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ABSTRACT 

A core ingredient of Smart Cities is the use of emergency 

services both as a lens through which to monitor their ever-

changing state and as a rapid response mechanism to the 

needs of their population. Emergency response units in 

particular employ diverse ubiquitous computing 

technologies for sensing, resilient communication, and 

dispatch and depend on extensive command and control 

infrastructure that links into the healthcare and 

transportation systems. In the case of ambulance services 

in particular, command and control centres collate medical 

incident, vehicle position and status data to build a real-

time picture of the City. Taking the London Ambulance 

Service (LAS) as our case study we develop a simulation 

framework and introduce an enhanced routing and dispatch 

method that combines concurrent assignment and 

redeployment of resources in a single algorithm. We 

provide evidence that our unified proactive relocation and 

dispatch model produces significant improvements in 

measured performance in terms of meeting citizen needs.  
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INTRODUCTION 

Smart Cities are one of the most active areas of application 

of ubiquitous computing technologies. Notably, the 

information gathered and processed by emergency services 

in a metropolitan setting can be used as a lens for 

observing and reacting to human dynamics as well as the 

needs of individuals in the city. In this way emergency 

service systems and related infrastructure act as both a 

contributor and beneficiary to smartness and dynamic 

adaptation. In this paper we consider in detail the case of 

the ambulatory service in London to identify the costs and 

benefits afforded by the integration of diverse metropolitan 

socio-technical systems and services within a unified 

approach and the potential effects on the well-being of its 

citizens.  

A well-established clinical outcome is that shorter 

ambulance arrival times play a criticial role [1] in the case 

of emergency patients involved in incidents of high 

severity. As a consequence, emergency response unit 

mobility is of key importance. The mobility characteristics 

of ambulances in their various forms however differ from 

normal civilian traffic. This is partly because ambulance 

crew travelling with flashing lights are exempt from traffic 

regulations that would otherwise impede progress to a 

patient. For example, ambulances are allowed to treat red 

traffic lights as a give way sign, are able to pass the wrong 

side of a keep left bollard and disobey the speed limit. 

Moreover, the collection of data on the human condition 

by ambulatory services reveals many specific attributes 

that can be used to enhance social governance. For 

example, the temporal and spatial characteristics of acute 

cardiac events follow specific patterns. Driving conditions 

in urban road networks also have well-defined patterns that 

affect ambulance arrival times. Analysis of these patterns 

historically and in real-time can be used to govern 

ambulance manning levels and placement balancing 

strategy and tactics. 

This paper explores how information captured from a 

variety of ubiquitous computing technolgies deployed as 

part of emergency response systems can be utilised to 

create a realistic predictive model of their performance in 

dense urban environments. This model reveals facts about 

life in the city from a healthcare perspective that has 

remained unobserved until now. A core ingredient of our 

approach is the development of an accurate and precise 

simulator that can be used to evaluate new ambulance 

dispatch algorithms. Indeed, we introduce such a novel 

algorithm that combines both strategic and tactical 

elements into a unified model and test its viability through 

the simulator. In the long-term we aim to refine this work 

by incorporating elements promoting smart governance.  

In the following sections, first we provide some 

background on how a typical ambulance service handles 

emergency medical calls. This is followed by analysis of 

real data streams obtained from the London Ambulance 

Service. We then proceed to discuss the simulator 

developed, introduce our dispatch algorithm and assess its 

performance.  

 

BACKGROUND 

Incoming emergency medical calls in London are 

processed in one of two call centres operated by the LAS, 

each covering a different area of London. Typically the 

caller confirms the location of the patient either by passing 

an address or other land feature such as road junction to the 

call-taker. The caller is then asked a series of questions that 

quickly determine the type and severity of the emergency. 

Using this information the Command and Control system 

will dispatch one or more responders as and if appropriate. 

For life-threatening cases such as Cardiac/Respiratory 

Arrest also known as Category A incidents, at least two 



 

 

 

units (vehicles with crew) being dispatched. When 

responders arrive at the scene they assess and provide any 

treatment necessary. All other non life-threatening calls are 

graded as Category C (there is no Category B). 

Approximately 75% of patients attended to are then 

transported to a hospital for further assessment and 

treatment. Once the patient has been handed over to the 

hospital staff, the crew are then made available for further 

assignments. In many cases the crew are repositioned to a 

location where there is a higher chance of an incident 

occurring within a short distance. 

