associated with additional
metadata used to answer and rank significant trail queries

Trail Frequency: The probability of a trail T = is given

by tt nnnnT ,,...,, 121 −
= is given by:

))((

)(
)(

Trootcount

Tcount
TP =

Where)(Tcount denoted the number of times

that the trail T was followed, i.e. its count in the suffix
tree, and)(Troot is the root node of the suffix tree. Note

that))((Trootcount is the total count of all landmarks

in the tree, i.e. the sum of counts of the first level nodes in
the tree. Because there are nodes that finish in the middle
of other trails we have to add dummy nodes with counter
equal to the counter of the parent node minus the sum of
the counters of the children nodes, in order to get the
probability of the sum of the leaf nodes of the suffix tree
equal to one.
The pruned suffix tree is defined to be a sub-tree of the
suffix tree, whose root is the same as)(Troot , the root of

the original suffix tree. Let S be a pruned suffix tree, and

let },...,,{ 21 mTTT be the set of all trails in S such that

each trail iT corresponds to a trail in S starting from its

root and ending at one of its m leaf nodes. The probability
of S is thus

∑
=

=
m

i
iTPSP

1

)()((1)

Where)(iTP is given according to the counts of the

original suffix tree.
Now, let 10, ≤< λλ be a parameter, denoting

the probability mass we require in the pruned suffix tree.
In the extreme case when 1=λ , the pruned suffix tree

will be equal to the original suffix tree, but when 1<λ it
becomes more selective in the trails that it contains. We
now give the pseudo-code of an algorithm, designated
POPULAR TRAILS),(λT that returns a pruned suffix

tree, S, whose probability equal to or just aboveλ , where
T is the suffix tree built from the log file.

[POPULAR TRAILS(T , λ)]
1. begin
2. S = root(T);
3. probS := 0;
4. mark root(S) as visited;
5. while probS < λ do
6. let ni be a node that has not yet been visited in
7. T and such that the trail Ti in T starting from
8. root(T) and ending at ni has the highest

9. probability)(jTP according to (1) among

10. all trails jT starting from root(T) and ending

11. at a node in in T that has not been visited;

12. mark in in T as visited;

13. add in as a leaf node to S;

14. probS := P(S) according to (1);
15. end while
16. return S;
17. end.

Time: Like the frequency trail algorithm we define the

normalized time of a trail tt nnnnT ,,...,, 121 −
= by

))((
)(

)(
LeafNodesTimesSum

TTime
TN =

where)(TTimes denotes the time spent on trail T and

))((LeafNodesTimesSum is the sum of time spent

stored in the leaf nodes which is the total amount of time
users spent interacting with the landmarks. Again for

10, ≤< λλ denoting the mass, we can use a modified

version of the Popular Trails algorithm to calculate best
trails by the time spent on them.

5 Model Evaluation

From our experimental evaluation we present a series of
different outputs that give an understanding of the
pervasive system environment usage. Moreover we
present the summarizability of the model, the significance
of patterns based on different metrics and their
consistency in a dataset of considerable size. Finally we
want to evaluate the predictive power of our model.

5.1 Summarizability

To measure the sumarisability of our model we use two
different techniques, the spearman footrule [4] with a
distance parameter, which measures the distance between
two ranked lists and the overlap between two lists. For our
experiments we will extract the top-m trails, of a given
length sorted by a trail weight or other query constraints
and each trail is represented as a list of landmarks where
each position in the list represents the place of the
landmark in the trail.

The footrule metric is defined as follows. For two

lists of traiks 1L and 2L both with m number of elements

and L is the union of this list. We have functions
)(if and)(ig , where Li∈ that return the ranking of a

trail i in the list and if, for example, i does not exist in

1L then 1)(+= mif The footrule metric now is

MAX

igif
LLF Li∑ ∈

−
−=

)()(
1),(21

5.2 Predictive Power

To investigate the predictive power of the model we have
divided the data into a training set and a testing set. We try
to predict the last landmark of each trail in the testing set
from the trails collected in the training set. Based on the
information stored in the probabilistic suffix tree data
structure we are able to predict the next landmark after a
series of landmark interactions. In order to predict the next
landmark using the visit frequencies, we present the user
with a ranked list of landmarks according to their
probability in the suffix tree, combined with the pattern
matching method of [6]. Suppose that we have a trail,

nn ttttT ,..., 121 −
= from our test set of trails, whereit ,

ni ≤≤1 , are landmarks, and we wish to predict the next

landmark in the sequence, i.e.1+nt . Then Algorithm called

Predict, based on [6], is given below, where S is the suffix
tree built from the training set of trails.

