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Abstract 

Many pervasive computing applications involve the 
recording of user interaction with physical and digital 
resources in the environment. Such records can be used to 
establish context histories that can be subsequently used 
for user behaviour analysis, pattern recognition, 
prediction, and the provision of context aware services. In 
this paper we use trails as the principal data processing 
primitive for analysis and prediction. We define a trail as 
the sequence of recorded interactions with the pervasive 
computing space. Trails contain patterns of space usage 
and they can be used for the provision of different 
services, space usage analysis or sociological information 
of people using the environment simultaneously. Trail 
analysis requires considerable storage and computational 
resources to discover such patterns. Moreover no single 
method exists that identifies significant trails based on 
different metrics for a variety of different pervasive 
computing application. In this paper, we introduce a trail 
based analysis approach, an associated model for the 
representation of trails and trail aggregates, and suitable 
data structures for efficient storage, filtering and retrieval. 
Also, we propose several related algorithms and 
associated metrics for ranking and identifying significant 
trails. We use these techniques in 2 different case studies 
to extract valuable information about the pervasive system 
environment usage and evaluate the summarizability and 
the predictive power of our model. 

1 Introduction 

Pervasive computing systems often provide facilities to 
record interactions between different devices or physical 
objects and users. In some cases, such recording is 
purposeful in that the aim of the research is to identify and 
analyze human social behaviour or understand utilization 
of the particular environment monitored. For example, 
Reality Mining [3] and Wireless Rope [12] attempt to 
understand interactions between users and fixed locations. 
Other projects, for instance Senseable City [17], use these 

interactions to analyze and describe the way we use cities. 
Moreover, in some cases the aim is not only to analyze but 
rather to affect user behaviour, for example in Cityware 
[13] researchers try to develop tools for deploying 
pervasive computing systems based on the relationship 
between space and user behaviour by recording Bluetooth 
devices at specific locations. All projects face common 
problems in understanding the captured data and 
analyzing these series of interactions in order to 
understand the systems usage or provide context aware 
services. Even though these and other projects work on 
the analysis of series of interaction in pervasive 
computing space no unified approach exist that allows 
system usage analysis, pattern recognition and prediction 
for a plethora of different applications under one 
probabilistic model. 

In this paper, we address the need for such a 
unified approach which allows the analysis of different 
pervasive system datasets. We propose a trail based 
probabilistic data model and a collection of algorithms 
which can be used to understand the use of space in a 
pervasive computing environment identify patterns and 
make predictions. A unique feature of our model is that it 
can extract patterns based on different metrics. The model 
can consider and weight different metrics that can be 
recorded from the pervasive system environment. These 
metrics can be time of interaction or any other kind of 
sensor reading. The techniques proposed are general and 
can be employed at any level of abstraction and 
incorporate whatever types of user or service interactions 
are deemed appropriate.  

We develop our approach based on the notion of 
landmark which we take to be the position of a significant 
entity within a landscape or any type of wireless resource 
a user can interact with. We capture interactions between 
users and landmarks by observing wireless 
communication between a user device and a device 
embedded in a landmark, although our methods do not 
depend on the specifics of the technology used and can 
cater for RFID, Wi-Fi, Bluetooth, or any other type of 
wireless sensor network technology. 

We organize series of interactions with 
landmarks into trails which contain both spatial and 
temporal information. In particular, we record the duration 
of each interactive session for each user and each 



landmark, the distance between user and landmark and 
possibly the orientation if this is supported by the 
technology. All of which we subsequently use to calculate 
some of our proposed outputs for analysis, ranking and 
prediction. 

Our selection of trail records is not coincidental 
since trails have been used as the basis for coordination 
between humans for centuries in different forms. For 
example, navigation trails provide route information and 
record information about paths to potential destinations. 
Aggregating multiple trails acquired over time across a 
particular environment is the technique humans often use 
to develop complete maps of a particular landscape and 
subsequently assist navigation, especially in the context of 
exploration [5]. Oral trails are also quite common in 
human coordination and are best represented as narratives 
which are replayed and recast repeatedly to incorporate 
new knowledge [11]. 

