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Abstract

Self-reference has been recognized as a useful feature in description logics but is known
to cause substantial problems with decidability. We have shown in previous work that
the basic description logic ALC remains decidable, and in fact retains its low com-
plexity, when extended with a bounded form of self-reference where only one variable
(denoted me following previous work by Marx) is allowed, and no more than two
relational steps are allowed to intercede between binding and use of me (this result is
optimal in the sense that already allowing three steps leads to undecidability). Here,
we extend these results to ALCQ, i.e. ALC extended with qualified number restric-
tions, and analyse the expressivity of the arising logic, ALCQme2. In fact it turns out
the expressive power of ALCQme2 is identical to that of ALCHIQbe, the extension
of ALCQ with role inverses, role hierarchies, safe Boolean combinations of roles, and
a simple self-loop construct. However, while there is a straightforwardly defined poly-
nomial translation from ALCHIQbe to ALCQme2, the translation from ALCQme2
to ALCHIQbe has an exponential blowup in the formula size. To establish the de-
sired complexity bounds, we therefore provide a polynomial satisfiability-preserving
encoding of ALCQme2 into ALCHIQbe and prove that the latter is decidable in
EXPTIME.

Keywords: Description logic, hybrid logic, binding constructs, self-reference,
complexity, expressivity, qualified number restrictions

Introduction

In a very broad sense, hybrid logics extend modal logics with special symbols,
called nominals, that name individual states of models. The assignment of
nominals to states can be either static, akin to that of constant symbols in
first-order logic, or dynamic. The latter is typically achieved through the ↓-
binder: if x is a nominal, then ↓x.φ is true at a state a if φ is true in a under the

1 The research reported here forms part of the DFG project Generic Algorithmic Methods
in Modal and Hybrid Logics (SCHR 1115-2)
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assumption that x names a. The difference can be dramatic: while extending
a modal logic with static hybrid machinery often results in only a moderate
increase of computational complexity (if at all), adding ↓ to the basic modal
logic immediately leads to undecidability. This has proven to be hard to repair:
it persists when only one nominal is allowed to occur [12], also if one restricts
to typically well-behaved classes of models [14] and even if one weakens the
semantics of ↓ [2].

Decidability is regained in the uni-modal case on certain classes of mod-
els [14] and when restricting to the rather weak fragment that avoids the so-
called 2↓2-pattern where the ↓ occurs under the scope of a 2 and the bound
nominal occurs under another 2 [16]. In recent work [9], we have isolated an-
other decidable fragment; it is obtained by allowing only one nominal to be
bound by ↓ and ensuring that between every ↓ and the usage points of the
bound nominal, no more than two modalities occur (when three modalities are
allowed to occur, decidability is again lost); we refer to this restriction as lim-
iting the depth of occurrences of the bound nominal. In [12], Marx proposes
the usage of pronouns I and me as suggestive notation for the hybrid language
were only one nominal can be bound (with I implicitly binding the nominal
me); using this notation, an example of a depth 2 formula is given by

[hasParent]I.¬〈likes〉(Club ∧ 〈accepts〉me), (1)

which, intuitively, describes those whose parents share Groucho’s taste for clubs
(observe, incidentally, that (1) falls inside the 2↓2-pattern, so it is outside the
decidable fragment of [16]).

Despite its innocent look, the depth-2 fragment of the I-me hybrid logic turns
out to be expressively interesting. In particular, the nominal-free language
(that is, free of nominals other than me) with the universal modality is capable
of expressing all formulas of the guarded fragment over the correspondence
language; and this containment is strict: the latter has the finite model property
while the former does not [9]. Nevertheless, the nominal-free fragment has the
same complexity as basic ALC: PSPACE-complete over acyclic TBoxes (even
when the satisfaction operator @me is added), and EXPTIME-complete over
general TBoxes, equivalently in presence of the universal modality.

Given these results, it is interesting to understand the effect of hybridizing
other modal logics in this restricted fashion. Here, we consider the case of
graded modal logic, or in description logic parlance, the logic ALCQ, whose
extension with the I-me construct limited to depth 2 we denote ALCQme2. To
avoid unnecessary duplication of concepts and notations, we will work using
the language and terminology of description logics (DLs) throughout [5].

To get a taste of ALCQme2, consider an asymmetric social-networking plat-
form such as Twitter as the domain of knowledge representation. In this context
we can express the concept of a celebrity as

I.≥N isFollowedBy.¬∃isFollowedBy.me

for some suitable choice of N � 0. In words, a celebrity in Twitter is someone
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with a large base of followers that are not followed back.
It turns out that ALCQme2 is expressive enough to encode inverses (aka

past modalities), union, intersection, and relative complementation of roles
(i.e. relations), as well as role inclusions. This puts it, prima facie, close to
the DL known as ALCHIQb. It is the main object of this work to make this
comparison systematic.

In fact it is clear that ALCQme2 contains, via a straightforward semantics-
preserving translation that has only a polynomial blowup in the formula size, a
slight extension of ALCHIQb, namely by the self-loop construct ∃R.Self also
found, e.g., in the DL sROIQ [10]; we denote this extension by ALCHIQbe.
Conversely, we show that indeed there exists also a semantics-preserving trans-
lation from ALCQme2 to ALCHIQbe, so that we can say in a precise sense
that ALCQme2 and ALCHIQbe have the same expressive power; however, this
converse translation has an exponential blowup in the formula size. In order
to fix the computational complexity of ALCQme2, we therefore define a second
translation into ALCHIQbe. This translation has only a polynomial blowup;
it preserves satisfiability but is not semantics-preserving in the proper sense,
as it introduces new underdefined relation symbols and satisfaction of the orig-
inal formula does not imply satisfaction of its translation (only satisfiability
of the latter). We then show by reduction to ALCIQb [18] that ALCHIQbe
is decidable in PSPACE over the empty TBox, and in EXPTIME over gen-
eral TBoxes, thus implying that the same bounds hold for ALCQme2, which is
hence no harder than ALCQ (or, for that matter, basic ALC). Our proof can
be easily modified to show that, in general, adding the self-looping construct
to a description logic is harmless in terms of computational complexity.

