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Abstract

Combinatorial proofs form a syntax-independent presentation of proofs, originally
proposed by Hughes for classical propositional logic. In this paper we present a
notion of combinatorial proofs for the constructive modal logics CK and CD, we
show soundness and completeness of combinatorial proofs by translation from and to
sequent calculus proofs, and we discuss the notion of proof equivalence enforced by
these translations.
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1 Introduction

Combinatorial proofs have first been introduced by Hughes in order to give a
“syntax-free” presentation of proof in classical propositional logic [19]. Their
motivation is to capture the essence of a proof independently from any deduc-
tive proof system, such that we can speak about proof equivalence for proofs
given in different formalisms [4]. Only recently it was possible to extend this
idea to richer logics: (classical) modal logics [6], relevant logics [5,8], first or-
der logic [20,21], and intuitionistic propositional logic [17]. In this paper we
investigate combinatorial proofs for intuitionistic logic with modalities.

There are many different flavours of “intuitionistic modal logics” (see, e.g.,
[14,30,29,31,9,12]), depending on which additional variants of the classical k-
axiom 2(A ⊃ B) ⊃ (2A ⊃ 2B) are added. It is necessary to add more
than just k, as k does not speak of the diamond modality 3, which is in the
intuitionistic case no longer the De Morgan dual of the box modality 2.

We take here the minimal approach and only add 2(A ⊃ B) ⊃ (3A ⊃ 3B)
in addition to the k-axiom, leading to what is now called constructive modal
logics in the literature [30,9,18,28,13,23]. We chose this setting because (1)
we would like to make as few assumptions as possible, (2) these logics have
a sequent calculus presentation, which makes it easier to show soundness and
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[[( 2 ( a ∧ a ) ⊃ b ) ⊃ ( 2 c ⊃ ( 2 a ⊃ b ))]]

Fig. 1. A sequent calculus derivation of the formula (2(a ∧ a) ⊃ b,2c,2a) ⊃ b and
its corresponding combinatorial proof

completeness of combinatorial proofs, and (3) there is a close relation to game
semantics for modalities [3], extending the work in [17], and lambda-calculus
proof terms for constructive modal logics [9].

The main contribution of this paper is the definition of combinatorial proofs
for the constructive modal logics CK and CD and to prove their soundness and
completeness. We also show that they form a proof system in the sense of Cook
and Reckhow [10], that is, checking the correctness of a combinatorial proof
can be done in polynomial time in its size.

A combinatorial proof of a formula F is a certain kind of homomorphism
f : G → JF K between two directed graphs. The directed graph JF K is a modal
arena and encodes the formula F . Modal arenas are an extension of the arenas
of [17], and are introduced in Section 4 of this paper. The directed graph G is a
modal arena net and encodes the “linear part” of the proof. Modal arena nets
(introduced in Section 5) are modal arenas equipped with a partition on their
vertices, carrying the information of axiom linkings in proof nets. Finally,
the homomorphism f is a skew fibration [19,17] and encodes the “resource
management part” of the proof, i.e., it collects the information carried by the
rule instances of contraction and weakening in the sequent calculus. We discuss
skew fibrations in Section 6. Figure 1 shows an example of a combinatorial proof
for the formula F = (2(a ∧ a) ⊃ b) ⊃ (2c ⊃ (2a ⊃ b)), where the solid and
squiggly arrows are the edges of the arena G and the dashed edges represent the
partition of G (encoding the ax and K2 rules). The dotted downwards directed
arrows represent the skew fibration f (encoding the W and C rules).

In order to establish a close correspondence between combinatorial proofs
and syntactic proofs in a deductive system, we need to have a decomposition
theorem which allows to factorize proofs into a linear part, capturing the logic
interactions between the components of the proof, and a resource management
part, capturing resources duplication or erasing.

The second contribution of this paper is such a decomposition theorem
for the logics CK and CD. To obtain this result, we use a combination of the
sequent calculus and deep inference. More precisely, we use the cut-free sequent
systems given in [24], and we add deep rules for contraction and weakening, in
a similar way as it has been done in [6].