Londons' ambulances carry extensive instrumentation that 

monitors their location as well as vehicle state including 

temperature, handbrake, door open, blue lights, siren, 

battery level and so forth. This information provides 

telemetry which is relayed to the system back end located 

at LAS headquarters over multiple wireless pathways 

including at least two 3G mobile telephony operators to 

ensure resilience and extended coverage as well as IEEE 

802.11 when the ambulance is in the vicinity of an 

ambulance station. Moreover, ambulances carry a Siemens 

GPS unit with embedded MEMS gyros augmented with 

wheel sensors that measure speed. The system is capable to 

report positioning data accurately and provide navigational 

assistance even when GPS signals are weak which is 

critical in built environments. The information is also used 

by the on-board computer to provide the crew with map-

based navigation, search facilities and details about the 

patient and the incident. Of course, similar to all UK 

emergency services, ambulances carry TETRA two-way 

transceivers which allow encrypted voice communication 

with the LAS Command and Control centre. 

One obligation placed upon the LAS is to reach at least 

75% of all Category A incidents within 8 minutes. Failure 

to achieve this target is met with heavy penalties. The LAS 

use several vehicle types to accomplish this target. The 

entire operational fleet consists of nearly 400 ambulance 

units, over 200 fast response units (FRU) and a smaller 

collection of bicycles and motorcycles. In London there are 

some 77 'standby points' or locations where vehicles and 

their crew will wait for work. These locations have been 

selected because they provide good coverage of London 

but also for practical reasons such as crew safety and the 

ability for crew to obtain refreshments. Under certain 

conditions considerable fricition is observed between the 

need to meet strategic targets and positioning tactics.  

Early models that attempted to solve the coverage location 

problem [2] ignored road networks completely, relying 

instead on a set of so-called geographical atoms. Goldberg 

[3] used mean and variance to determine estimated travel 

times, an improvement on linear regression methods that 

preceded it. Potvin [4] used long term non-stochastic and 

short-term stochastic elements to produce efficient routing, 

thereby reducing overall travel time.  As travel time is a 

key factor in survival, novel methods of traffic avoidance 

are investigated for example the use of crowd-sourced data 

has attracted considerable interest recently [5, 6]. 

Figure 1. Spatial surface plot showing occurrence of Category 

A incidents in London during 2012 

 
DATA & ANALYSIS 

In this section we describe some of the key characteristic 

of the core data set used in this research. In particular we 

discuss the temporal and spatial characteristics of 

emergency events in London and patterns derived from the 

telemetry obtained from ambulances. The data used in this 

research was obtained from the London Ambulance 

dataware house. Much of this data originates from vehicle 

telemetry as previously described. Emergency incident 

data from London Ambulance was also analysed from the 

year 2012.  

 

Emergency Events 

Figure 1 shows how the number of life-threatening medical 

emergencies is distributed around London, revealing that a 

large proportion of these incidents occur in the centre of 

the city. The shape of this distribution changes throughout 

the day as the population swells during working hours. 

Figure 2 shows the total number of critical incidents and 

the average number of resource on duty in London, per 

hour, during 2012. This is at a minimum at around 4am 

with just over 400 critical incidents being reported during 

2012. The busiest period appears to be around 6pm when 

just fewer than 1,100 incidents were reported.  

 

 

Figure 2. Occurrence of Category A incidents in 2012 by the 

hour along with the average number units on duty 
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Figure 3. Surface plot of ambulance unit speeds at 9am 

It can be clearly seen that the supply of resources on duty 

closely matches the demand. This spatial and temporal 

dynamic behaviour of emergency incidents adds to the 

complexity of where and how many resources to site at 

standby points. 

Road Network Spatial Analysis 

Our preliminary analysis aimed to determine by how much 

the road speeds were slower in the centre of London 

compared to the suburbs. The distribution shown in Figure  

illustrates average vehicle road speeds from 9:00-9:59 for 

the year 2012. When superimposed on a map of London it 

clearly, and obviously, shows that vehicles travelling in 

surrounding urban areas average higher speed than those in 

central London regardless of the time of day. There is also 

a difference between the speeds of the vehicles. 

 

 Ambulances and FRU’s generated 202 million vehicle 

location and speed records.  

Road Network Temporal Analysis  

Whilst recognising that there are spatial differences in road 

speeds  Figure 4 also shows the temporal speed difference 

by vehicle type. Specifically it shows vehicle type, speed 

and time of day data collected for the year 2012 across the 

whole of London.  Figure 4 implies that FRUs are, as 

expected, faster than ambulances due to their smaller 

physical size and handling characteristics. Whilst this 

might sound obvious, there was no pre-existing data to 

precisely quantify this different in speed. Our analysis 

shows that on average the FRU is about 5 mph faster than 

ambulances in an urban environment, with the greatest 

variation in the morning rush hour of around 6 mph. Note 

that we do not take into consideration spatial variations so 

the difference in road speeds could vary further depending 

on whether vehicles are travelling in central London or in 

outer urban areas.  