The material is organized as follows. We first introduce the description
logics we will use as well as some basic terminology (for a deeper introduction,
refer to [5]). In particular, we define the logics ALCHIQbe and ALCQme2.
In Section 2 we discuss in a general fashion various ways in which one can
compare the expressiveness of two description logics, in order to pave the
ground for a comparison of the various translations that we define. We dis-
cuss the embedding of ALCHIQbe into ALCQme2 in Section 3, and the con-
verse semantics-preserving translation in Section 4. Moreover, we establish a
polynomial satisfiability-preserving translation of ALCQme2 into ALCHIQbe
(Proposition 4.5). Finally, we present our complexity results in Section 5.

1 Description Logics and Self-Referential Constructs

Description logics (DLs) are typically described as arising from a combination
of a number of more or less standard language features. The features we will
be interested in are qualified number restrictions, role-hierarchies, inverses, safe
Boolean combination of roles and the “self-looping” concept constructor. We
now introduce a DL called ALCHIQbe that contains all of these features, and
later consider some of its better known fragments.

Assume a vocabulary 〈NC,NR〉 composed of two disjoint and countably
infinite sets NC = {A1, A2, . . .} and NR = {R1, R2, . . .} of atomic concepts
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and roles, respectively. The set of (complex) concepts C,D and roles R,S of
ALCHIQbe are respectively given by

C,D := Ai | ¬C | C uD | ∃R.Self | ≥nR.C
R, S := Ri | R− | R u S | R t S | R− S

where Ai ∈ NC; Ri ∈ NR and n is a positive integer. The concept ∃R.Self is
meant to denote the individuals related via R to themselves (but notice that
Self in itself is not a concept).

For brevity, we will employ standard notation, such as ⊥ ≡ Au¬A, for some
A ∈ NC; > ≡ ¬⊥; ≤nR.C ≡ ¬≥n+1.C, for every n ≥ 0; ∃R.C ≡ ≥1R.C and
∀R.C ≡ ¬∃R.¬C. One can also define ∀R.Self ≡ ≤1R.> u (∀R.⊥ t ∃R.Self).
We will sometimes write ≥n−1R.C in cases where n ≥ 1, and then assume that
≥0R.C is a synonym for >.

When measuring formula size, we assume numbers expressed in binary. We
shall use rank(C) to mean the maximal number of nested qualified number
restrictions (i.e., concepts of the form ≥nR.D) occurring in C (this is also
known as the modal depth of C).

An interpretation or model is a structure I = 〈∆I , ·I〉 where ∆I is a non-
empty set (the domain of I); AI ⊆ ∆I for each A ∈ NC; and, for Ri ∈ NR,
RIi ⊆ ∆I ×∆I . We write RI(a) for the set {b : (a, b) ∈ RI}. Let I = 〈∆I , ·I〉
be an interpretation. The extension of complex concepts and roles under I is
defined as:

(¬C)I = ∆I − CI (R− S)I = RI − SI

(C uD)I = CI ∩DI (R u S)I = RI ∩ SI

∃R.Self = {a : (a, a) ∈ RI} (R t S)I = RI ∪ SI

(≥nR.C)I = {a : |RI(a) ∩ CI | ≥ n} (R−)I = {(b, a) : (a, b) ∈ RI}

In description logics, a TBox is a set of “concept inclusion axioms” of the
form C v D. Sometimes the term “general TBox” is used to stress the fact that
concepts occurring in it are arbitrary (in opposition to, say, acyclic TBoxes,
where the dependency graph induced by the atomic concepts in the TBox must
be acyclic). Apart from a TBox, in ALCHIQbe, one has an RBox that contains
“role inclusion axioms” of the form R v S. Let T and H be a TBox and a
RBox, respectively. An interpretation I satisfies (T ,H) whenever CI ⊆ DI

for all C v D ∈ T and RI ⊆ SI for all R v S ∈ H. A concept C is satisfiable
over (T ,H) if CI 6= ∅ for some interpretation I that satisfies (T ,H). Finally,
C is satisfiable if it is satisfiable over the empty TBox and the empty RBox.

Many well-known description logics are obtained as fragments of the logic
ALCHIQbe just introduced. E.g., ALCHIQb results from dropping the
∃R.Self concept-constructor (which is part of the very expressive description
logic sROIQ [10]) and ALCHIQ is obtained if, additionally, one removes role-
constructors u, t and −. If, in any of these cases, attention is restricted to
empty RBoxes, the logics obtained are respectively called ALCIQbe, ALCIQb
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and ALCIQ; note that ALCIQb played a key role in the proof of the EXP-
TIME upper bound for SHIQ [18]. We obtain the logic ALCQ by removing
the inverse role constructor ·− from ALCIQ. If we furthermore restrict n to 1
in qualified-number restrictions ≥nR (and hence to n = 0 in ≤nR), the basic
description logic ALC is obtained.

It is worth noticing that in [18], safe Boolean roles are defined as contain-
ing role negation ¬R, instead of relativized negation R − S as defined above.
However, the safety condition for role expressions used there is that they must
contain at least one non-negated role in each clause of the disjunctive normal
form. It is straightforward to verify that this is equivalent to the definition we
gave. Moreover, it is interesting to observe that this restriction is not casual, as
unsafe roles can be used, for instance, to express global cardinality constraints
as in ≤5Rt¬R.C, which are known to increase complexity; e.g. ALCIQ with
cardinality restrictions is NEXPTIME-complete [17].