However, in an intuitionistic setting, we have to distinguish between the
left-hand side and the right-hand side of a sequent, where contraction and
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LI = IMLL ∪ {C,W}
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Fig. 2. Sequent rules and sequent systems

weakening apply only to one side. Consequently, the deep versions of these
rules need to have access to the information on which side a subformula will
eventually occur. For this reason, we use polarities, in a similar way as done
in [25,32]. The polarized system and the decomposition theorem are given in
Section 3.

Finally, we discuss in Section 8 the proof equivalence (in terms of sequent
calculus rule permutations) that is induced by our combinatorial proofs and
compare it to the one induced by λ-terms [7] and the one induced by winning
innocent strategies [3].

2 Preliminaries on Constructive Modal Logics

We consider the (modal) formulas generated by a countable set of (atomic)
propositional variables A = {a, b, . . . } and the following grammar

A,B ::= a | ⊤ | A ⊃ B | A ∧B | 2A | 3A

We say that a formula is modality-free if it contains no occurrences of 2 and
3. A formula is a ⊃-formula (resp. a ∧-formula, 2-formula, or 3-formula) if it
is a formula of the form A ⊃ B (resp. A ∧B, 2A, or 3A).

The constructive modal logic CK is obtained by extending the propositional
intuitionistic logic with the necessitation rule: if F is provable then so is 2F ,
and the two modal axiom schemes k1 and k2 shown below on the left:

k1 : 2(A ⊃ B) ⊃ (2A ⊃ 2B) k2 : 2(A ⊃ B) ⊃ (3A ⊃ 3B) d : 2A ⊃ 3A

The logic CD is obtained from CK by adding the axiom scheme d on the right
above.

We are now recalling the sequent system for these logics. For this, we denote
by capital Greek letters Γ or ∆ a multiset of formulas, separated by comma. We
write 2Γ (resp. 3Γ) for any such multiset made only of 2-formulas (resp. 3-
formulas). A sequent Γ ⊢ A is a pair of a multiset of formulas and a formula.

In Figure 2, we show the sequent system LI (e.g., given in [33]) for
disjunction-free intuitionistic logic, its linear fragment IMLL 1 , and the sequent
systems LCK and LCD for the logics CK and CD, respectively, as presented
in [24]. The cut rule

Γ ⊢ A ∆, A ⊢ B
−−−−−−−−−−−−−−−−−−−− cut

Γ,∆ ⊢ B

is admissible for all four systems, and we have the following:

1 Intuitionistic multiplicative linear logic (see e.g. [26])
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Theorem 2.1 Let X for X ∈ {CK,CD}. The sequent system LX is a sound
and complete proof system for the disjunction-free fragment of the logic X.

Proof. Soundness follows from the observation that our systems are the
disjunction-free versions of the calculi in [24]. Completeness follows from the
cut elimination property. 2

If X is a set of rules, we write F ′ X

F if there is a derivation from ⊢ F ′ to

⊢ F using rules in X. Moreover, we write
X

F if there is a proof of F in X,
i.e., a derivation with empty premises of ⊢ F using rules in X.

Finally, we define the formula isomorphism as the equivalence relation f∼
over formulas generated by the following relations:

A ∧ ⊤ f∼ A A ⊃ ⊤ f∼ ⊤ ⊤ ⊃ A f∼ A

A ∧B f∼ B ∧A A ∧ (B ∧ C) f∼ (A ∧B) ∧ C (A ∧B) ⊃ C f∼ A ⊃ (B ⊃ C)
(1)

3 Polarized System and Decomposition

We define the set of polarized formulas (or P-formulas) as the set generated by
A = {a, b, . . . } using the following grammar

A◦, B◦::=a◦ | ⊤◦ | A◦ ∧B◦ | A• ⊃ B◦ | 2A◦ | 3A◦

A•, B•::=a• | ⊤• | A• ∧B• | A◦ ⊃ B• | 2A• | 3A• (2)

We say that formulas A◦, B◦, . . . are of even polarity and formulas A•, B•, . . .
are of odd polarity. Note that the polarity of a formula determines the polarity
of each subformula of that formula. For this reason we will omit the polar-
ity markings for subformulas. A polarized formula is clean if it contains no
subformulas of the shape A ⊃ ⊤•.

