[Tlondonknowledgelab

Mobile and Ubiquitous Computing

Resource Constrained Devices

George Roussos

g.roussos@dcs.bbk.ac.uk

Session Overview

« Resource constrained devices
— evolution, architecture, components
— a detailed example
« Energy efficiency
¢ Programming primitives in Tiny OS
¢ Concurrency

knowledgeial: + @

Drivers

Moore’s Law: P

“the complexity of an
integrated circuit, with
respect to minimum
component cost, will il
double in about 18 months

“Cramming more components onto [
integrated circuits", Electronics -
Magazine, April 1965.

knowledgeial . @

More Drivers

¢ Cheap and reliable communications:
— short-range RF, infrared, optical
— low power
* New interesting sensors
— light, heat, humidity
— position, movement, acceleration, vibration
— chemical presence, biosensor
— magnetic field, electrical inc. bio-signals (ECG and
EEG)
— RFID
— acoustic (microphone)

Knewledgeiat . @

Long-term objective

¢ Completely integrated

— one package includes: computation, communication,
sensing, actuation, (renewable) power source

— modular
¢ Less than a cubic millimeter in volume
¢ Cheap
« Diverse in design and usage
* Robust
« Main challenge: energy efficiency!

knowledgeial: + @

Device evolution

- =

WeC (1999) Rene (2000) DOT (2001)

MICA (2002) Speck (2003)

knowledgeial . @

What else is out there?

Internet 0 at MIT Centre of Atoms and Bits

knowledge:

http://cba.mit.edu/~neilg

What else is out there?

knowledge:

Smart-its http://www.smart-its.org/

Q

What else is out there?

knowledge:

Embedded Linux

gumstix http://www.gumstix.org/

e}

What else is out there?

pico-TRON IMEC Sensor Cube
Hardware-software platform Very low power, modular design for
from Japan body area applications

Derived from TRON Tiny OS and embedded C

http://www.t-engine.org/

oo,

Tmote Sky

Texas Instruments MSP430
— 16-bit RISC, 8MHz, 10k RAM, 48k Flash, 128b storage
— Integrated analog-to-digital converter (12 bit ADC)

Chipcon wireless transceiver
— |IEEE 802.15.4 (Zigbee) compatible
— 250kbps at 2.4GHz

Sensirion SHT11/SHT15 sensor module
— humidity and temperature

Hamamatsu light sensors
— S1087 (photosynthetic)

— $1087-01 (full visible spectrum)

knowledgeial: + @

Module layout (top)

Module layout (bottom)

Knewledgeiat . @

Block diagram

v i
[rra il LI e
cou 1w ||t
. y
Siaraey
Temgarsiee
8§
e || 3]
Sons iz
= |) I3
Seemes
Wcipe | Mo 7 | s mee fon
Eulid T |FLarez bk dop seey | | M hade
: £ ¥
[T RTSOTR] .
|me | vszo | wessdssn| 15

knowledgeial: + @

Where does the power go?

Processing
— excluding low-level —_—
processing for radio, = oy
- - § R e j
sensors, actuators B i,
Radio 2
il
Sensors
Actuators

Power supply

discussion follows Srivastana tutorial
(check module website)

knowledgeial: + @

Sky module characteristics

| Carrent G “MGU on_Hado BX 218 | ma

Current MCL on. Radio TX 195 21 mA,
Current Consumption: MCU on. Radio off 1200 2400 | A
| Current © MCL idlee. Hadmo off 54 & 1200 iy
| Current Consumption: MCU standby 51 210 wA

Need power management to actually exploit energy
efficiency:

«idle and sleep modes

variable voltage

variable frequency

«in-network storage and processing

Chipcon radio is only a transceiver, and a lot of low-level
processing takes place in the main CPU. Contrast this with Wi-
Fi radio which will do everything up to MAC and link level
encryption in the “radio.”

