Overview - cloudUPDRS certified Class I Medical Device for clinical use - Rate PD motor symptoms as precisely as an experienced clinician - Extends and adapts Part III of the standard UPDRS protocol - Unsupervised use at home - Employs accelerometer for tremor and gait measurements - Employs touch-screen for tapping measurements - No clinical or technical supervision during testing: bespoke user journey - Data analytics # Challenges - 1. Ensure unsupervised test is carried out correctly - 2. Reduce testing time - 3. Capture symptom variability - 4. Identify high quality signal segments # People with Parkinson's # Parkinson's Disease (PD) - No cure - Managed mainly by replacing dopamine - Motor symptoms - tremor, rigidity, slowness of movement (bradykinesia), freezing of gait, stiffness, shaking, falls - Non-motor symptoms - bladder, memory, sleep, addictive behaviour, fatigue, pain, hallucinations # Symptoms of Parkinson's Disease ## Disease Progression #### UNIFIED PARKINSON'S DISEASE RATING SCALE - Standard clinical protocol for assessing PD - Part III clinical assessment of motor symptoms - Known issues: - time intensive - inter-rater variability - not sensitive - Used formally - Drug trials - Consideration of advanced therapies - Used informally as part of clinical assessment (once or twice per year) of disease progression - Can we replace with an app? | 3 RIGIDITY | | SCOR | |---|--|------| | structions to exa
relaxed position
aneuver. Test a
multaneously. Fo
divation maneuv | trings. Rigidity is judged on slow passive movement of major joints with the patient in
and the examiner manipulating the limits and neck. First, test without an activation
of inter neck and earth time superaistly. For arms, lest the wrist and elbow jords
of legs, test the high and time joints simultaneously if no rigidity is detected, use an
examined time to the passive state of the passive simulation and the passive simulation
and the passive simulation and the passive simulation and the passive simulation and
passive simulations. | Neck | | 0: Normal: | No rigidity. | | | 1: Slight: | Rigidity only detected with activation maneuver. | | | 2: Mid: | Rigidity detected without the activation maneuver, but full range of motion is easily achieved. | RUE | | 3: Moderate: | Rigidity detected without the activation maneuver; full range of motion is achieved with effort. | | | 4: Severe: | Pogisity detected without the activation maneuver and full range of motion not achieved. | UE | | | | | | | | RLE | | structions to exa
urform the task w
umb 10 times as | ming: Each hand is tested separately. Demonstrate the task, but do not continue to
hile the patient is being tested. Instruct the patient to tap the index finger on the
quickly AND as big as possible. Rate each side separately, evaluating speed. | LLE | | orform the task w
umb 10 times as
aplitude, hesitati | tring: Each hand is tested separately. Demonstrate the task, but do not continue to
hide the patient is being tested. Instruct the patient to tap the index finger on the
quickly AND as tip as possible. Sake each side separately, evaluating speed,
one, halts and decrementing amplitude. | | | structions to exa
urform the task w
umb 10 times as | ming: Each hand is tested separately. Demonstrate the task, but do not continue to
hile the patient is being tested. Instruct the patient to tap the index finger on the
quickly AND as big as possible. Rate each side separately, evaluating speed. | | | structions to exa-
inform the task w
umb 10 times as
inplitude, hesitation
0: Normal: | ringer: Each hand is tested separately. Demonstrate the task, but do not continue to
his the patient is being tested. Furthout the patient to tap the index finger on the
quoted hidd in slight grounder. These causes side separately, evaluating speed,
rise, halls and demonstrating applicable. No problems. No problems.
Any of the following: a) the regular rhythm is booken with one or two interruptions or
heristations of the lapping inordement; b) slight slowing; c) the arrelated decrements. | | | structions to exa
rform the task w
umb 10 times as
opilitude, hesitati
0: Normal:
1: Slight:
2: Mild: | inings: Each hand is tested separately. Demonstrate the task, but do not continue to
his the patient is being tested. Instruct the patient to tap the index finger on the
quickly AND as big as possible. Rate each side separately, evaluating speed,
nns. halts and decrementing amplitude. No problems. Any of the following: a) the regular drythm is broken with one or two interruptions or
hestations of the tapping revernent; b) slight slowing; c) the amplitude decrements
near the end of the 10 tags. Any of the following: a) 3 to 5 interruptions during tapping; b) mild slowing; c) the | | # Expressed use intentions - Quantitative and qualitative methods - survey and audience panels - Majority of PD patients would use app (86%) - Most would prefer the test to last less than 5 minutes per assessment (64%) - Some would accept up to 10 minutes (27%) - Main motivation: Need to understand their condition - No expressed privacy concerns ### Information Processing Pipeline # cloudUPDRS app - Design objectives: - Sensitive to patient mobility constraints - Sensitive to patient cognitive impairments - Approach: - Constrain user context for reliable interpretation of data - Encourage frequent use ### **Test Movements** #### Architecture #### Clinical dashboard ## Unsupervised patient use - Achieve firm user adherence to the prescribed movements - Accept test record only when movement executed correctly - Reject test when movement does not match expectations - Use deep learning to learn movement features - Apply offline or online (i.e. at the server on in the app) - Use Tensorflow to learn and apply model # Tremor signal # Deep Learning Architecture # Performance using DNN | Classifiers | Accuracy | F1-score | AUC | |------------------|----------|----------|------| | ExtraTrees | 0.73 | 0.79 | 0.83 | | BernoulliNB | 0.73 | 0.79 | 0.83 | | RandomForest | 0.73 | 0.79 | 0.83 | | GradientBoosting | 0.72 | 0.80 | 0.83 | | Bagging | 0.72 | 0.78 | 0.83 | | AdaBoost | 0.66 | 0.75 | 0.81 | | GaussianNB | 0.69 | 0.75 | 0.83 | | DMLP | 0.75 | 0.81 | 0.85 | | RCNN | 0.78 | 0.82 | 0.87 | | | TP | (%) | FN | (%) | TN | (%) | FP | (%) | |------------------|--------|-----|-------|-----|-------|-----|-------|-----| | ExtraTrees | 141.52 | 93 | 8.98 | 6 | 13.36 | 17 | 63.14 | 82 | | BernoulliNB | 146.23 | 96 | 4.27 | 3 | 6.92 | 8 | 69.58 | 91 | | RandomForest | 138.39 | 91 | 12.11 | 8 | 16.19 | 20 | 60.31 | 79 | | GradientBoosting | 146.02 | 96 | 4.48 | 3 | 8.12 | 10 | 68.38 | 89 | | Bagging | 135.58 | 89 | 14.92 | 10 | 18.03 | 23 | 58.47 | 76 | | AdaBoost | 128.0 | 84 | 22.5 | 15 | 17.34 | 22 | 59.16 | 77 | | GaussianNB | 116.01 | 76 | 34.49 | 23 | 35.41 | 45 | 41.09 | 54 | | DMLP | 135.73 | 89 | 15.77 | 10 | 28.19 | 37 | 49.31 | 63 | | RCNN | 133.22 | 87 | 18.28 | 12 | 38.38 | 50 | 39.12 | 50 | ### **Quick Test** - UPDRS exhaustive search of all possible symptoms - Each patient presents only a few - Symptoms typically change slowly e.g. 6 months - ~6 features are predictive of overall score - Use ML to identify the specific tests that offer the highest inferential power - Observer five full tests - Apply standard ensemble of randomized decision tree method to rank tests according to predictive strength - Select top 3 tests for individualised quick test #### Raw Observations to Biomarkers - 1. Digital biomarkers critical for precise disease progression monitoring - 2. Google Scholar: 1,000+ papers on Parkinsonian tremor using accelerometers and ML in 2018-19 - Impossible to replicate and to compare results - Differences in data processing and algorithm implementation - In most cases, insufficient details provided to replicate algorithm used - 3. Common pattern emerging: - Machine Learning processing pipeline - From raw data to severity assessment (often using MDS-UPDRS scores) # Example: Tremor processing pipeline From raw accelerometer data to UPDRS score (0-4 scale) Open Source PDkit for python on github # **CUSSP** study - CUSSP at the UCL Institute of Neurology and Homerton Hospital (UK) - Details https://clinicaltrials.gov/ct2/show/NCT02937324 - Data collection completed in May - 74 patients - 20 lines of PDkit source code specify processing protocol - 2-3 hours of software development - Can recreate results in 1 hour on standard laptop # **CUSSP Clinical Study** Visit 1 Day -60 to 0 (Screening): Discuss study, PIS given Visit 2 Day 0 (Eligibility): Written consent, MOCA, PDQ39, Beck's administered, baseline demographics recorded, App installed Visit 3 Day 1-150 (Hospital UPDRS): Official Enrolment, assessments as follows with order randomised: - a) Clinical video UPDRS(OFF/ON)* - b) Smartphone UPDRS (OFF/ON)* | 1 | Home monitoring period (order of A, B and C pseudorandomised) (3 consecutive weeks, starting on Day 1- 150) | | | | | |--------|---|-------------------------------------|--|--|--| | Week 1 | 6 days of home monitoring+ | Baseline smartphone OFF/ ON test on | | | | | | (method A) | 7 th day* | | | | | | | Visit 4+ | | | | | Week 2 | 6 days of home monitoring + | Baseline smartphone OFF/ ON test on | | | | | | (method B) | 7 th day* | | | | | | | Visit 5+ | | | | | Week 3 | 6 days of home monitoring + | Visit 6+ | | | | | | (method C) | | | | | ## Limitations of current practice - Minimum Detectable Change (MDC95) ~12 (range 0-108) - Typical annual disease progression 3-4 points - Idealised response model - Rapid uphill, slow downhill - Affected by numerous parameters e.g. mood, social interaction, diet, exercise etc - One sample has extremely limited value # Capturing temporal variability - Tremor signal is not stationary but is often treated as such (not unreasonable due to measurement limitations) - Consider tremor to be a random process - Look at temporal aggregates - Preliminary results suggest far superior MDC95 # What is actually measured? # Gait test/activity recognition with HMM How precisely can we detect the onset of turning movements? Healthy subjects turn differently than PwP. # Closing remarks - Move from clinician to automated diagnosis and treatment offers great opportunities to realise patient benefits - Challenges often relate to having to change methods - This can be intensified by the greater availability of data - Stationary to dynamic processes, non-linearity - Validated evidence is time consuming/expensive to collect # cloudUPDRS/pdkit people #### **Benchmark Performance** - Marco Luchini - Stefan Kueppers - Rajesh Pampapathi #### re:technica - Marco Iannone - Nikos Fragopanagos - Joan Saez Pons #### audience focus - Theano Moussouri - Froso Nomikou #### **UCL IoN** - Bhatia - John Rothwell - Ashwani Jha - Sebastian Schreglmann - Elisa #### Birkbeck College - Ioannis Daskalopoulos - Cosmin Stamate - George Magoulas - Jenny Vafeiadou #### Further resources App demo videos http://www.updrs.net PDkit analytics toolkit https://github.com/pdkit/pdkit **Papers** http://www.dcs.bbk.ac.uk/~gr/pubs.html **CUSSP Study Record** https://clinicaltrials.gov/ct2/show/NCT02937324 cloudUPDRS app on the Play Store https://play.google.com/store/apps/details?id=uk.ac.bbk.dcs.cloudupdrs