Mobile and Ubiquitous Computing
Routing Protocols

Niki Trigoni
www.dcs.bbk.ac.uk/~niki
niki@dcs.bbk.ac.uk

Overview

Intro to routing in ad-hoc networks
Routing methods

o Link-State

o Distance-Vector
Distance-vector routing protocols
o DSDV (proactive)

o AODV (reactive)

Routing in ad-hoc networks

» Adhoc network of mobile hosts represented as a graph G(N,E(t))
 Two nodes are connected with an edge if they are within communication
range

Routing in ad-hoc networks

\ / A

moves to another location . MH®6
>

* Mobile hosts can move
* Mobile hosts can be dynamically added or removed from the network
=> The network connectivity changes dynamically

Routing in ad-hoc networks

“%W\%m
wr /T~ /
8 %\%W

MHS \
Nodes are not fully connected =>
Need for multi-hop communication % MH6

Say MH7 wants to send a message to MH3. Several options:
e MH7 -> MH1 -> MH2 -> MH3
e MH7 -> MH1 -> MH5 -> MH2 -> MH3
e MH7 -> MH1 -> MH5 -> MH4 -> MH3 etc.

Routing in ad-hoc networks

MH1 %MHZ MH3

wn /]
{ ey

MH5
Routing problem: \ -.
-> For each node find the best (e.g. shortest) path to % MHG
each destination node.

Distributed version of the routing problem:
-> For each node find the next hop in the best (e.qg.
shortest) path to each destination node.

Routing in ad-hoc networks

Each node first identifies the preferred neighbor
(next hop) in the optimal path to each destination.

A data packet is forwarded hop-by-hop from the
source to the destination along the optimal path:

o The data packet contains the destination node In its
header.

o When a node receives a data packet, it forwards it to the
preferred neighbor for its destination.

Link-state vs. distance-vector

Link-state approach:
Each node has a complete view of the network topology

Each node propagates the costs of its outgoing links to all other
nodes

Distance-vector approach (Distributed Bellman-Ford):

Every node | maintains for each destination x a set of distances
d;;(x) for each neighbor node |: d;(x) Is the cost (e.g. number of
hops) of sending a data packet to x through neighbor |

Node | selects to forward a data packet through neighbor k such
that: d;,(x) = min, {d;(X)}

Each node periodically broadcasts to its neighbors its current
estimate of the shortest distance to every destination node.

Link-state vs. distance-vector

Problems of the link-state approach:
Requires large storage space and heavy computation
Inconsistent views of network topologies

=> short-lived routing loops

Problems of the distance-vector approach:

More efficient than link-state in terms of computation and
storage requirements

Stale routing information causes routing loops

Nodes choose their
next hopsin a
distributed manner

™

=)

_

short-lived and long-lived
routing loops

DSDV: Destination-Sequenced
Distance-Vector protocol

Each node maintains locally a routing table

Each entry of the routing table includes routing
Information for a destination node:

o the next hop in the optimal path to the destination

o the cost of the optimal path to the destination

o the freshness (sequence no) of the path to the destination

The node advertises the local routing table to its
neighbors

o Periodically

o When topology changes are detected

On receiving routing information from a neighbor, a
node uses it to update its own local routing table

DSDV: Destination-Sequenced
Distance-Vector protocol

Sequence number
IS generated at

A few entries in MH1’s routing table/ the destination

Destination IN—I?))S Metric Sﬁ S:Jnebnecre Install S[t)zl?;e
MH2 MH2 1 S212 MH2
MH3 MH2 2 S302_MH3
MH4 MH5 2 S100 MH4
%MJ/%M%MHB

DSDV: Destination-Sequenced
Distance-Vector protocol

MH1 Routing Table

.| Next .| Sequence %—Mﬂl”%&% MH3
Destin Metric
Hop Number \ / /
MH6 | MH2 4 S200 MH6 ! o
© MH4
MH5 \
% MH6
MH1 Routing Table (updated)
What if MHl receives _ Next _ Sequence
new routing information Destin Hop Metric |\ umber
(Dest=MHS, Metric=2, MH6 | MH5 | 3 | S200_MH6

SeqN0o=S200 MH®6)

from MH5 ?

