Mobile and Ubiquitous Computing

Mobile IP

George Roussos

g.roussos@dcs.bbk.ac.uk

Motivation for Mobile IP

Routing

- based on IP destination address, network prefix
 (e.g. 129.13.42) determines physical subnet
- change of physical subnet implies change of IP address to have a topological correct address (standard IP) or needs special entries in the routing tables
- TCP connections break, security problems

Motivation for Mobile IP

- Specific routes to end-systems?
 - change of all routing table entries to forward packets to the right destination
 - does not scale with the number of mobile hosts and frequent changes in the location, security problems
- Changing the IP-address?
 - adjust the host IP address depending on the current location
 - almost impossible to find a mobile system, DNS updates take to long time
 - TCP connections break, security problems

Requirements to Mobile IP

- Transparency
 - mobile end-systems keep their IP address
 - continuation of communication after interruption of link possible
 - point of connection to the fixed network can be changed
- Compatibility
 - support of the same layer 2 protocols as IP
 - no changes to current end-systems and routers required
 - mobile end-systems can communicate with fixed systems
- Security
 - authentication of all registration messages
- Efficiency and scalability
 - only little additional messages to the mobile system required (connection typically via a low bandwidth radio link)
 - world-wide support of a large number of mobile systems in the whole Internet

Terminology

- Mobile Node (MN)
 - system (node) that can change the point of connection to the network without changing its IP address
- Home Agent (HA)
 - system in the home network of the MN, typically a router
 - registers the location of the MN, tunnels IP datagrams to the COA
- Foreign Agent (FA)
 - system in the current foreign network of the MN, typically a router
 - forwards the tunneled datagrams to the MN, typically also the default router for the MN
- Care-of Address (COA)
 - address of the current tunnel end-point for the MN (at FA or MN)
 - actual location of the MN from an IP point of view
 - can be chosen, e.g., via DHCP
- Correspondent Node (CN)
 - communication partner

Network integration

Agent Advertisement

- HA and FA periodically send advertisement messages into their physical subnets
- MN listens to these messages and detects, if it is in the home or a foreign network (standard case for home network)
- MN reads a COA from the FA advertisement messages
- Registration (always limited lifetime!)
 - MN signals COA to the HA via the FA, HA acknowledges via FA to MN
 - these actions have to be secured by authentication
- Advertisement
 - HA advertises the IP address of the MN (as for fixed systems), i.e. standard routing information
 - routers adjust their entries, these are stable for a longer time (HA responsible for a MN over a longer period of time)
 - packets to the MN are sent to the HA,
 - independent of changes in COA/FA