Regarding computational complexity, the concept satisfiability problem
for ALCIQb is known to be PSPACE-complete over the empty TBox, and
EXPTIME-complete over general TBoxes [18]. The latter problem remains
EXPTIME-complete for ALCHIQb [11].

Meet ALCQme2: Bounded self-referentiality for ALCQ
In [12], Marx introduced the I-me construct as a convenient notation for the
single-variable fragment of hybrid logic with the ↓-binder (cf. [3]). In this
notation, I plays the role of a ↓-binder and me is the bound nominal. We want
to extend the logic ALCQ with the I-me construct under the restriction that
me is never separated from its binding I by more than two qualified number
restrictions. We call the resulting logic ALCQme2.

At a syntactic level, we want to add to the concept language of ALCQ a
new concept me and a concept constructor I.C, where C must satisfy certain
requirements with respect to the occurrences of me. Again, we assume two sets
NC and NR of atomic concepts and roles; the concept language of ALCQme2
then corresponds to F1 in the following grammar:

F1 3 C,C ′ :=Ai | me | ¬C | C u C ′ | I.≥nRi. C | ≥nRi. D
F2 3 D,D′ :=Ai | me | ¬D | D uD′ | I.≥nRi. C

(2)

Here also, Ai ∈ NC and Ri ∈ NR, and n is a positive integer. We will say that
me occurs free in a concept C if it is not under the scope of an I. Similarly,
we say that a concept C occurs in a relational context in D whenever C occurs
under the scope of a ≥nRi or I.≥nRi in D.

One can easily get an idea of why (2) works by verifying that, for instance,
I.≥nR.≥mS.≥lT.me is not well-formed. More generally, one can check that
F2 ( F1 and that each free occurrence of me in C can occur in at most
one relational context, if C ∈ F1, and in no relational context if C ∈ F2.
This means that, in fact, a concept such as ≥nR.≥mS.me is not well-formed,
although I.≥nR.≥mS.me is so.

While according to (2), I can only occur in front of a qualified number
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restriction, we shall liberally use it in other positions, by letting it commute
through Boolean operations and putting I.A ≡ A for A ∈ NC, I.I.C ≡ I.C, and
I.me ≡ >. That said, for definitions and proofs we will stick to the language
defined by (2).

Let 〈∆I , ·I〉 be an interpretation. For every a ∈ ∆I , we use CIa to denote
the extension of an ALCQme2-concept C under the assumption that me stands
for a. This is defined as follows:

AIa = AI meIa = {a}
(¬C)Ia = ∆I − CIa (C uD)Ia = CIa ∩DIa

(I.≥nR.C)Ia = {b : b ∈ (≥nR.C)Ib } (≥nR.C)Ia = {b : |RI(b) ∩ CIa | ≥ n}

We say that C is a closed concept if it has no free occurrences of me. One can
easily show the following:

Proposition 1.1 If C is a closed concept, then CIa = CIb for all a, b ∈ ∆I .

We thus denote the extension of a closed concept C just by CI . From Propo-
sition 1.1 it is clear that ALCQme2 is a conservative extension of ALCQ.

In the context of ALCQme2, a TBox is a collection of axioms of the form
C v D, where C and D are closed (but otherwise arbitrary) concepts. An
interpretation I satisfies a TBox T whenever CI ⊆ DI for all C v D ∈ T . A
closed concept C is satisfiable over T if CI 6= ∅ for some interpretation I that
satisfies T . Finally, C is satisfiable if it is satisfiable over the empty TBox.

The object of the current work is to investigate the properties of ALCQme2.
In the end, one wants to see how ALCQme2 stands with respect to its better-
known fellow logics. In the following sections, we investigate then what is the
expressive power and the computational complexity of ALCQme2.

2 Prerequisites for a Discussion of Relative Expressivity

The term “expressivity” or “expressive power” has come to mean different,
although related, things. This has the unfortunate effect that it may lead to
seemingly contradictory claims regarding the relative expressivity of two logics,
both being correct once one pinpoints the precise notion of expressivity being
used in each case. To prevent this type of misunderstandings, we will give a
short account of the main notions of expressivity that can be usually found in
the literature.

When comparing the expressive power of two logics, it certainly helps if they
have a perfect match on the objects used as interpretations. In practice, though,
this would be too strong a restriction: for instance, it would exclude all so-called
TBox-internalization results, where a fresh atomic role is needed to behave
as a universal modality (so the models of the logic doing the internalization
need to interpret more symbols). If we want some liberty in this respect, we
need to have the means to compare logics whose languages and/or models
do not perfectly coincide. Having said that, we will avoid an overly abstract
presentation by focusing on the case of “description logics” (a more abstract,
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very general presentation would require, for instance, moving to the framework
of institutions [7]).

Let us make more precise what we mean by “description logics”. These can
be characterized by a concept language, built from atomic concepts and roles;
and the possibility of building theories, in the form of TBoxes (sets of concept-
related axioms), RBoxes (sets of role-related axioms), ABoxes (sets of axioms
regarding named individuals), etc. Theories can be assumed to form a monoid,
so one can talk about the empty theory or take the union of two theories. A
model for a description logic is a non-empty domain plus an interpretation for
each atomic concept, role, named-individual, etc.

In the various notions we introduce next, we will typically say that “a logic
L2 has at least the same power (for some task) as a logic L1”, and by this
it should be understood, intuitively, that a certain logical task in L1 can be
uniformly reduced to the same task on L2, perhaps over an extended language.
This means that models for L2 will be expansions of models for L1, which leads
to a natural way of mapping L2-models to L1-models (this can be seen as an
specialization of the notion of logic comorphism [8]).