DSDV: Destination-Sequenced
Distance-Vector protocol

MH1 Routing Table

: Next : Sequence
Destin Hop Metric Number
MHG6 MH5 3 S200 _MHG6

%M%M%MH3
¢ e
%\% MH4
MH5 \
% MH6

Any routing information that MH1 receives regarding
Dest=MHG6 that has sequence number smaller than 200
(S200_MHG6) is considered stale, and it is ignored by MH1.

DSDV: Destination-Sequenced
Distance-Vector protocol

MH1 Routing Table

.| Next .| Sequence %—Mﬂl”%&% MH3
Destin Metric
Hop Number \ / /
MH6 | MH5 | 3 | S200_MH6 ! -
© MH4
MH5 \
% MH6
MH1 Routing Table (updated)
What if MHl receives _ Next _ Sequence
new routing information Destin Hop Metric |\ umber
(Dest=MHS, Metric=2, MH6 | MH5 | 3 | S201_MH6

SegNo=S201_MHG)

from MH5 ?

DSDV: Destination-Sequenced
Distance-Vector protocol

MH1 Routing Table

| Next | Sequence %,MH—L—QM% MH3
Destin Metric
Hop Number \ / /
MH6 | MH5 | 3 | S200_MH6 ! o
© MH4
MH5 \
% MH6
MH1 Routing Table (updated)
New routing entry is broadcast
What if the link between Destin | NEXU | patric | S€duence
MH1 and MH5 breaks? Hop Number
MHG MHS5 | ©O | S201 MH6

DSDV: Destination-Sequenced
Distance-Vector protocol

Compare new routing information with the
Information available in the local routing table

Prefer routes with more recent sequence numbers
Discard routes with older sequence numbers

Prefer routes with sequence number equal to an
existing entry if it has a better metric value

Newly recorded routes are scheduled for immediate
broadcasting

Updated routes only with a new sequence number
are scheduled for advertisement at a later time

DSDV: Destination-Sequenced
Distance-Vector protocol

Two modes of propagating routing information:
o Full dump: All available routing information is
broadcast

o Incremental dump: Only information changed
since the last full dump is broadcast

When mobile nodes do not move a lot, full dumps
are sent infrequently.

When the network topology changes fast, full
dumps are scheduled more frequently.

AODV: Ad Hoc On-Demand
Distance-Vector protocol

Compared to DSDV, AODV tries to reduce the
number of broadcasts resulting from changes in
network topology

o In DSDV, local movements have global effects

o In AODV, non-local effects are limited to nodes
trying to reach a distant node through a broken
link

AODV: Ad Hoc On-Demand
Distance-Vector protocol

AODV

o does not maintain routes from every node to
every other node in the network.

o discovers routes on-demand (reactively, not
proactively)

o provides unicast, multicast and broadcast
communication ability

O uses two route tables
for unicast routes and
for multicast routes
We will consider only unicast route discovery.

AODV: Ad Hoc On-Demand
Distance-Vector protocol

Unicast routing

A node wishes to send a packet to a destination node
D. It first checks whether it has a valid route to D.

If yes, it sends the packet to the next hop towards
the destination.

If not, it initiates a route discovery process.

AODV: Ad Hoc On-Demand
Distance-Vector protocol

Unicast routing: Route Discovery Process
The node creates a RREQ (RouteRequest) packet
o sourcelPAddress
o sourceBroadcastld
o destlIPAddress
o lastknownSequenceNo
o hopCount
The node broadcasts the RREQ
The node sets a timer to walit for a reply

AODV: Ad Hoc On-Demand
Distance-Vector protocol

Unicast routing: Route Discovery Process

When a node receives a RREQ, it ignores it if it has
seen another routing packet with the same
<sourcelPAddress, sourceBroadcastld> pair.

Otherwise, the node sets up a reverse routing entry in
Its routing table:

o sourcelPAddress

o sourceBroadcastIP

o hopsToSource

o prevHopToSource

Route entries that exceed their lifetime are deleted.

AODV: Ad Hoc On-Demand
Distance-Vector protocol

Unicast routing: Route Discovery Process

A node responds to an RREQ if it has
o an unexpired entry for the destination in its route table
o with sequence no >= RREQ'’s lastknownSequenceNo

By unicasting a RREP back to the source.