[Predict(T,S)]
1. begin
2. let s be the longest suffix of T in S;
3. if s is empty

%i.e. no historical information is available on s;
4 return the top-10 most popular landmarks;

%these will be children of the root of the tree.
5. else % s is non-empty;

6. return a ranked list of the most popular
7. landmarks directly reachable from s ;
8.end if
9.end

The first metric we use for prediction score is Hit and
Miss (H&M) rule where the prediction result is the link
with the highest probability. The scoring of this metric
counts the number of correct predictions, i.e. it scores 1
for a correct prediction and 0 for a false prediction. The
second metric is Mean Absolute Error (MAE) which
returns a ranked list 1-r where r is the actual link that was
followed and the MAE is calculated by r-1. Hit and Miss
is a strict metric that predicts based on the highest
probability when MAE returns the position of your
prediction in a ranked list of possible predictions which
have the top-n probabilities.

6 Experimental Testing

We are going to investigate two datasets collected from
the Dartmouth campus wireless network [8] and data
collected from the Reality Mining [3] project. We use one
year worth of Dartmouth data where the user connection
with the wireless network has been recorded and the
Reality Mining project recorded users’ mobile phone
connection with cell towers for more than a year. In order
to interpret the pervasive environment log files into trails
we need to divide them into sessions. A session is defined
as a finite sequence of landmark visits

mPPPu ,...,, 21= with LandmarksPi ∈ and represents

the experience of the user in the pervasive computing
environment. How the data are divided into sessions
depends on the type of data we are dealing with and the
two main factors are location and time. For both datasets
we have set a time limit of 5 hours of inactivity and a trail
length limit 10. Table 1) Summarizes the characteristics of
the collected data sets. From the collection of these
sessions we create the probabilistic suffix tree discussed in
section 3. From our experimental testing we want to
present some pervasive system analysis information,
investigate the presence of patterns between different parts
of the dataset and we are going to present the constant
appearance of patterns based both on the metric of time
and trail frequency. Finally we are going to present the
results from the prediction experiment we conducted.

Dataset Interactions Users Landmarks
Dartmouth 1782931 4745 623
Reality Mining 2536034 89 32628

Table 1) Dataset Characteristics

6.1 Overall Analysis

In this subsection we present a number of different outputs
and information we can extract by using the introduced
trailed based analysis of pervasive computing trails. We
want to get an overall idea of the landmark usage, how the
use of the environment change over time, what are the

most popular trails followed and how user behaviour
might change over time. We provide this kind of query
results to present the wide range of different queries our
engine can execute and the different levels of abstraction
and detail. We want to produce an overall view of the
different kind of queries and information we extract from
the probabilistic suffix tree.
 We start our experimental testing for the
Dartmouth dataset by conceptually categorising the
different buildings by type (academic, administration,
athletic, library, residence, and sociology). From the first
level nodes we can identify the type of building and we
can add up the landmark usage to provide information of
the type of buildings with most user usage of the wireless
network (Figure 3).

Figure 3) Landmark category usage in Dartmouth

The next experiment (Figure 4) investigates the

number of overall users during different hours of a day in
the Dartmouth dataset. Again this query is answered from
first level nodes and by using the time information per
user access the engine can calculate the number of visitors
per landmark during a certain time period.

