

Lab 1

● Goal 1: Getting familiar with
− Cygwin: a linux emulator for Windows
− TinyOS: an operating system for motes (sensor

nodes)
− NesC: a programming language that extends the

syntax of C with components, interfaces, tasks or
events

● Goal 2: Compiling a first application
● Goal 3: Running a first application
● These goals will be achieved through a simple

application

A simple application

● Problem:
− Create an application called Blink that makes the

red LED of a mote toggle every second
● Solution:

− Raise a timer every second
− Each time the timer expires, we need to toggle the

red LED

Architecture of Blink

TimerLeds StdControl

TimerCLedsC Main

BlinkMBlinkC

Makefile

Makefile
COMPONENT = BlinkC

include /opt/tinyos-1.x/apps/Makerules

BlinkC.nc
configuration BlinkC {
}

implementation {
components BlinkM, LedsC, TimerC, Main;

Main.StdControl -> BlinkM;
Main.StdControl -> TimerC;

BlinkM.Leds -> LedsC;
BlinkM.BlinkTimer ->

 TimerC.Timer[unique(“Timer”)];

}

BlinkM.nc (1/2)
module BlinkM {

provides {
interface StdControl;

}
uses {

interface Leds;
interface Timer as BlinkTimer;

}
}

implementation {
... // see next slide

}

BlinkM.nc (2/2)
implementation {

task void blinkTask() {
call Leds.redToggle();

}
command result_t StdControl.init() {

call Leds.init();
return SUCCESS;

}
command result_t StdControl.start() {

call BlinkTimer.start(TIMER_REPEAT, 1024);
return SUCCESS;

}
command result_t StdControl.stop() {

return SUCCESS;
}
event result_t BlinkTimer.fired() {

post blinkTask();
return SUCCESS;

}
}

Blink application (1/2)

● Create a directory for Blink in your home
directory (say muc/Blink)

● With a text editor (such as TextPad)
− create a Makefile (and write the code)
− create the BlinkM.nc file (and write the code)
− create the BlinkC.nc file (and write the code)
− if those files have the .txt extension, it has to be

removed (using the Windows rename command)

Blink application (2/2)

● Run Cygwin
− cd muc
− cd Blink
− make pc (to compile Blink)
− cd build
− cd pc
− export DBG=led (to filter the output)
− main.exe 1 | more (to run the program with 1

mote only)

Explanation: compilation (1/3)

● The Makefile contains
− COMPONENT = BlinkC
− include /opt/tinyos-1.x/apps/Makerules

● Description
− the Makefile is used by make
− it tells us that the configuration file is called
BlinkC.nc

Explanation: compilation (2/3)

● The BlinkC configuration file contains
− components BlinkM, Main, LedsC,
TimerC;

● Description
− BlinkM can be found in the current directory
− the others are basic TinyOS components

● /opt/tinyos-1.x/tos/platform/pc/Main.nc
● /opt/tinyos-1.x/tos/platform/pc/LedsC.nc
● /opt/tinyos-1.x/tos/platform/pc/TimerC.nc

Explanation: compilation (3/3)

● The BlinkM module file contains
− provides { interface StdControl; }
− uses { interface Leds; interface
Timer; }

● Description
− all the interfaces can be found in

● /opt/tinyos-1.x/tos/interfaces/

− simply add .nc to the name of the interface to find
the file

Explanation: execution (1/2)

● The program is compiled in
− muc/Blink/build/pc/main.exe (from your

home directory)
● Syntax

− main.exe -h (for the help)
− main.exe <number-of-nodes>

● But
− running main.exe generates too many debug

messages

Explanation: execution (2/2)

● The debug messages can be filtered using
− export DBG=led

● Filters
− the list is displayed with main -h
− usually

● led (for the LEDs)
● am, radio (for the messages or the radio)
● task (for the tasks)
● usr1, usr2, usr3 (for the user debugging messages)