We process trails to extract common patterns of 
behaviour using our software engine which implements 
our unified model and associated data structures. The 
logical flow of our systems is presented in Figure 1). The 
engine consists of a parser and a sectioning tool for 
reading data collected from the pervasive computing 
environment and fragmenting them into a suitable format 
that represent trails; a probabilistic tree data structure 
which represent the recorded trails. The query engine is a 
framework for the definition of metrics used to calculate 
the best route under different circumstances during 
navigation; and associated mechanisms that can calculate 
such routes efficiently. Finally the results can be viewed 
by using an appropriate interface.  

In section 2 we present related work, section 3 
presents our trail representation model, in section 4 the 
query engine we use to query model and in sections 5 and 
6 we discuss the experiments we conducted. 

 

 
Figure 1) Architecture of the Ranking Engine 

2 Related Work 

There are a number of pervasive computing systems 
which allow data analysis, pattern recognition and 
prediction. A project closer related to our work is the MIT 
Reality Mining project [3]. In reality mining notion of 
eigenbehaviours is introduced. Eigenbehaviours use data 
from many subjects for a series of days. From these 
recordings a set of vectors is calculated that describes 
human behaviour between a group of people and it is also 
possible to construct behaviours of individuals based on 
these eigenbehaviors. With these techniques their 
subsequent behaviours could be predicted with up to 90% 

accuracy based on a weighted sum of users primary 
eigenbehaviors. Even though this is a highly accurate 
prediction the experiment was conducted from a small 
number of different states of behaviour, {Home, 
Elsewhere, Work, No Signal, Off}. 

The ideas described in this paper are highly 
influenced from the area of web navigation. Trails in web 
navigation have been used to provide user specific 
applications (e.g. advertising) and an in depth view of a 
web page’s usage. The same principles apply to pervasive 
computing systems where the interaction of users with 
objects is interpreted the same way as users following web 
page links. Many researchers have focused on different 
data models to represent the sequence of http requests in 
efficient data models. For this type of data mining 
problem the main techniques used are different types of 
Markov models, clustering and association rules or these 
techniques combined. 
As proven by different real word tests in [16] [7] Markov 
chain structures have predictive capabilities and are suited 
for prefetching pages, targeting ads and personalization 
but the accuracy is limited to sort patterns. In [1] a system 
is described where a Hypertext Probabilistic Grammar is 
used where the prediction is made by the n previously 
visited pages. Other researchers use clustering techniques 
to simplify and enhance the accuracy of their models. 
Pitkow et al. [15] infers a Markov model from a collection 
of longest repeating sub-sequences, another system [2] 
uses different browsing sessions which are categorized 
and then each cluster is a state in the Markov chain model. 
Lan and al. [9] propose a system where association rules 
are used to identify dependencies between pairs of 
documents. Another work that is using association rules is 
described in [9] similar to [10] but it is related to web 
server caching.  

3 Trail Representation 

To store this interaction history between pervasive system 
objects we need to introduce a directed graph where 
vertices represent sensor network nodes and edges 
represent paths between these nodes. Two vertices (nodes) 
are said to be connected when there is a corresponding 
interaction record that indicates that the two landmarks 
have been visited in sequence by at least one user. For the 
remainder of the discussion we will use the terms 
landmarks, nodes and vertices interchangeably. Similarly 
we will use the terms edges, paths, links or trails to 
represent the connection between landmarks. 

The links between landmarks are always directed 
and the landmarks are weighted with different usage 
metadata. Example of the metadata fields can include a 
unique id for the user, a timestamp representing when the 
user came into range or interacted with an object, a 
timestamp representing when the user went out of range, a 
positive integer representing frequency of visitation, the 
distance between the user and landmark during their 
interactive session, the orientation of the user in relation to 
the sensor node, etc. Higher order metadata can also be 
used, for instance the compound probability that a link 
will be followed given the user has arrived to a specific 



node following a particular path of fixed length within the 
network. 

