Mobile and Ubiquitous Computing

Multiplexing for wireless

George Roussos

g.roussos@dcs.bbk.ac.uk

Overview

- Sharing the wireless (multiplexing)
 - in space
 - by frequency
 - in time
 - by code
- Putting it all together: cellular mobile nets

Multiplexing

- Goal: multiple use of a shared medium
- Take turns (requires organization)
- Multiplexing using signal parameters/ characteristics
 - space (s_i), time (t), frequency (f)
 - code (c)
- Important: guard spaces needed!

Multiplexing in space

- Each channel spatially separated by others
- Only one channel at each location
- Guard space is the distance between the regions where communication occurs

Time multiplex

A channel gets the whole spectrum for a certain amount of time

Frequency multiplex

- Separation of the whole spectrum into smaller frequency bands
- A channel gets a certain band of the spectrum for the whole time
- Advantages:

inflexible

guard spaces

Time and frequency multiplex

- Combination of both methods
- A channel gets a certain frequency band for a certain amount of time
- Example: GSM
 - Advantages:

 better protection against tapping

 protection against frequency selective interference

 higher data rates compared code multiplex

 but: precise coordination required

Example: Cellular Mobile

- Implements space division multiplex:
 - base station covers a certain transmission area (cell)
- Mobile stations communicate only via the base station
- Cell sizes range
 - from less than 100m in cities to as much as 35kn in rural areas for GSM

The same frequency *f* can be reused in different cells as long as they are far away from each other

Separating cells: Frequency planning

3 cell cluster

3 cell cluster with 3 sector antennas

7 cell cluster

Example: GSM frequency planning

- Frequency reuse only with a certain distance between the base stations
- Standard model using 7 frequencies:

- MS: Mobile Station
- BSC: Base station controller
- MSC: Mobile switching center
- PSTN: Public switched telephone network

- 25 Mhz for BSC and 25 Mhz for MS + 100 kHz guard band
- Each frequency carrier is 200 kHz wide
- Total carriers 25 Mhz / 200 kHZ = 125

GSM TDMA

Dynamic GSM frequency planning

- Fixed frequency assignment:
 - certain frequencies are assigned to a certain cell
 - problem: different traffic load in different cells
- Dynamic frequency assignment:
 - base station chooses frequencies depending on the frequencies already used in neighbor cells
 - more capacity in cells with more traffic
 - assignment can also be based on interference measurements

Advantages

- Advantages of cell structures:
 - higher capacity, higher number of users
 - less transmission power needed
 - more robust, decentralized
 - base station deals with interference, transmission area etc. locally
- Problems:
 - fixed network needed for the base stations
 - handover (changing from one cell to another) necessary
 - interference with other cells

Code multiplexing

- Each channel has a unique code
- All channels use the same spectrum at the same time
- Advantages:
 - bandwidth efficient
 - no coordination and synchronization necessary
 - good protection against interference and tapping
- Disadvantages:
 - lower user data rates
 - more complex signal regeneration
- Implemented using spread spectrum technology

TDD/TDMA - general scheme

Aloha/slotted aloha

- Mechanism
 - random, distributed (no central arbiter), time-multiplex

Slotted Aloha additionally uses time-slots, sending must always start at slot boundaries

Demand Assigned Multiple Access

- Channel efficiency only 18% for Aloha, 36% for Slotted Aloha (assuming Poisson distribution for packet arrival and packet length)
- Reservation can increase efficiency to 80%
 - a sender reserves a future time-slot.
 - sending within this reserved time-slot is possible without collision
 - reservation also causes higher delays
 - typical scheme for satellite links
- Examples for reservation algorithms:
 - Explicit Reservation
 - Implicit Reservation (PRMA)
 - Reservation-TDMA

Reservation-TDMA

- Reservation Time Division Multiple Access
 - every frame consists of N mini-slots and x data-slots
 - every station has its own mini-slot and can reserve up to k data-slots using this mini-slot (i.e. x = N * k).
 - other stations can send data in unused data-slots according to a round-robin sending scheme (best-effort traffic)