Definition 2.1 Let S1 = 〈NC1;NR1〉 and S2 = 〈NC2;NR2〉 be two collections of
atomic concepts and roles such that NC1 ⊆ NC2 and NR1 ⊆ NR2 hold (we
write S1 ⊆ S2). The forgetful mapping β from S2-interpretations to S1-
interpretations is defined by i) ∆β(I) = ∆I ; ii) Aβ(I) = AI , for every A ∈ NC1

and iii) Rβ(I) = RI , for every R ∈ NR1. Moreover, given a consistent L2-
theory T over S2, we say that T is oblivious to S1 if for every model I1 for S1
there exists a model I2 satisfying T such that I1 = β(I2).

Intuitively, a theory is oblivious to S1 if it only refers to symbols that are not
in S1. We are now ready to look at the notions of expressivity that will concern
us.

Querying power. Let C be a concept of a description logic L1 over vocabulary
S1. One can view C as a query over S1-interpretations by taking CI to be the
result of the query over I. To a first approximation, we can say that L2 has at
least the same querying power as L1 if there is an effective mapping α from L1-
concepts to L2-concepts such that CI = α(C)I . This assumes that concepts in
the domain and image of α are built over S1. To lift this restriction, we shall
say that L2 has at least the same querying power as L1, notation L1 ≤Q L2,
if there exist a mapping δ taking a vocabulary S1 to an L2-theory T oblivious
to S1; and an effective mapping α such that, for all models I2 satisfying T ,
Cβ(I2) = α(C)I2 . We write L1 ≤Q,δ L2 when we want to make explicit the
mapping δ employed.

This definition essentially says that given a query C and a model I1 to be
queried, we can find some appropriate L2- model I2 satisfying T (e.g., by an
exhaustive search), and query it using α(C), instead.

Classification power. Let T be a theory for a description logic L1 over S1.
Let us write I1 |=L1

T to denote that model I1 satisfies all the axioms of
T . We can then say that T splits the class of S1-models in two, implicitly
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defining a property on models. We then say that L2 has at least the same
classification power as L1, notation L1 ≤C L2, if there exists a mapping δ
taking a vocabulary S1 to an L2-theory T2 oblivious to S1; and an effective
mapping γ of L1-theories to L2-theories such that for every L1-theory T1 and
every L2-model I2 of T2, it holds that β(I2) |=L1

T1 iff I2 |=L2
γ(T1). In all

cases, we assume γ to be defined axiom-wise, i.e., γ(T ) =
⋃
a∈T γ

′(a), where
γ′ maps axioms to (finite) theories; moreover, we identify γ with γ′. We write
L1 ≤C,δ L2 when we want to make explicit the mapping δ employed.

It is possible to slightly weaken this notion as follows. We say that L2 has
at least weakly the same classification power as L1, notation L1 ≤∃C L2, if there
exists a mapping δ taking a vocabulary S1 to an L2-theory T2 oblivious to S1;
and an effective mapping γ of L1-theories to L2-theories such that for every
L1-theory T1 and every L1-model I1, I1 |=L1

T1 iff there exists a model I2 of
T2 such that β(I2) = I1 and I2 |=L2

γ(T1). Observe that ≤∃C differs from ≤C
in the quantification pattern of L2-models.

While L1 ≤C,δ L2 means that we can reduce the problem of deciding if an
L1-model satisfies an L1-theory T1 to that of deciding if a certain L2-model
(e.g., any model we find that satisfies the theory given by δ) satisfies the L2-
theory g(T1), if we have that L1 ≤∃C L2, then the same problem is reduced to
(potentially) many instances of the decision problem for L2 (i.e., one for each
model I2 that satisfies the theory given by δ). One can regard the latter notion
as a strong form of satisfiability preserving translation (see below).

Local and global reasoning power. The two criteria above could be en-
compassed under the term descriptive power, since they refer to the capacity
of a logic to describe models or individuals in a model. The following criteria,
on the other hand, refer to the inferences that can be made.

Consider first the set VL of valid concepts of L. We say that L2 has at least
the same local reasoning power as L1, notation L1 ≤Rl L2, if there exists an
effective mapping α from L1-concepts to L2-concepts such that, for every L1-
concept C, C ∈ VL1 iff α(C) ∈ VL2 . Similarly, for a theory T , let VL(T ) denote
the set of L-consequences of T , that is the set {C : I |=L T ⇒ CI = ∆I ,∀I}.
We then say that L2 has at least the same global reasoning power as L1, notation
L1 ≤Rg

L2, if there exist two effective mappings α and γ such that, for every
theory T of L1, and every L1-concept C, C ∈ VL1

(T ) iff α(C) ∈ VL2
(γ(T )).

It is worth noticing that L2 having at least the same local reasoning power as
L1 intuitively means that local reasoning L1 can be reduced to local reasoning
in L2.

Proposition 2.2 The following hold (where δ0 maps a signature to the empty
theory):

(i) If L1 ≤Q,δ0 L2, then L1 ≤Rl L2,

(ii) If L1 ≤Q,δ0 L2 and L1 ≤C,δ0 L2, then L1 ≤Rg L2.

(iii) If L1 ≤Rg L2, then L1 ≤Rl L2.

Notice that for the last case, we use that γ preserves empty theories.
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We say that L1 and L2 have equal querying power if each one has at least
the same expressive power as the other. This extends to the other notions in
the obvious way.

All the above notions are qualitative in nature. A quantitative comparison
can be done by looking at the blowup incurred by the mapping on concepts
and/or theories. So-called succinctness results (see, e.g., [1]) typically involve
lower-bounds (at least exponential, usually) for the blowup incurred by the
mapping on concepts for the notion of classification power. An analogous notion
of succinctness for querying power was investigated in [6]. The mappings used
for defining local and global reasoning power are usually called satisfiability
preserving translations, and are used as a tool for proving complexity results;
the blowup in this case impacts on the final complexity.