It should be noted that not all landmarks will be 
capable of providing all this information, nor does it make 
sense to store all the possible metadata fields for all types 
of landmarks. In any case, calculating the weights from 
the raw system logs requires considerable computational 
effort and poses several challenges in reconciling and 
ordering the log records. An example of the challenges 
involved is the fact that a sensor network is likely to be 
heterogeneous and with only approximate time 
synchronization. 

Our probabilistic data structure differs from a 
Markov chain from the fact that probabilities are 
calculated based on a number of previous interactions and 
this does not comply with the Markov property. In terms 
of this graph, which is central to our approach trails, are 
represented as sequence of nodes. For efficiency the graph 
is stored as a probabilistic suffix tree [18] enhanced with 
metadata needed to encapsulate different information and 
metrics relevant to each interaction [14]. An example of 
such a representation is shown in Figure 2. The choice of 
this data structure has been guided by our desire to 
develop a system that can maintain all captured 
information while being able to rapidly respond to a great 
variety of queries, virtually being capable of responding to 
requests about any number of possible times, space and 
semantics related criteria. 

4 Query Engine 

The query engine is responsible for extracting patterns 
based on user defined metrics from the probabilistic data 
representation. The data related information is based into 
two major criteria. Queries related to the usage of 
Landmarks and queries based on the interaction trails. 

4.1 Landmarks 

An advantage of the probabilistic suffix tree data structure 
is that from the first level nodes we can extract all the 
available information that is related on specific landmarks. 
Because of the suffix tree properties, the root node will 
have as children one instantiation of each landmark and 
each of these nodes will contain the entire history of the 
landmark usage. This property exists due to the 
incremental addition of trails during the tree update 
process. Taking this suffix tree property as an advantage 
we can extract information related to a specific user's 
interaction with the landmark or overall statistics based on 
different metadata stored in the nodes. 

4.2 Trail Ranking 

A trail represented by a sequence of interactions between 
nodes is said to be significant if it satisfies one or more of 
the following criteria: 
 

• It is one of the top n trails in respect of trail 
popularity. 

• It is one of the top n trails in respect of average 
time (or some other temporal statistical measure) 
spent interacting with the landmarks in the trail. 

• It is one of the top n trails in respect of the 
relevance of the landmarks to some chosen 
semantics (for example related to a specific 
spatial sub-area of the physical space that carries 
some possibly arbitrary user-defined 
significance). 

• It is one of the top n trails in respect of one of the 
above criteria in a chosen time period 

• It is one of the top n trails in respect of one of the 
above criteria for a chosen team sub-grouping.  

 
These criteria request different subsets of the dataset so 
different filters are used to extract a subtree of the overall 
data structure which is later ranked. 

 
Figure 2)  Suffix tree for the ABCABCD and BCEABCD 
trails with an example of the information associated with a 
node. The numbers next to the nodes represent the 
counters. Each node is also associated with additional 
metadata used to answer and rank significant trail queries 
 
Trail Frequency: The probability of a trail T = is given 

by tt nnnnT ,,...,, 121 −
=  is given by: 
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Where )(Tcount denoted the number of times 

that the trail T was followed, i.e. its count in the suffix 
tree, and )(Troot is the root node of the suffix tree. Note 

that ))(( Trootcount is the total count of all landmarks 

in the tree, i.e. the sum of counts of the first level nodes in 
the tree. Because there are nodes that finish in the middle 
of other trails we have to add dummy nodes with counter 
equal to the counter of the parent node minus the sum of 
the counters of the children nodes, in order to get the 
probability of the sum of the leaf nodes of the suffix tree 
equal to one. 
The pruned suffix tree is defined to be a sub-tree of the 
suffix tree, whose root is the same as )(Troot , the root of 

the original suffix tree. Let S be a pruned suffix tree, and 

let },...,,{ 21 mTTT be the set of all trails in S such that 



each trail iT corresponds to a trail in S starting from its 

root and ending at one of its m leaf nodes. The probability 
of S is thus 

∑
=
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Where )( iTP is given according to the counts of the 

original suffix tree.  
Now, let 10, ≤< λλ  be a parameter, denoting 

the probability mass we require in the pruned suffix tree. 
In the extreme case when 1=λ , the pruned suffix tree 

will be equal to the original suffix tree, but when 1<λ it 
becomes more selective in the trails that it contains. We 
now give the pseudo-code of an algorithm, designated 
POPULAR TRAILS ),( λT  that returns a pruned suffix 

tree, S, whose probability equal to or just aboveλ , where 
T  is the suffix tree built from the log file. 
 