Figure 4) Number of overall visitors during each hour of

the day in Dartmouth

From our query engine we present one of the ranking
engine’s output trail set, from the Dartmouth dataset, in
Figure 5). The best trails based on their popularity are
presented. We filtered the data based on their length and
trails of length 10 where only considered. We represent
trails by using different colours per trail and landmarks are
placed based on their original location, to present user

movement in the university campus. From the available
output we can identify as most popular trails students
moving between Residence, Academic and Library
buildings

Figure 5) Query Engine result for one day data from the
Dartmouth dataset. The 10 best trails of length 10 where

extracted

In figure 6) we present an analysis of user
behaviour change. We provide three consecutive months
of trail distribution that a user followed. The tree for each
month can be constructed by extracting from the overall
tree nodes where the user id number containing in the
nodes is equal to the id number of the user and the
timestamps indicate that the interaction occurred during
the specified time period.

From the produced output we can identify trails
which appear throughout the three months and we can
identify change in the users behaviour in the third months
where new trails are introduced.

Figure 6) User behaviour change in monthly bases

6.2 Summarizability of the model

As mentioned before in order to compare the ranking and
evaluate the summarization ability of our model we are
going to use 2 metrics: the spearman footrule and the
overlap metric. Overlap measures the percentage of trails
returned from the ranking that exists in both ranks, when
the spearman footrule takes into account the ranking of the
trails. For this experiment we take into account all
returned trails and we set as parameter to return trails only
of a certain length and we retrieve the 10 best trails based
on landmark popularity. We run the query twice to rank
the results based on frequency of trails and time spent on
the trails. We want to set such a non strict query definition
to have an overall evaluation view of the datasets.
Because both dataset are about one year worth of data, we
divided the datasets into training and test trail sets. Test
trail sets consist of the final month and the train set of the
rest of the dataset. In figure 7) and 8) we present the
overlap and spearman footrule results of our dataset based
on different trail lengths.

Figure 7) Overlap Trails based on frequency

Figure 8) Spearman footrule based on frequency

In figure 7) we present the overlap for the frequency
ranking query and in figure 4) the time ranking query. In
figure 7), for the Dartmouth dataset we see a consistency
of 6/10 trails to be present for all trail length except length
two, the footrule metric is similar to the overlap and it
shows some difference between the ranking of the
discovered trails.

We also experimented with time based queries
for the Dartmouth dataset (Figures 9 and 10) and even
though we see at the overlap that the percentage of trail
results present on both testing and training dataset are few,
around 20% and 50%. From the spearman footrule we see
that these trails are returned on the same ranking for
training and testing datasets ability of our model by using
the metrics discussed at the previous section.

Figure 9) Spearman footrule based on Time query

Figure 10) Overlap Trails based on Time query

6.3 Predictive Power of the model

To investigate the predictive power of our model we will
use cross validation to compare the prediction accuracy
based on the metrics discussed in section 5. Figures 11)
and 12) present the results produced from hit and miss and
Figure 13) the MAE testing of the data. All graphs present
that prediction gets better when we take into account
previous history of the user movement. For H&M we see
that predicting the 4th and 5th step produces more than
70% prediction accuracy from the Dartmouth dataset.
Even though the Reality Mining dataset produces poor
results we discarded prediction improves by removing
unexpected events. We define unexpected events as trails
with probability lower than a certain threshold. In Figure
12) we have removed trails based on different trail
probability. By removing trails with probability less than
10% the prediction accuracy rises from 50% to 70%.

Figure 11) Hit and Miss for different model orders

Figure 12) H&M for Reality Mining data after removing
unexpected events

Even though for small trails H&M produces

unreliable prediction results with MAE prediction is
accurate for smaller trails and for both datasets. For
Dartmouth we can predict trails in a list of top-3 for first
order models and for longer trails the correct result always
appear in the list of top-2 results. For Reality Mining first
order models is inaccurate and the correct result is in the
top-15 but again for longer trails the result is in the top-3
for order 2 and 3 and after that the correct prediction
exists in the top-2 list.

Figure 13) Mean Absolute Error for different model

orders
Generally H&M is a strict metric and it requires

some user interaction history before producing accurate
results. On the other hand with MAE returns a list of
possible predictions and we can see that even with no
history at all we can get the correct result in a small list of
possible predictions.