Proposition 2.3 The following relations hold:

(i) ALCIQbe ≤Q ALCHIQbe and ALCHIQbe ≤Q ALCIQbe.
(ii) ALCIQbe ≤C ALCHIQbe.

(iii) ALCIQbe ≤Rg ALCHIQbe and ALCHIQe ≤Rg ALCIQbe.

Proof Clearly, role-hierarchies add no querying power (since the model is fixed
in this case), so it is no surprise that ALCHIQbe ≤Q ALCIQbe. It is proved
in [18] that ALCHIQ ≤Rg ALCIQb; essentially, every role S in a concept C
is replaced by the conjunction R1 uR2 . . .uRn u S of all roles Ri v S. This is
trivially extended to the case with ∃R.Self. 2

3 Lower Bounds for Expressivity

We want to show that ALCQme2 has enough expressive power to accommo-
date ALCHIQbe for all the tasks outlined in the previous section. Moreover,
the blowup in all cases will be shown to be polynomial. We shall assume,
throughout this section, that ALCHIQbe formulas are defined over a vocab-
ulary S1 = 〈NC1,NR1〉; ALCQme2 concepts, on the other hand, will be built
over S2 = 〈NC2,NR2〉, with S1 ⊆ S2. Further assumptions regarding S2 will be
made as needed.

Let us start by considering the querying power of ALCQme2. Clearly,
role-hierarchies can be disregarded here, so we concentrate on the features of
ALCIQbe. The first thing to observe is that the ∃R.Self concept corresponds
to I.∃R.me. To account for the inverse role of Ri we assume NR2 to contain a
(fresh) role S̃R−i

for each Ri ∈ NR1; its meaning is then defined by way of the

TBox axiom:

(I.∀Ri.∃S̃R−i .me ) u (I.∀S̃R−i .∃Ri.me). (3)

In any model that satisfies axiom (3), S̃R−i
will be the inverse role of Ri. In

order to deal, in addition, with safe Boolean combination of roles, we further
assume that NR2 contains a fresh role S̃R for each complex role expression R
built over atomic roles in NR1. We give them meaning via the following TBox
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axioms (where we identify S̃Ri with Ri, for Ri ∈ NR1):

(I.∀S̃R− .∃S̃R.me) u (I.∀S̃R.∃S̃R− .me) (4)

I.∀S̃RtS .(∃S̃R− .me t ∃S̃S− .me) (5)

I.∀S̃RuS .(∃S̃R− .me u ∃S̃S− .me) (6)

I.∀S̃R−S .(∃S̃R− .me u ¬∃S̃S− .me) (7)

I.∀S̃R.∃S̃(RtS)− .me (8)

I.∀S̃R.((∃S̃S− .me u ∃S̃(RuS)− .me) t (¬∃S̃S− .me u ∃S̃(R−S)− .me)) (9)

Clearly, (4) makes inverses behave correctly for non-atomic roles as well; tak-
ing advantage of this, we have a sound definition for the symbols in (5)–(7)
while (8)–(9) make it complete (one can add axioms for commutativity of u
and t, if needed). All this together immediately gives us:

Proposition 3.1 ALCHIQbe ≤Q ALCQme2.

We can move now to classification power. Because of the analysis above, it
suffices to show how to encode role hierarchies in ALCQme2. Using the symbols
S̃R already defined (again, identifying S̃Ri

with Ri ∈ NC1), it is clear that a
role inclusion axiom of the form R v S can be defined with the TBox axiom:

I.∀S̃R− .∃S̃S .me (10)

We then have

Proposition 3.2 ALCHIQbe ≤C ALCQme2.

Notice, though, that it is not possible to immediately conclude, from all these
results, that ALCHIQbe ≤Rl ALCQme2. In essence, the mapping α induced in
the proof of Proposition 3.1 requires the support of a non-empty TBox. This, in
turn, means that neither can we conclude yet that ALCHIQbe ≤Rg ALCQme2.
We turn, then, to proving that this reduction holds as well. For this, one needs
a standard auxiliary result. For a relation T ⊆ X ×X, define T 0 = IdX and
Tn+1 = Tn ∪ (T ◦ Tn); one then has the following:

Lemma 3.3 Let C be a closed ALCQme2-concept over a vocabulary S =
〈NC,NR〉 and let a ∈ CI for some I. Moreover, let Ik,a denote the restriction
of I to the domain ∆Ik,a =

⋃
Ri∈NR

{b : aRki b}. Then we have that a ∈ CIk,a

whenever k ≥ rank(C).

With this lemma we can prove,

Theorem 3.4 ALCHIQbe ≤Rg ALCQme2.

Proof We need to define a mapping γ of axioms to finite ALCQme2-TBoxes
for the ALCHIQbe-TBox, and a mapping α from ALCHIQbe-concepts to
ALCQme2-concepts. For the former, we can just reuse the mapping from the
proof of Proposition 3.2, with the proviso that each mapped axiom introduces
also the finitely many definitional axioms (from the mapping δ of the vocabu-
lary) for the symbols that occur in it. Of course, we cannot do this for α and
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the problem is how to locally define the symbols that are not mentioned in the
ALCHIQbe-TBox. We can then assume, without loss of generality, that we are
working with an empty TBox. Let C be an ALCHIQbe-concept, and let C ′ be
the ALCQme2-concept obtained from the translation in Proposition 3.1. From
Lemma 3.3, we know that it is enough to define the S̃R symbols occurring in
C ′ until depth rank(C ′) = m. For this, we resort to a fresh role U , which we
force to behave as a “universal role up to depth m” by means of the concept