[POPULAR TRAILS(T , λ )] 
1. begin 
2. S = root(T ); 
3. probS := 0; 
4. mark root(S) as visited; 
5. while probS < λ  do 
6.  let ni be a node that has not yet been visited in 
7.        T and such that the trail Ti in T starting from 
8.        root(T ) and ending at ni has the highest 

9.        probability )( jTP  according to (1) among  

10.       all trails jT  starting from root(T ) and ending 

11.       at a node in  in T that has not been visited; 

12.  mark in  in T as visited; 

13.  add in  as a leaf node to S; 

14.  probS := P(S) according to (1); 
15. end while 
16. return S; 
17. end. 
 
Time: Like the frequency trail algorithm we define the 

normalized time of a trail tt nnnnT ,,...,, 121 −
=  by 

))((
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)(
LeafNodesTimesSum

TTime
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where )(TTimes denotes the time spent on trail T and 

))(( LeafNodesTimesSum is the sum of time spent 

stored in the leaf nodes which is the total amount of time 
users spent interacting with the landmarks. Again for 

10, ≤< λλ denoting the mass, we can use a modified 

version of the Popular Trails algorithm to calculate best 
trails by the time spent on them.  

 

5 Model Evaluation 

From our experimental evaluation we present a series of 
different outputs that give an understanding of the 
pervasive system environment usage. Moreover we 
present the summarizability of the model, the significance 
of patterns based on different metrics and their 
consistency in a dataset of considerable size. Finally we 
want to evaluate the predictive power of our model. 

5.1 Summarizability 

To measure the sumarisability of our model we use two 
different techniques, the spearman footrule [4] with a 
distance parameter, which measures the distance between 
two ranked lists and the overlap between two lists. For our 
experiments we will extract the top-m trails, of a given 
length sorted by a trail weight or other query constraints 
and each trail is represented as a list of landmarks where 
each position in the list represents the place of the 
landmark in the trail. 

The footrule metric is defined as follows. For two 

lists of traiks 1L and 2L  both with m number of elements 

and L is the union of this list. We have functions  
)(if and )(ig , where Li∈ that return the ranking of a 

trail i in the list and if, for example, i does not exist in 

1L  then 1)( += mif The footrule metric now is 

MAX

igif
LLF Li∑ ∈

−
−=

)()(
1),( 21  

5.2 Predictive Power 

To investigate the predictive power of the model we have 
divided the data into a training set and a testing set. We try 
to predict the last landmark of each trail in the testing set 
from the trails collected in the training set. Based on the 
information stored in the probabilistic suffix tree data 
structure we are able to predict the next landmark after a 
series of landmark interactions. In order to predict the next 
landmark using the visit frequencies, we present the user 
with a ranked list of landmarks according to their 
probability in the suffix tree, combined with the pattern 
matching method of [6]. Suppose that we have a trail, 

nn ttttT ,..., 121 −
=  from our test set of trails, whereit , 

ni ≤≤1 , are landmarks, and we wish to predict the next 

landmark in the sequence, i.e.1+nt . Then Algorithm called 

Predict, based on [6], is given below, where S is the suffix 
tree built from the training set of trails. 

 
[Predict(T,S)] 
1. begin 
2. let s be the longest suffix of T in S; 
3. if s is empty  

%i.e. no historical information is available on s; 
4  return the top-10 most popular landmarks; 

%these will be children of the root of the tree. 
5. else % s is non-empty; 



6.  return a ranked list of the most popular 
7.  landmarks directly reachable from s ; 
8.end if 
9.end 
 
The first metric we use for prediction score is Hit and 
Miss (H&M) rule where the prediction result is the link 
with the highest probability. The scoring of this metric 
counts the number of correct predictions, i.e. it scores 1 
for a correct prediction and 0 for a false prediction. The 
second metric is Mean Absolute Error (MAE) which 
returns a ranked list 1-r where r is the actual link that was 
followed and the MAE is calculated by r-1. Hit and Miss 
is a strict metric that predicts based on the highest 
probability when MAE returns the position of your 
prediction in a ranked list of possible predictions which 
have the top-n probabilities. 

