
Mobile and Ubiquitous Computing 

Wireless Sensor Networks"

George Roussos !
g.roussos@dcs.bbk.ac.uk!

Session Overview"

•  Resource constrained devices!
–  evolution, architecture, components!
–  a detailed example!

•  Energy efficiency!
•  Programming primitives in Tiny OS!
•  Concurrency!

The Internet today"

The Internet ahead"

AIIT Summer Course - M1 - Intro 4

Why “Real” Information is so Important?"

Improve Productivity

Protect Health
High-Confidence Transport

Enhance Safety & Security

Improve Food & H20

Save Resources

Preventing Failures

Increase
Comfort

Enable New Knowledge

The Web: Human Generated Information "

6

Most Real World Information is lost"

7

W
at

er
 U

sa
ge

, T
em

p.
, Q

ua
lit

y

S
ec

ur
ity

 a
nd

 A
cc

es
s

C
on

tro
l

G
as

 a
nd

 E
le

ct
ric

 U
sa

ge

H
ea

tin
g,

 A
C

, a
nd

 V
en

til
at

io
n

S
m

ok
e,

 F
ire

, C
O

, R
ad

on

S
m

ar
t A

pp
lia

nc
es

D
ig

ita
l H

ea
lth

 D
ev

ic
es

B
ab

y
M

on
ito

r (
E

ld
er

 c
ar

e)

E
nt

er
ta

in
m

en
t S

ys
te

m

Vi
de

o
G

am
e

C
on

so
le

s

C
lo

ck
s

an
d

C
al

en
da

rs

E
xe

rc
is

e
U

ni
ts

Physical Information Streams"

•  Sensors are everywhere!
–  But the data is mostly dropped on the floor!

•  Physical => Digital => Information!
•  Each sensor becomes a network citizen !

010010001…

<value>
 temp=35

<\value>

Wireless Sensor Networks"

•  Network of tiny footprint computers!
•  Optimized for long life on low power!
•  Equipped to sense physical data!
•  Networked using low-power radio!
•  Function:!

–  Sense any measurable parameter!
•  Light, motion, chemicals, proximity,

biometrics!
–  Form network and communicate!

•  Automatic meshing and routing over the air!
–  Apply user-defined business logic!

•  Sampling, summarizing, reporting events!
•  Form:!

–  Mote (Processor, Radio, Storage) +
Sensors!

–  Embedded Operating System and
Networking!

–  Router & Gateways towards Enterprise IT
systems!

Drivers"

Moore’s Law: !
“the complexity of an

integrated circuit, with
respect to minimum
component cost, will
double in about 18 months” 

"Cramming more components onto
integrated circuits", Electronics
Magazine, April 1965.!

Recent Developments"

•  Cheap and reliable communications: !
–  short-range RF, infrared, optical!
–  low power!

•  New interesting sensors!
–  light, heat, humidity!
–  position, movement, acceleration, vibration!
–  chemical presence, biosensor!
–  magnetic field, electrical inc. bio-signals (ECG and

EEG)!
–  RFID!
–  acoustic (microphone)!

Long-term objective"

•  Completely integrated!
–  one package includes: computation, communication,

sensing, actuation, (renewable) power source!
–  modular!

•  Less than a cubic millimeter in volume!
•  Cheap!
•  Diverse in design and usage!
•  Robust!
•  Main challenge: energy efficiency!!

Device evolution"

Tmote Sky"

•  Texas Instruments MSP430 !
–  16-bit RISC, 8MHz, 10k RAM, 48k Flash, 128b storage!
–  Integrated analog-to-digital converter (12 bit ADC)!

•  Chipcon wireless transceiver!
–  IEEE 802.15.4 (Zigbee) compatible!
–  250kbps at 2.4GHz!

•  Sensirion SHT11/SHT15 sensor module!
–  humidity and temperature!

•  Hamamatsu light sensors!
–  S1087 (photosynthetic)!
–  S1087-01 (full visible spectrum)!

Module layout (top)"

Module layout (bottom)"

Block diagram"

Where does the power go?"

•  Processing!
–  excluding low-level

processing for radio,
sensors, actuators!

•  Radio!
•  Sensors!
•  Actuators!
•  Power supply!

discussion follows Srivastana tutorial
(check module website)

Sky module characteristics"

Need power management to actually exploit energy
efficiency:!

• idle and sleep modes!
• variable voltage!
• variable frequency!
• in-network storage and processing!

Chipcon radio is only a transceiver, and a lot of low-level
processing takes place in the main CPU. Contrast this with Wi-
Fi radio which will do everything up to MAC and link level
encryption in the “radio.”

Sensors and power consumption"

•  Several energy consumption sources!
–  transducer!
–  front-end processing and signal conditioning!

•  analog, digital!
–  ADC conversion!

•  Diversity of sensors: no general conclusions can be
drawn!
–  Low-power modalities!

•  Temperature, light, accelerometer!
–  Medium-power modalities!

•  Acoustic, magnetic!
–  High-power modalities!

•  Image, video, chemical!

Observations"

•  Radio benefits less from technology improvements than processors!
•  The relative impact of the communication subsystem on the system

energy consumption will grow!
•  Using low-power components and trading-off unnecessary

performance for power savings can have orders of magnitude
impact!

•  Node power consumption is strongly dependent on the operating
mode!

•  At short ranges, the Rx power consumption > T power consumption!
•  Idle radio consumes almost as much power as radio in Rx mode!
•  Processor power fairly significant (30-50%) share of overall power!
•  In many cases, the sensor overhead is negligible!