D =
dk
i=1

dm
j=0 ∀jU.I.∀Ri.(∃U.me u I.∀U.∃U.me) (11)

where R1 . . . Rk are the atomic roles occurring in C ′ and ∀nR.D denotes D if
n = 0, and ∀R.∀n−1R.D otherwise. Having defined U this way, we can give
the desired meaning, up to depth m, to every role S̃R occurring in C ′ using
suitable concepts E(R); e.g.,

E(R−i ) =
dm
j=0 ∀jU.(I.∀Ri.∃S̃R−i .me u I.∀S̃R−i .∃Ri.me). (12)

The required concept then has the shape C ′ u D u
∧
RE(R) where R ranges

over all complex roles occurring in C. 2

4 A Tight Upper Bound for Expressive Power

We have seen in the previous section that ALCQme2 is at least as expressive
as ALCHIQbe. We now make this bound tight by showing that ALCIQbe is
also as expressive as ALCQme2. It must be observed, though, that in this case
we will incur an exponential blowup. We will later show that a weaker result
can be obtained with a polynomial blowup.

We begin, then, by showing that ALCQme2 ≤Q,δ0 ALCIQbe, where δ0
maps a vocabulary to the empty TBox. From this it will be straightforward to
derive the remaining bounds. The proof of the first result will go in two steps:
we show that every ALCQme2-concept can be taken to a normal form from
which an equivalent ALCIQbe concept can be derived. Both translation steps
will cause an exponential blowup, but no additional symbols will be introduced.

Definition 4.1 Assume a fixed, finite set of roles R = {R1 . . . Rn}. We let
P (R) denote the set of all maximal satisfiable conjunctive clauses over the set
{∃R1.me, . . .∃Rn.me}. Moreover, we say that I.≥nR.D is an R-covered con-
cept if D is of the form

⊔
Ci∈P (R)(Ci u Di); in this case, the Ci are called

selectors. Finally, a concept C is in expanded form if i) every I.≥nR.D occur-
ring in C is an R-covered concept, for some R, and ii) me occurs in C only in
the selectors of covered concepts and in concepts of the form I.∃R.me.

E.g., an {S}-covered concept is of the form I.≥nR.(((∃S.me)uD1)t¬((∃S.me)u
D2)). The intuition behind this definition is that if I.≥nR.D is an R-covered
concept, then D describes a property Di for the R-successors of the point of
evaluation that is determined by the way they link back to it with respect to
some set of roles R. Notice that every R-successor of an element satisfying an
R-covered concept will satisfy one and only one of its selectors.
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Lemma 4.2 Every closed concept is equivalent to a closed concept in expanded
form.

Proof We define two mappings γ1 and γ2 such that for all closed ALCQme2-
concept C, γ2(γ1(C)) is in expanded form and equivalent to C. Intuitively, γ1
deals with those me that occur at depth 1 while γ2 does so for those at depth 2.
To achieve this, γ2 turns every (I.)≥nR.D in γ1(C) into a covered concept. In
what follows, we will use C[x/y] to denote the substitution of all the top-level
occurrences of x in C by y; here “top-level” means “not under the scope of
any qualified number restriction” (e.g. (me u≥nR.me)[me/A] = A u≥nR.me).
For x ∈ 2 = {0, 1} and a concept C, we let Cx denote C, if x = 1 and ¬C
otherwise.

We start by defining γ1, whose only non-trivial case is γ1(I.≥nR.C), given
by⊔
x,y,z∈2

(
I.∃R.mexuγ1(I.C[me/>])yuγ1(I.C[me/⊥])zuI.≥n−xy+xzR.γ1(C[me/⊥])

)
(13)

where I.C[me/>] (meant to be read I.(C[me/>])) distributes I among Booleans
as expected and, for n − xy = 0, we have ≥n−xy+xzR.D ≡ > (even when
n − xy + xz = 1). In essence, γ1(I.≥nR.C) eliminates the top-level me in
C, replacing it with ⊥. For this to be valid, some adjustments need to be
made: if ∃R.me and I.C[me/>] hold (at me), then we need one witness less
(zero witnesses for the case n = 1), but if ∃R.me and I.C[me/⊥] hold (at me)
we need to account for an extra “false positive” (there is a corner case when
n, x, y, z = 1, where zero witnesses are needed as well).

For γ2 we require some additional notation. We use C[x ∈ X/f(x)] to
denote the uniform substitution in C of every concept x ∈ X by f(x). For
f, g ∈ 2X , we define the function fg ∈ 2X as fg(x) = f(x) · g(x). In addition,
we let F (C) be the set of all concepts of the form ≥mS.D occurring top-level
in C without an I. in front; e.g., F ((I.≥5R.me) u ¬≥3R.A) = {≥3R.A}. Given
f ∈ 2F (C), we say that f is RC-consistent if there are no distinct ≥nR.D and

≥mR.E in F (C) such that f(≥nR.D) 6= f(≥mR.E), and denote by 2
F (C)
c the

set of all RC-consistent functions in 2F (C). Now, each f ∈ 2
F (C)
c induces these

conjunctive clauses:

Cl∗(f) =
d
≥mS.D∈F (C)D[me/∗]f(≥mS.D) (∗ ∈ {>,⊥}) (14)

Cl∃(f) =
d
≥mS.D∈F (C) ∃S.mef(≥mS.D) (15)

Moreover, given f, g, h ∈ 2
F (C)
c we define C[f, g, h], as:

C[f, g, h] = C[x = ≥mS.D ∈ F (C)/≥m−fh(x)+gh(x)S.D[me/⊥]] (16)

Again, for m − fh(x) = 0, we assume ≥m−fh(x)+gh(x)S.D ≡ >. We can now
define γ2, the only non-trivial case being that for γ2(I.≥nR.C), given by⊔

f,g∈2F (C)
c

[
γ2
(
Cl>(f) u Cl⊥(g)

)
u I.≥nR.