6 Experimental Testing 

We are going to investigate two datasets collected from 
the Dartmouth campus wireless network [8] and data 
collected from the Reality Mining [3] project. We use one 
year worth of Dartmouth data where the user connection 
with the wireless network has been recorded and the 
Reality Mining project recorded users’ mobile phone 
connection with cell towers for more than a year. In order 
to interpret the pervasive environment log files into trails 
we need to divide them into sessions. A session is defined 
as a finite sequence of landmark visits 

mPPPu ,...,, 21= with LandmarksPi ∈ and represents 

the experience of the user in the pervasive computing 
environment. How the data are divided into sessions 
depends on the type of data we are dealing with and the 
two main factors are location and time. For both datasets 
we have set a time limit of 5 hours of inactivity and a trail 
length limit 10. Table 1) Summarizes the characteristics of 
the collected data sets. From the collection of these 
sessions we create the probabilistic suffix tree discussed in 
section 3. From our experimental testing we want to 
present some pervasive system analysis information, 
investigate the presence of patterns between different parts 
of the dataset and we are going to present the constant 
appearance of patterns based both on the metric of time 
and trail frequency. Finally we are going to present the 
results from the prediction experiment we conducted. 
 
Dataset Interactions Users Landmarks 
Dartmouth 1782931 4745 623 
Reality Mining 2536034 89 32628 
 

Table 1) Dataset Characteristics 

6.1 Overall Analysis 

In this subsection we present a number of different outputs 
and information we can extract by using the introduced 
trailed based analysis of pervasive computing trails. We 
want to get an overall idea of the landmark usage, how the 
use of the environment change over time, what are the 

most popular trails followed and how user behaviour 
might change over time. We provide this kind of query 
results to present the wide range of different queries our 
engine can execute and the different levels of abstraction 
and detail. We want to produce an overall view of the 
different kind of queries and information we extract from 
the probabilistic suffix tree. 
 We start our experimental testing for the 
Dartmouth dataset by conceptually categorising the 
different buildings by type (academic, administration, 
athletic, library, residence, and sociology). From the first 
level nodes we can identify the type of building and we 
can add up the landmark usage to provide information of 
the type of buildings with most user usage of the wireless 
network (Figure 3). 

 

 
Figure 3) Landmark category usage in Dartmouth  

 
The next experiment (Figure 4) investigates the 

number of overall users during different hours of a day in 
the Dartmouth dataset. Again this query is answered from 
first level nodes and by using the time information per 
user access the engine can calculate the number of visitors 
per landmark during a certain time period. 

 
Figure 4) Number of overall visitors during each hour of 

the day in Dartmouth 
 

From our query engine we present one of the ranking 
engine’s output trail set, from the Dartmouth dataset, in 
Figure 5). The best trails based on their popularity are 
presented. We filtered the data based on their length and 
trails of length 10 where only considered. We represent 
trails by using different colours per trail and landmarks are 
placed based on their original location, to present user 



movement in the university campus. From the available 
output we can identify as most popular trails students 
moving between Residence, Academic and Library 
buildings 
 

 
Figure 5) Query Engine result for one day data from the 
Dartmouth dataset. The 10 best trails of length 10 where 

extracted 
 

In figure 6) we present an analysis of user 
behaviour change. We provide three consecutive months 
of trail distribution that a user followed. The tree for each 
month can be constructed by extracting from the overall 
tree nodes where the user id number containing in the 
nodes is equal to the id number of the user and the 
timestamps indicate that the interaction occurred during 
the specified time period.  

From the produced output we can identify trails 
which appear throughout the three months and we can 
identify change in the users behaviour in the third months 
where new trails are introduced. 
 