If a node cannot respond to an RREQ), it increments the

RREQ’s hop count and then broadcasts the packet to
Its neighbors.

AODV: Ad Hoc On-Demand
Distance-Vector protocol

Unicast routing: Route Replies (RREPS)

If an intermediate node is responding to a RREQ, it
populates the RREP as follows:

o It places its record of the destination’s sequence number in the
packet

o sets the hop count equal to its distance from the destination
o Initializes the RREP’s lifetime

AODV: Ad Hoc On-Demand
Distance-Vector protocol

Unicast routing: Forward Path Setup
On receiving an RREP, a node:

sets up a forward path entry to the destination
o destinationIPAddress

o IPOfNeighborWhoSentRREP

o hopCountToDestination

o routingEntryLifetime

Each time a route is used the associated lifetime is
updated in the routing table

Summary

Two distinct approaches to routing:

o Proactive: nodes continuously maintain routes to all
destination, even if they don’t use them frequently (DSDV).

o Reactive: nodes identify and maintain routes on-demand, i.e.
when they need to send packets to a certain destination
(AODV).

Both DSDV and AODV are distance-vector protocols:

o Nodes maintain distances (costs) to destinations and keep
Information about the next hop in the optimal path to a
destination.

Both DSDV and AODV are designed for adhoc
(wireless mobile) networks

Related Reading

C.E. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers. In ACM SIG-
COMM Computer Communications Review 24(4), pages 234-244,
October 1994

Paper to prepare for discussion:

C.E. Perkins and E.M. Royer. Ad Hoc On-Demand Distance-Vector
Routing. In Proceedings of the Second Annual IEEE Workshop on
Mobile Computing Systems and Applications, February 1999, pages 90-
100.

[TinyOS Tutorial — Lab 1

Platform specification
TinyOS

NesC

Examples

[Platform specification]

m 8 MHz Processor
» 10k RAM, 48k Flash
= 250kbps 2.4GHz Radio

o 50m range indoors / 125m range
outdoors

= Integrated Humidity, Temperature, and Light
Sensors

= Programming and data collection via USB
= TinyOS support

TinyOS

Event-driven OS

o Tasks

o Events

Tasks cannot interrupt other tasks or events

Events can interrupt other tasks or events
o Concurrency issues (atomic statement)

NesC

= Application

o A NesC application consists of one or more components,
linked together

= Component

o Components are of two types: modules and configurations
= Module

o A module contains the application code in a C-like syntax
= Configuration

o A configuration wires components together

= Interface
o An interface specifies a set of available functions

Interfaces

Components are wired through interfaces

An interface can either be provided or used by a
component

Provided interfaces

When providing an interface

o All the commands have to be implemented
o All the events should be called

Example: Leds interface and LedsC component

L eds.nc and LedsC.nc

Interface Leds {
command result_t redOn();
command result_t redOff();
command result_t redToggle();
command result_t greenOn();
...

module LedsC {

provides interface Leds;
}
Implementation {

command result_t redOn()

{
...

}
command result_t redOff() {
...

}
...

}

Used interfaces

When using an interface
o All the commands can be called
o All the events have to be implemented

Example: Timer interface and Bl 1nkM component

Timer.nc and BlinkM.nc

interface Timer {

command result_t
start(char, uint32_t);

command result_t stop();
event result_t fired();

}

module BlinkM {
use {
interface Leds;
Interface Timer;

}
}

Implementation {
event result_t Timer.fired()
{
call Leds.redToggle();
return SUCCESS:;

}
...

}

Blink application

Configuration
Blink.nc

/ |

Module
BlinkM.nc

Interface
Leds.nc

A

Interface
Timer.nc

-

Component
LedsC.nc

A

Interface
StdControl .nc

Component
SingleTimer.nc

A 4

Component
Main.nc

Blink.nc

configuration Blink {

BlinkM.nc
implementation {
components BlinkM, LedsC, / [\
SingleTimer, Main;

Interface Interface Interface

Leds.nc Timer.nc StdControl .nc
BlinkM.Leds -> LedsC;
// or BlinkM.Leds -> LedsC.Leds [[J
BlinkM.Timer -> SingleTimer,
]] Component) Comenent Corr]ponent
M&lﬂ.StdCOﬂthl > B“ﬂkM, LedsC.nc SingleTimer.nc Main.nc

Blink.nc

configuration Blink {

}

B
implementation {
components BlinkM, LedsC, / I \

SingleTimer, Main;

Interface Interface Interface
Leds.nc Timer.nc StdControl.nc
BlinkM.Leds -> LedsC: w [l
/l or BlinkM.Leds -> LedsC.Leds
BlinkM.Timer -> SingleTimer; e Singloriner e Gt

Main.StdControl -> BlinkM:

BlinkM.nc

module BlinkM {
uses {
interface Leds;
interface Timer;
}
provides {
interface StdControl;

implementation {
...