⊔
h∈2F (C)

c

(Cl∃(h) u γ2(C[f, g, h]))
]

(17)
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The principle behind (17) is analogous to that used for γ1. In this case we
need an equivalent of x, y and z in (13) for each concept in F (C), and we
use functions f , g and h for this. Observe that γ2(I.≥nR.C) is an R-covered
concept, where R is the set {S : ≥mS.D ∈ F (C)}. Using this insights, it is not
hard to verify that γ2(γ1(C)) is equivalent to C and in expanded form. 2

Proposition 4.3 ALCQme2 ≤Q ALCIQbe.
Proof By Lemma 4.2 we can assume that closed ALCQme2-concepts are in
expanded form. We can therefore define a translation δ, mapping concepts in
this form to ALCIQbe-concepts, by making it commute with the Booleans,
stipulating δ(I.∃R.me) = ∃R.Self and δ(≥nR.me) = ≥nR.δ(me); and taking
δ(I.≥nR.((C1 uD1) t . . . t (Cm uDm)), where the Ci are the selectors of the
R-covered concept, to be⊔

n=
∑m

j=1 kj

d
1≤i≤m≥kjθ(R,Ci).δ(Dj) (18)

where θ maps a role and selector to a safe role expression as follows:

θ(R,∃S1.me u · · · u ∃Sl.me u ¬∃Sl+1.me u · · · u ¬∃Sl.me) =

(R u S−1 u · · · u S
−
l )− (S−l+1 u · · · u S

−
m)

(19)

What δ(I.≥nR.((C1 uD1) t . . . t (Cm uDm)) does is to consider all the pos-
sible ways in which we can distribute the n required successors among the m
equivalence classes given by the selectors. The number of cases is bounded by
the number of partitions of n, which is exponential on n [4]. 2

It is not hard to verify that from this proof one also gets the following:

Corollary 4.4 ALCQme2 ≤C ALCIQbe and ALCQme2 ≤Rg ALCIQbe.
All the intermediate transformations in the above proofs incur exponential
blowups. It is not hard, however, to verify that the overall blowup in formula
size is still only exponential. In order to obtain a polynomial blowup, we
need to relax the properties we require of the translation from preservation of
satisfaction to preservation of satisfiability :

Proposition 4.5 ALCQme2 ≤∃C ALCIQbe, with only a polynomial blowup.

Proof We introduce a satisfiability preserving translation that adds fresh
atomic concept and role symbols, and ensures that a model for the translated
formula is turned into a model for the ALCQme2-formula simply by ignoring
the interpretation of the extra symbols. We can view the translation as a two-
step process. First, we map an ALCQme2-concept to an ALCQbme2-concept
(i.e., a concept of ALCQme2 enriched with safe Boolean combinations of roles)
in such a way that if ≥nR.C occurs in the resulting concept, then C 6= >
implies n = 1. This is straightforward to achieve: a concept (I.)≥nR.C, with
n > 1, occurring in a positive context (i.e., under an even number of negations)
is mapped to ≥n(RuR′).>u (I.)∀R′.C, for a fresh R′; while the same concept
in a negative context is mapped to ≥n(RuR′).>t¬(I.)∀(R−R′).¬C, with R′

fresh (these transformations need to be performed top-down).
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We therefore need only eliminate all the occurrences of I.∀R.C in the result-
ing concept. We can deal with the top-level occurrences of me in C replacing
I.∀R.C by

I.∀R.C[me/D] u ((∃R.Self uD u ≤1R.D) t (¬∃R.Self u ¬D u ∀R.¬D)) (20)

where D is fresh and C[me/D] is as in the proof of Lemma 4.2. Let I.∀R.C
occur in the concept resulting after this transformation; if me happens to occur
free in C, then some ∀S.D must occur in C with me free (top-level) in D. We
can therefore substitute I.∀R.C by

I.∀R.C[∀S.D/∀S.D[me/E]]uEu(∀(RuS−).≤1S.E)u(∀(R−S−).∀S.¬E) (21)

where E is fresh. After all the occurrences of me are eliminated, the I. can be
removed as well. It is not hard to see that these transformations incur in a
polynomial blowup and that any model for the translated formula is trivially
turned into a model for the original one by applying the forgetful mapping of
Definition 2.1. 2

5 Decidability and Complexity

It is time to discuss the decidability and complexity of the local satisfiability
problem for ALCQme2, both over empty and over general TBoxes. Because
Proposition 4.5 gives us an effective, polynomial, satisfiability preserving reduc-
tion of ALCQme2-concepts to ALCIQbe-concepts, and because Proposition 3.1
gives us a reduction in the opposite direction, the complexities of ALCQme2
and ALCIQbe must match.

While the logic ALCIQb is known to be PSPACE-complete for satisfiabil-
ity over empty TBoxes and EXPTIME-complete for satisfiability over general
TBoxes [18], not much appears to be known about the complexity of ALCIQbe.
We can conclude that it is decidable and at most in N2EXPTIME (for general
TBoxes) from the fact that the extension of sROIQ with Boolean combination
of simple roles is N2EXPTIME-complete [13] and that in ALCIQbe all atomic
roles would be “simple” in sROIQ terminology. In this section we will then
show that ALCIQbe is, in fact, not harder than ALCIQb.

The technique we will employ is a variation of the internalized tableaux
of [9]. Although we will give a specialized proof for the case of ALCIQbe,
it should be clear that our construction can be used to show that adding the
∃R.Self concept to a description logic in general does not raise its computational
complexity. The relevant property to have is the self-loop free model property,
i.e. if a concept (resp. theory) is satisfiable, then it is satisfiable in a model
without self-loops.