1 Conclusion and Future Work

In this paper we proposed a model for trail-based analysis
for pervasive computing systems, which can identify trail
patterns based on different metrics. We have presented
experimental results based on two datasets and we have
evaluated the summarizability and predictive power of our
probabilistic suffix tree data model. Our experimental
results present the flexibility of our model to produce
different kind of outputs based on different levels of
abstraction, presented high rate of prediction and the
presence of patterns based on different metrics. For future
work we are experimenting with different prediction
measures and we are working on a classification algorithm
for pattern matching. An application and an API are also
under construction that will allow other researchers the
use of our probabilistic model.

References

[1] J. Borges and M. Levene, A fine grained heuristic to
capture web navigation patterns, SIGKDD Explorations,
2, pp. 40-50, 2000.
[2] I. Cadez, D.Heckerman, C. Meek, P. Smyth, and S.
White. Visualization of navigation patterns on a web site

using model based clustering In Proceedings of the Sixth
International KDD conference pages 280-284, 2000
[3]. N. Eagle and A. Pentland, Reality Mining: Sensing
Complex Social Systems. Personal and Ubiquitous
Computing, Vol 10, 4, 2006.
[4] R. Fagin, R. Kumar, and D. Sivakumar. Comparing
top k lists SIAM Journal of Discrete Mathematics,
17(1):134160, November 2003.
[5] R. Golledge, Wayfinding Behavior: Cognitive
Mapping and Other Spatial Processes,The Johns Hopkins
University Press, 1998.
[6]. P. Jacquet, W. Szpankowski, and I. Apostol. A
universal predictor based on pattern matching IEEE
Transactions on Information Theory, 48:1462-1472,2002.
[7] S. Jespersen, T.B. Pedersen, H. Thorhauge, Evaluating
the Markov Assumption for Web Usage Mining, WIDM
’03, November 7-8, 2003, New Orleans Louisiana, USA.
[8] D. Kotz and K. Essien, Analysis of a campus wide
wireless network, WirelessNetworks, vol.11, pp. 115133,
2005.
[9] B. Lan, S. Bressan, B.C. Ooi and Y. Tay, Making Web
Servers Pushier Proc.Workshop Web Usage Analysis and
User Profiling (WEBKDD ’99), Aug. 1999
[10] B. Lan, S. Bressan, B.C. Ooi and K. Tan, Rule-
Assisted Prefetching in Web-Server Caching” Proc. ACM
Int’l Conf. Information and Knowledge Management
(ACM CIKM ’00), pp. 215-228, Sept. 2000
[11] M. Mateas and P. Sengers, Narrative Intelligence,
John Benjamins Publishing, 2003
[12] Tom Nicolai and Holger Kenn Towards Detecting
Social Situations with Bluetooth. UbiComp 2006, Irvine,
USA.
[13] O’Neill, E., Kostakos, V., Kindberg, T., Fatah gen.
Schiek, A., Penn, A., Stanton Fraser, D. and Jones, T.
Instrumenting the city: developing methods for observing
and understanding the digital cityscape. UbiComp 2006,
Irvine, USA.
[14]. D. Papadogkonas, G. Roussos and M. Levene.
Discovery and Ranking of Significant Trails”. 2nd Int.
Workshop Expl. Context History in Smart Environments
(ECHISE 2006). Irvine, CA, 17 September, 2006.
[15] J. Pitkow and P. Pirolli ”Mining longest repeating
subsequences to predict world wide web surfing” In Proc.
of the Second Usenix Symposium on Internet
Technologies and Systems, pages 139-150, Colorado
USA, October 1999
[16] R.R. Sarukkai Link Prediction and path analysis
using markov chains, Computer Networks and ISDN
Systems, 30:457-467, 1998.
[17] Sevtsuk A., Ratti C., 2005, iSPOT: describing the use
of space on the MIT campus through the analysis of WiFi
networks, proceedings of CUPUM ’05: The Ninth
International Conference on Computers in Urban Planning
and Urban Management, London, 29 June - 1 July 2005
[18] P. Weiner, Linear Pattern Matching Algorithms,
Proc. 14th IEEE Annual Symp. on Switching and
Automata Theory, pp1-11, 1973.