Programming challenges"

•  Driven by interaction with environment !!
–  Data collection and control, not general purpose computation !
–  Reactive, event-driven programming model !!

•  Extremely limited resources !!
–  Very low cost, size, and power consumption !
–  Typical embedded OSs consume hundreds of KB of memory !!

•  Reliability for long-lived applications !!
–  Apps run for months/years without human intervention !
–  Reduce run time errors and complexity !!

•  Soft real-time requirements !!
–  Few time-critical tasks (sensor acquisition and radio timing) !
–  Timing constraints through complete control over app and OS !!

Medical Monitoring"

Wireless module

Asset Monitoring"

•  Goal: Pre-empt equipment failures through
non-destructive analysis!

•  Media Gap: Majority of data is collected by
hand!

–  Thousands of sense points!
•  Intel Fab and an Oil Tanker engine room!
•  Wireless vibration data collection!

–  High-speed sampling, reliable bulk transfer!
–  Sensor-to-Analysis App flow!
–  Overcome interference!
–  Support disconnected operation!

•  Loch Rannoch Network!
–  150 accelerometers!
–  26 motes!
–  4 stargates!
–  1 PC!

•  Efficient installation and management!
–  36hr install period on tanker!
–  No crew intervention!

7/9/2007

Environmental Monitoring"

Macroscope in the Redwoods, Tolle et all,
ACM SENSYS 2005

NIMS RD Merced and
San Joaquin River

Confluence  
(Harmon, Kaiser, et al)!

nitrate distribution

San Joaquin River
confluence.

Merced
R.

mixing
zone

gaging
station

river
bed
map Sonar-based bathymetry (depth)

More Environmental Monitoring"

Principle platform"

•  NesC: a C dialect for
embedded
programming!
–  Components, “wired

together”!
–  Quick commands and

asynch events!

•  TinyOS: a set of NesC
components!
–  hardware components!
–  ad-hoc network formation

& maintenance!
–  time synchronization!

Tiny OS facts"

•  Very small “operating system” for sensor networks!
–  Core OS requires 396 bytes of memory!

•  Component-oriented architecture!
–  Set of reusable system components: sensing, communication, timers,

etc.!
–  No binary kernel - build app specific OS from components!

•  Concurrency based on tasks and events"
–  Task: deferred computation, runs to completion, no preemption!
–  Event: Invoked by module (upcall) or interrupt, may preempt tasks or

other events!
–  Very low overhead, no threads!

•  Split-phase operations!
–  No blocking operations!
–  Long-latency ops (sensing, comm, etc.) are split phase"
–  Request to execute an operation returns immediately!
–  Event signals completion of operation!

discussion follows Welsh
check module website

nesC facts"

•  Dialect of C with support for components!
–  Components provide and require interfaces!
–  Create application by wiring together components using

configurations"
•  Whole-program compilation and analysis!

–  nesC compiles entire application into a single C file!
–  Compiled to mote binary by back-end C compiler (e.g., gcc)!
–  Allows aggressive cross-component inlining!
–  Static data-race detection!

•  Important restrictions!
–  No function pointers (makes whole-program analysis difficult)!
–  No dynamic memory allocation!
–  No dynamic component instantiation/destruction!

•  These static requirements enable analysis and optimization!

nesC interfaces"

nesC interfaces are bidirectional!
–  Command: Function call from one component requesting service from

another!
–  Event: Function call indicating completion of service by a component!
–  Grouping commands/events together makes inter-component protocols

clear!

nesC components"

•  Two types of components!
–  Modules contain implementation code!
–  Configurations wire other components together!
–  An application is defined with a single top-level configuration!

nesC configurations"

Concurrency in nesC"

•  Tasks used as deferred computation mechanism!
–  Commands and events cannot block!
–  Tasks run to completion, scheduled non-preemptively!
–  Scheduler may be FIFO, EDF, etc.!

More on concurrency"

•  All code is classified as one of two types:!
–  Asynchronous code (AC): Code reachable from at least one

interrupt handler!
–  Synchronous code (SC): Code reachable only from tasks!

•  Any update to shared state from AC is a potential data
race!
–  SC is atomic with respect to other SC (no preemption)!
–  Race conditions are shared variables between SC and AC, and

AC and AC!
–  Compiler detects data races by walking call graph from interrupt

handlers!

Avoiding a data race"

•  Two ways to fix a data race!
–  Move shared variable access into tasks!
–  Use an atomic section!
or!
–  Short, run-to-completion atomic blocks!
–  Currently implemented by disabling interrupts!

What else is out there?"

Internet 0 at MIT Centre of Atoms and Bits!
http://cba.mit.edu/~neilg

What else is out there?"

Smart-its http://www.smart-its.org/!

What else is out there?"

gumstix http://www.gumstix.org/!

Embedded Linux

What else is out there?"

pico-TRON

Hardware-software platform
from Japan

Derived from TRON

http://www.t-engine.org/

IMEC Sensor Cube

Very low power, modular design for
body area applications

Tiny OS and embedded C

•  Intel Research Wireless
Identification and Sensing Platform!

•  Uses UHF passive RFID
techniques to harvest power and
communicate (compatible with EPC
Gen2)!

•  Includes most of the components
on the Tmore Sky!

•  Programming must cater for
frequent power failure (several
times per second possibly!

•  Native MSP430 C programming!

What else is out there?"

Summary"

•  Resource constrained devices!
–  evolution, architecture, components!
–  a detailed example!

•  Energy efficiency!
•  Programming primitives in Tiny OS!
•  Concurrency!