Clearly, any road speed model used for simulation would 

need to take into account vehicle type, spatial and temporal 

distribution. 

SIMULATOR 

We developed a discrete event simulator to model 

ambulance workflow so that novel dispatch algorithms 

could be tested. The workflow involves dispatching a 

resource to incidents and standby points, waiting on scene 

whilst dealing with the patient, optionally transporting the 

patient to hospital and then becoming available again for 

further work. Our ultimate aim was to measure the 

performance of the simulator in terms currently used by the 

LAS, i.e. the percentage of Category A calls where an 

ambulance arrived with 8 minutes. By improving on the 

dispatch model we aimed to improve the performance 

metric. The simulator design was based around a discrete 

event model with modular components acting out the 

various roles. In the reported experiments emulations were 

conducted at full scale incorporating all 400 vehicles. 

At the heart of the simulator is the discrete event priority 

queue. The queue facilitates inter-module communication. 

Emergency events are replayed by passing messages to the 

Command and Control module. This module tracks 

emergency events and asks the dispatch module to 

recommend units for assignment. Dispatch modules 

typically in use in ambulance organisations today select the 

nearest (or quickest) available vehicle but as described 

later, this is not necessarily the best option. 

Assignment requests are passed on to the resource module. 

The resource module simulates multiple vehicles by using 

a routing engine to plot a route to the emergency incident, 

following the road route at the estimated speed. 

Continuous distribution functions, built from historic 

information captured from vehicle telemetry, were used to 

estimate how long paramedics spent on-scene and at-

hospital depending on the severity of the incident. 

 

Routing Engine 

Accurate routing estimates were the key factor in 

producing an accurate simulator. Analysis of the road 

speeds was carried out using 204 million telemetry records 

data captured by LAS during 2012 from the onboard GPS 

units travelling to an emergency.  Each of the position 

reports were snapped to the nearest road and the road type 

identified. London was spatially divided up into 100x100 

square cells, each of 300 meters in width and height. 

Speeds were averaged for each position report that occured 

in each cell for every hour of the day, each vehicle type 

and road type. This produced a 5-dimensional table 
 

Figure 4.  Vehicle speeds by hour of day 

 

 

 

 

 

 



 

 

 

containing average road speeds. We built a routing engine 

that could calculate the quickest route between two 

locations using the actual road network using Dijkstra's 

shortest path algorithm on London's 19134 links and 15986 

road nodes. The algorithm used the 5-dimensional speed 

data to calculate route speed and total duration.  

To validate the accuracy of the routing engine we 

compared its performance with 500 actual journeys carried 

out by ambulances enroute to emergency incidents. Figure 

5 shows a comparison of straight-line (Euclidean) and 

Dijkstra routing arrival times with actual arrival times. The 

Dijkstra routing engine had an accuracy of -3.085 seconds 

per trip, a standard deviation of 46.21 seconds with a high 

precision of 80% of estimated journey times within 1 

minute of the actual drive time.  

The routing engine is also able to calculate realistic travel-

time isochrones for each vehicle. It is therefore able to 

calculate at any moment in time a complex heatmap, or 

coverage, of London that can be reached by all available 

ambulances. More importantly, it can therefore calculate 

which areas of London that cannot be reached by 

ambulances under the estimated traffic conditions for that 

time of day.  

Tuning and Validation 

The simulator was tuned and validated by running the 

simulator with historic incident data and comparing the 

simulated arrival time performance with actual 

performance. The simulator was configured to use a 

dispatch model that closely resembles the existing dispatch 

policy at LAS. This policy dispatches units that will arrive 

in the shortest time but does not attempt to dispatch units 

to standby points. 

COMBINED AUTOMATIC DISPATCH MODEL 

We developed the Combined Automatic Dispatch Model 

(CARD) to deploy resources to incidents and standby 

points using a static evaluation function to measure the 

value of the current state of deployment of ambulances 

around London. At any point in time there will be a 

number of incidents in progress, either awaiting resources 

to be assigned or in some other state, such as enroute, on 

scene or at hospital. A state with a low number of waiting 

incidents is preferable than a state with a larger number of 

waiting incidents. Additionally, where there is one incident 

and two resources, the "better" state is one where the 

assigned resource would arrive faster than the other. 

Resources are also better placed in locations where 

incidents are likely to occur. These requirements for 

positioning vehicles were combined using a static 

evaluation function (SEF) consisting of a set of five 

weighted basis functions. The basis functions are summed 

(Figure 6) to provide a single value that provides a ranking 

value of the current state of deployment. 