}

Configuration
Blink.nc

Interface
Leds.nc

|

Component
LedsC.nc

|

Interface
Timer.nc

|

Component
SingleTimer.nc

Interface
StdControl .nc

|

Component
Main.nc

L eds.nc

interface Leds {
command result_t redOn();
command result_t redOff();
command result_t redToggle();
/...

}

Configuration Module

Blink.nc BlinkM.nc
Interface Interface
Timer.nc StdControl .nc
Component Component Component
LedsC.nc SingleTimer.nc Main.nc

Leds.nc and BlinkM.nc

interface Leds {
command result_t redOn(); Configuration odl
command result_t redOff(); Blink.nc BlinkM.nc

command result_t redToggle(); T \
/...

} Interface Interface
Timer.nc StdControl .nc
module BlinkM { ... }
implementation { [T l
...
.) Component Component Component
event rESU“:_t Tlmer_flred() { LedsC.nc SingleTimer.nc Main.nc

call Leds.redToggle();
return SUCCESS;

}
}

L eds.nc and LedsC.ns

interface Leds {
command result_t redOn(); Configuration Module
command result_t redOff(); plini.ne Phinkil-ne
command result_t redToggle();

|

} Interface Interface
Timer.nc StdControl .nc

module LedsC {

provides interface Leds; [T l
_} . Component Component Component
Implementathn { LedsC.nc SingleTimer.nc Main.nc

command result_t Leds.redOn()

...
/...

}

Timer.nc

interface Timer {
command result_t start(char,
uint32_t);
command result_t stop();
event result_t fired();

}

Configuration Module
Blink.nc BlinkM.nc
Interface Interface
Leds.nc StdControl .nc
Component Component Component

LedsC.nc SingleTimer.nc Main.nc

Timer.nc and BlinkM.nc

interface Timer {

Confi ti Modul
command result_t start(char, L B e

uint32_t);
command result_t stop(); / \

event result_t fired();

Interface Interface

} Leds.nc StdControl .nc
module BIinkM { ... } X W l
implementation {
command result_t StdControl.start() Tedec ne Singleviner nc aimma
call Timer.start(TIMER_REPEAT,
1000);
return SUCCESS;
}

}

Timer.nc and BlinkM.nc

interface Timer {
command result_t start(char,
uint32_t);
command result_t stop();
event result_t fired();
}
module BlinkM { ... }
implementation {
event result_t Timer.fired()
{ 1I...

}
...

}

Configuration Module
Blink.nc BlinkM.nc
Interface Interface
Leds.nc StdControl .nc
Component Component Component
LedsC.nc SingleTimer.nc Main.nc

StdControl.nc

interface StdControl {
command result_t init();
command result_t start();
command result_t stop();

}

Configuration Module

Blink.nc BlinkM.nc
Interface Interface
Leds.nc Timer.nc
Component Component Component

LedsC.nc SingleTimer.nc Main.nc

StdControl.nc and BlinkM.nc

interface StdControl {

command result_t init(); S aten apioole

command result_t start();

command result_t stop(); / T
} Interface Interface

Leds.nc Timer.nc

module BlinkM { [T
_} . Component Component Component
|mp|ementat|on { LedsC.nc SingleTimer.nc Main.nc

command result_t StdControl.init() {
return SUCCESS;

...
}

StdControl.nc and Main.nc

interface StdControl {
command result_t init();
command result_t start();
command result_t stop();

}

configuration Main {

uses interface StdControl;
}
implementation {

/...

}

Configuration Module
Blink.nc BlinkM.nc
Interface Interface
Leds.nc Timer.nc
Component Component Component
LedsC.nc SingleTimer.nc Main.nc