Knewledgeiat . @

Sensors and power consumption

« Several energy consumption sources
— transducer
— front-end processing and signal conditioning
« analog, digital
— ADC conversion
« Diversity of sensors: no general conclusions can be
drawn
— Low-power modalities
« Temperature, light, accelerometer
— Medium-power modalities
« Acoustic, magnetic
— High-power modalities
« Image, video, chemical

knowledgeial: + @

Observations

« Radio benefits less from technology improvements than processors

« The relative impact of the communication subsystem on the system
energy consumption will grow

« Using low-power components and trading-off unnecessary
performance for power savings can have orders of magnitude
impact

« Node power consumption is strongly dependent on the operating
mode

« At short ranges, the Rx power consumption > T power consumption

« Idle radio consumes almost as much power as radio in Rx mode

« Processor power fairly significant (30-50%) share of overall power

« In many cases, the sensor overhead is negligible

knowledgeial . @

Programming challenges

Driven by interaction with environment
— Data collection and control, not general purpose computation
— Reactive, event-driven programming model
« Extremely limited resources
— Very low cost, size, and power consumption
— Typical embedded OSs consume hundreds of KB of memory
« Reliability for long-lived applications
— Apps run for months/years without human intervention
— Reduce run time errors and complexity
« Soft real-time requirements
— Few time-critical tasks (sensor acquisition and radio timing)
— Timing constraints through complete control over app and OS

Knewledgeiat . @

Current popular platform

¢ NesC: a C dialect for e TinyOS: a set of NesC
embedded components
programming
— Components, “wired
together”

— Quick commands and
asynch events

— hardware components

— ad-hoc network formation
& maintenance

— time synchronization

knowledgeial: + @

Tiny OS facts

Very small “operating system” for sensor networks
— Core OS requires 396 bytes of memory
Component-oriented architecture

— Set of reusable system components: sensing, communication, timers,
etc.

— No binary kernel - build app specific OS from components
Concurrency based on tasks and events
— Task: deferred computation, runs to completion, no preemption

— Event: Invoked by module (upcall) or interrupt, may preempt tasks or
other events

— Very low overhead, no threads
Split-phase operations

— No blocking operations

— Long-latency ops (sensing, comm, etc.) are split phase
— Request to execute an operation returns immediately

— Event signals completion of operation

; discussion follows Welsh
Knewledge @ check module website

nesC facts

« Dialect of C with support for components
— Components provide and require interfaces
— Create application by wiring together components using
configurations
* Whole-program compilation and analysis
— nesC compiles entire application into a single C file
— Compiled to mote binary by back-end C compiler (e.g., gcc)
— Allows aggressive cross-component inlining
— Static data-race detection
« Important restrictions
— No function pointers (makes whole-program analysis difficult)
— No dynamic memory allocation
— No dynamic component instantiation/destruction
« These static requirements enable analysis and optimization

Knewledgeiat . @

nesC interfaces

nesC interfaces are bidirectional

— Command: Function call from one component requesting service from
another

— Event: Function call indicating completion of service by a component

— Grouping commands/events together makes inter-component protocols
clear

interface Ti

od re start (char type, uint3Z_t interval);
& d result_t stop();
event result_t fired();

¥

nesC components

« Two types of components
— Modules contain implementation code
— Configurations wire other components together
— An application is defined with a single top-level configuration

module TimerM {
provides {
interface StdControl;
interface Timer;

uses interface Clock;

} implementation {

€ d result_t Timer.start(c
and result_t Timer.stop() { ... }
event void Clock.tick(} { ... }

¥

knowledgeial . @

nesC configurations

configuration TimerC {
provides {
interface StdControl;
interface Timer;

}

} implementation {

components TimerM, WWClock;

P through: Connect cur “provides”
StdControl = TimerM.StdControl;
Timer = TimerM.Timer;

to TimerM *provides®

// Mormal wiring: Connect "requires” to

"provides®
TimerM.Clock -> HWClock.Clock;

Knewledgeiat . @

Concurrency in nesC

* Tasks used as deferred computation mechanism
— Commands and events cannot block
— Tasks run to completion, scheduled non-preemptively
— Scheduler may be FIFO, EDF, etc.

/4 Signaled by

nterrupt handler

More on concurrency

¢ All code is classified as one of two types:

— Asynchronous code (AC): Code reachable from at least one
interrupt handler

— Synchronous code (SC): Code reachable only from tasks

Any update to shared state from AC is a potential data
race

— SC is atomic with respect to other SC (no preemption)

— Race conditions are shared variables between SC and AC, and
AC and AC

— Compiler detects data races by walking call graph from interrupt
handlers

knowledgeial . @

Avoiding a data race

« Two ways to fix a data race
— Move shared variable access into tasks
— Use an atomic section
or
— Short, run-to-completion atomic blocks
— Currently implemented by disabling interrupts

atomic {
sharedvar = sharedvar+1;

Knewledgeiat . @

Summary

« Resource constrained devices
— evolution, architecture, components
— a detailed example
« Energy efficiency
¢ Programming primitives in Tiny OS
¢ Concurrency

knowledgeial: + @

10