 

 

 
 

Figure 6) User behaviour change in monthly bases 

6.2 Summarizability of the model 

As mentioned before in order to compare the ranking and 
evaluate the summarization ability of our model we are 
going to use 2 metrics: the spearman footrule and the 
overlap metric. Overlap measures the percentage of trails 
returned from the ranking that exists in both ranks, when 
the spearman footrule takes into account the ranking of the 
trails. For this experiment we take into account all 
returned trails and we set as parameter to return trails only 
of a certain length and we retrieve the 10 best trails based 
on landmark popularity. We run the query twice to rank 
the results based on frequency of trails and time spent on 
the trails. We want to set such a non strict query definition 
to have an overall evaluation view of the datasets. 
Because both dataset are about one year worth of data, we 
divided the datasets into training and test trail sets. Test 
trail sets consist of the final month and the train set of the 
rest of the dataset. In figure 7) and 8) we present the 
overlap and spearman footrule results of our dataset based 
on different trail lengths.  
 



 
Figure 7) Overlap Trails based on frequency 

 

 
Figure 8) Spearman footrule based on frequency 

 
In figure 7) we present the overlap for the frequency 
ranking query and in figure 4) the time ranking query. In 
figure 7), for the Dartmouth dataset we see a consistency 
of 6/10 trails to be present for all trail length except length 
two, the footrule metric is similar to the overlap and it 
shows some difference between the ranking of the 
discovered trails.  

We also experimented with time based queries 
for the Dartmouth dataset (Figures 9 and 10) and even 
though we see at the overlap that the percentage of trail 
results present on both testing and training dataset are few, 
around 20% and 50%. From the spearman footrule we see 
that these trails are returned on the same ranking for 
training and testing datasets ability of our model by using 
the metrics discussed at the previous section. 

 
Figure 9) Spearman footrule based on Time query 

 

 
Figure 10) Overlap Trails based on Time query 

6.3 Predictive Power of the model 

To investigate the predictive power of our model we will 
use cross validation to compare the prediction accuracy 
based on the metrics discussed in section 5. Figures 11) 
and 12) present the results produced from hit and miss and 
Figure 13) the MAE testing of the data. All graphs present 
that prediction gets better when we take into account 
previous history of the user movement. For H&M we see 
that predicting the 4th and 5th step produces more than 
70% prediction accuracy from the Dartmouth dataset. 
Even though the Reality Mining dataset produces poor 
results we discarded prediction improves by removing 
unexpected events. We define unexpected events as trails 
with probability lower than a certain threshold. In Figure 
12) we have removed trails based on different trail 
probability. By removing trails with probability less than 
10% the prediction accuracy rises from 50% to 70%.  
 

 
Figure 11) Hit and Miss for different model orders 

 

 



Figure 12) H&M for Reality Mining data after removing 
unexpected events 

 
Even though for small trails H&M produces 

unreliable prediction results with MAE prediction is 
accurate for smaller trails and for both datasets. For 
Dartmouth we can predict trails in a list of top-3 for first 
order models and for longer trails the correct result always 
appear in the list of top-2 results. For Reality Mining first 
order models is inaccurate and the correct result is in the 
top-15 but again for longer trails the result is in the top-3 
for order 2 and 3 and after that the correct prediction 
exists in the top-2 list. 
 

 
Figure 13) Mean Absolute Error for different model 

orders 
Generally H&M is a strict metric and it requires 

some user interaction history before producing accurate 
results. On the other hand with MAE returns a list of 
possible predictions and we can see that even with no 
history at all we can get the correct result in a small list of 
possible predictions. 

1 Conclusion and Future Work 

In this paper we proposed a model for trail-based analysis 
for pervasive computing systems, which can identify trail 
patterns based on different metrics. We have presented 
experimental results based on two datasets and we have 
evaluated the summarizability and predictive power of our 
probabilistic suffix tree data model. Our experimental 
results present the flexibility of our model to produce 
different kind of outputs based on different levels of 
abstraction, presented high rate of prediction and the 
presence of patterns based on different metrics. For future 
work we are experimenting with different prediction 
measures and we are working on a classification algorithm 
for pattern matching. An application and an API are also 
under construction that will allow other researchers the 
use of our probabilistic model. 
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