Lemma 5.1 ALCIQb has the self-loop free model property.

Proof Given an interpretation I, one can build an equivalent interpretation J
that is self-loop free as follows. Take as domain of J two copies of the domain
of I, i.e., ∆J = 2×∆I . Concepts and roles are preserved, except for self-loops,
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which are replaced by links to the corresponding element on the other copy;
formally we have that AJ = 2×AI and RJ is given by

{((x, a), (x, b)) : x ∈ 2, (a, b) ∈ RI , a 6= b}
∪ {((x, a), (y, a)) : x, y ∈ 2, x 6= y, (a, a) ∈ RI}

(22)

The proof that I and J are equivalent is left to the reader. 2

Lemma 5.2 TBox satisfiability in ALCIQbe can be polynomially reduced to
TBox satisfiability in ALCIQb.
Proof Let T be an ALCIQbe TBox over a vocabulary 〈NC,NR〉, and let Σ
be the smallest set that contains every concept occurring in T , is closed under
subconcepts and single negations, and contains the concept ∃R.Self for every
role expression R occurring in T . Let N′C = NC ∪{BC : C ∈ Σ}; we then define
the ALCIQb TBox T ′, over the vocabulary 〈N′C,NR〉. It contains an axiom
BC v BD for each C v D in T , plus the following definitions:

BA ≡ A (A ∈ NC) B¬C ≡ ¬BC
BCuD ≡ BC uBD B∃R.Self ≡ B∃R−.Self

B∃(RuS).Self ≡ B∃R.Self uB∃S.Self B∃(RtS).Self ≡ B∃R.Self tB∃S.Self
B∃(R−S).Self ≡ B∃R.Self u ¬B∃S.Self
B≥nR.C ≡ ((BC uB∃R.Self) u ≥n−1R.BC) t (¬(BC uB∃R.Self) u ≥nR.BC).

Recall that for n = 1, we identify ≥n−1R.C with >. Clearly, T has size linear in
the size of (T ,Σ), which in turn is linear in T . It only remains to see that T and
T ′ are equisatisfiable. It is clear that any model I for T is expanded to a model
I ′ for T ′ by setting BI

′

C = CI , for all C ∈ Σ. For the other direction, let I ′ be
a model for T ′ and notice that by Lemma 5.1, we can assume I ′ to contain no
self-loops. We then obtain a model I by restricting I ′ to 〈NC,NR〉 and adding
the necessary self-loops, i.e., setting RI = RI

′ ∪{(a, a) : a ∈ BI′∃R.Self}. It is not
hard to verify that I is a model for T . 2

Theorem 5.3 The problem of concept satisfiability over general TBoxes for
the logic ALCIQbe is EXPTIME-complete.

Proof This follows directly from Lemma 5.2 (observing that satisfiability
over general TBoxes can be reduced to TBox satisfiability) and EXPTIME-
completeness of TBox satisfiability for ALCIQb [18]. 2

Theorem 5.4 The concept satisfiability problem (over empty TBoxes) for the
logic ALCIQbe is PSPACE-complete.

Proof Given that satisfiability for ALCIQbe is PSPACE-complete [18], we
only need to give a polynomial, satisfiability preserving translation from
ALCIQbe to ALCIQb. This is done following the idea of the proof of
Lemma 5.2: given an ALCIQbe-concept C containing atomic roles R1 . . . Rm,
one builds the ALCHIQb-concept BC u ∀n(R1 t . . . t Rm).Def (B), with
n = rank(C), ∀0R.D ≡ D, ∀n+1R.D = ∀R.∀nR.D, and Def (B) is the con-
junction of the definitional axioms for the fresh concepts BD (with D ∈ Σ)
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given in the proof of Lemma 5.2. Equisatisfiability follows by a standard argu-
ment. 2

Corollary 5.5 Satisfiability over general (resp. empty) TBoxes for ALCQme2
is EXPTIME-complete (resp. PSPACE-complete).

6 Conclusions

Although it is known that decidability breaks easily when self-referential con-
cepts are added to description logics, we have shown that, under controlled
conditions, it is indeed feasible to extend ALCQ (i.e. ALC with qualified num-
ber restrictions, equivalently graded multi-modal logic) with a form of self-
referential reasoning without affecting the complexity. Specifically, we have
defined the logic ALCQme2, which includes the I-me construct that allows
naming one state at a time for future reference but limits occurrences of me to
(modal) depth at most 2 from the binding I. We have shown that ALCQme2
is expressively equivalent to the DL ALCHIQbe, which includes role inverses
and hierarchies, safe Boolean combinations of roles, and the self-loop construct
∃R.Self. The translation of ALCQme2 into ALCHIQbe, however, has an ex-
ponential blowup (it remains an open question whether this can be avoided).
We have therefore given a second reduction of ALCQme2 to ALCHIQbe that
is only satisfiability-preserving but has polynomial blowup. After subsequent
analysis of the complexity of ALCHIQbe, this has allowed us to prove that
ALCQme2 is decidable in PSPACE over the empty TBox, and in EXPTIME
over general TBoxes — the same bounds as for ALCQ or indeed basic ALC.

In future research, we will study the addition of controlled binding con-
structions to richer DLs. Because ALCHIQ is embedded in ALCQme2, it is
clear that adding nominals to the mix must put us at least in NEXPTIME,
and we conjecture NEXPTIME-completeness for this language. It would also
be interesting to know in which cases the interaction with transitive roles is
safe. A further branch of investigation is the generalization of the results at
depth 2 to extended description logics featuring, e.g., uncertainty or defaults,
modelled generically in the framework of coalgebraic logic (see, e.g., [15]), thus
improving a result at depth 1 obtained in our previous work [9].
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