 

               

 

   

 

Figure 6 - formula for weighted coverage.  

 

The basis functions selected are directly related to the need 

to judge the importance of un-dispatched incidents for 

Category A and C incidents, the total drive time to 

Category A and C incidents and the overall coverage at 

that point in time.  

Table 1 - Summary of basis funcions for the static evaluation 

function 

Basis function Description 

          
The number of category A calls that 

are awaiting an ambulance to be 

dispatched 

          
The number of category C calls that 

are awaiting an ambulance to be 

dispatched 

Weighted 

Coverage  

The % of the London area that 

available resources can reach in 8 

minutes multiplied by the expected 

incident density. 

              
The current total travel time for 

resources enroute to category A calls 

              
The current total travel time for 

resources enroute to category C calls 

 

At any moment in time the dispatch module can evaluate, 

using the SEF, the current state. The dispatch algorithm 

can build a list of appropriate dispatch options, e.g. deploy 

ambulance A to incident X or deploy ambulance B to 

standby point Y. The best dispatch decision can then be 

determined by evaluating the state after each potention 

dispatch decision has taken place. As the SEF contains a 

weighted coverage element, the dispatch engine will 

favour deployment of a vehicle that do not leave areas of 

London with no available vehicles were emergency 

incidents are likely to occur. 

The basis function weights were adjusted randomly using 

small perturbations over multiple simulations in order to 

 

Figure 5. Accuracy of different routing engines 



 

 

 

find suitable values. We used actual emergency incident 

data and actual performance figures from September 2011 

as, during this period there were no outages or major 

events that would skew the results. The simulator was 

eventually able to improve performance, measured as 

arrival times within 8 minutes, from 74.19% to a simulated 

76.84% for category A and from 57.82% to a simulated 

80.28% for all other incidents.  

 

Figure 7 shows the predicted improvement in arrival times 

compared with actual arrival times during that period. The 

histogram shows that, using CARD, the majority of 

category A incidents were reached in 254 seconds (4 

minutes 14s) compared to 360 seconds (6 minutes) 

historically. These figures provide promising evidence that 

a combined incident and standby dispatch model can 

significantly improve arrival times, and therefore, the 

outcome of critically ill patients. 

 

Figure 7. Historic and predicted arrival times using CARD 

 

CONCLUSIONS 

Ambulance and other emergency service fleets provide a 

unique perspective on the dynamics of densly populated 

metropolitan areas. They carry a variety of wireless 

communication and sensing devices that link into the 

complex city transportation and healthcare socio-technical 

systems thus revealing human and urban dynamics for 

example the spatial and temporal patterns of medical 

incidents affecting citizens. Information streams generated 

through the active deployment of emergency service 

resources can also be used to improve their performance 

for example by better utilising standby points to reduce 

arrival times and improve the prognosis especially in the 

case of severe incidents. Our proposals for CARD and the 

use of enhanced routing illustrate how such data-driven 

models can adapt to the changing conditions encountered 

in the field balancing strategic and tactical objectives. We 

anticipate that such benefits can be further extended to 

address healthcare governance concerns hence further 

extending the smartness of emergency response. 

 

ACKNOWLEDGMENTS 

Without the continued support of the LAS this research 

would not be possible. 

 

REFERENCES 
1. Valenzuela, T.D., et al., Estimating effectiveness 

of cardiac arrest interventions: a logistic 

regression survival model. Circulation, 1997. 

96(10): p. 3308-13. 

2. Church, R. and C. ReVelle, The maximal covering 

location problem. Papers in Regional Science, 

1974. 32(1): p. 101-118. 

3. Goldberg, J., et al., Validating and applying a 

model for locating emergency medical vehicles in 

Tuczon, AZ. European Journal of Operational 

Research, 1990. 49(3): p. 308-324. 

4. Potvin J, X.Y., Benyahia I, Vehicle routing and 

scheduling with dynamic travel times. Computers 

and Operations Research 2006. 33: p. 1129–1137. 

5. Stone, W., L. Stenneth, and J. alowibdi. Reducing 

Travel Time by Incident Reporting via 

CrowdSourcing. in ICOMP'11. 2011. 

6. Janecek, A., et al., Cellular data meet vehicular 

traffic theory: location area updates and cell 

transitions for travel time estimation, in 

Proceedings of the 2012 ACM Conference on 

Ubiquitous Computing. 2012, ACM: Pittsburgh, 

Pennsylvania. p. 361-370. 

  0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

10
20

10
50

%
 o

f 
ca

te
go

ry
 A

 a
rr

iv
al

s

Arrival Time (s)

Histogram of historic vs. CARD arrival times

CARD arrival times

Historic arrival times