A polarized sequent is a sequent of P-formulas. We write Γ• for a sequent
containing only formulas of odd polarity. Then Γ•, A◦ is simply the polarized
version of a sequent Γ ⊢ A. A context is a (polarized) sequent Γ{ } in which an
atom (or more generally a subformula) has been replaced by an hole { }. Then
Γ{∆} stands for the sequent obtained from Γ{ } by replacing { } with ∆.

We can now define the polarized sequent rules given in Figure 3. Observe
that the upper part and the two rules c• and w• on the lower left are just
the polarized version of the rules in Figure 2. 2 The two rules c•↓ and w•

↓ on
the lower right are the deep version of c• and w•, respectively. They can be
applied deep inside any formula context. Note that they can only be applied
to formulas of odd polarity. Figure 4 lists the various proof systems that are
defined with these rules, and that we are using in this paper.

We can define the function ⌊·⌋ on polarized formulas that forgets the po-
larities. This function can be extended to polarized sequents with exactly one

2 Note that the ⊤•-rule is just a special case of the w•-rule. It is introduced here to simplify
the presentation of some of the results in this paper.



Acclavio and Straßburger 19
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Γ•, A◦
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Γ•, A◦
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−−−−−−−−−−−−−−−−−− k3
3A•,2Γ•,3B◦

Γ•, A◦
−−−−−−−−−−− d
2Γ•,3A◦

Γ•, A•, A•, B◦
−−−−−−−−−−−−−−−− c•
Γ•, A•, B◦

Γ•, A◦
−−−−−−−−−−−− w•
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−−−−−−−−−−−−−−− c•↓Γ{A•}
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−−−−−−− w•

↓ (for a A ̸= ⊤)
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Fig. 3. Sequent rules and deep inference rules on P-formulas

LI = LIℓ ∪ {c•,w•} LIℓ = {ax,⊤◦,⊤•,⊃◦,⊃•,∧•,∧◦}
LCK = LI ∪ {k2, k3} LCKℓ = LIℓ ∪ {k2, k3}
LCD = LI ∪ {k2, k3, d} LCDℓ = LIℓ ∪ {k2, k3, d}

Fig. 4. Rules systems for P-formulas

even formula via ⌊B•
1 , . . . , B

•
n, A

◦⌋ = ⌊B1⌋, . . . , ⌊Bn⌋ ⊢ ⌊A⌋. Since all sys-
tems defined in Figure 4 can only prove such sequents, we have an immediate
one-to-one correspondence between derivations in the polarized and the cor-
responding unpolarized systems. However, the motivation for introducing the
polarized systems is the following result.

Theorem 3.1 (Decomposition) Let X ∈ {CK,CD} and H be a P-formula.

The following are equivalent: (i)
LX

⌊H⌋; (ii)
LX

H; (iii) there is a clean

P-formula H ′ such that
LXℓ

H ′
{c•↓,w•↓}

H.

Proof. (i) ⇐⇒ (ii) follows from the paragraph above. And (ii) ⇐⇒ (iii) can
be obtained by a simple rule permutation argument and observing that every
instance of c• can be decomposed into a ∧• followed by a c•↓, and every instance
of w• is a ⊤• followed by a w•

↓. If a non-clean formula is introduced by a ⊃•,
we perform the following transformation.

LX

Γ•, B◦

...
∆•, A◦

−−−−−−−−−−−− ⊤•
⊤•,∆•, A◦

−−−−−−−−−−−−−−−−−−−−−−−−− ⊃•
Γ•, B ⊃ ⊤•,∆ ⊢ A

⇝

...
∆•, A◦

====================== ⊤• × (|Γ|+ 1)
⊤•, . . . ,⊤•,∆•, A◦
======================= w• × (|Γ|+ 1)
Γ•, B ⊃ ⊤•,∆•, A◦

(3)

We conclude by permuting the rules c•↓ and w•
↓ below all other rules, while ap-

plying the transformation above whenever a non-clean formula is introduced.2

4 Modal Arenas

A directed graph G = ⟨VG ,
G→⟩ is given by a set VG of vertices and a set

G→ ⊆
VG × VG of direct edges. A vertex v is a

G→-root, denoted v ↛ , if there is no

vertex w such that v
G→w. We denote by

→
RG the set of

G→-roots of G. A path
from v to w of length n is a sequence of vertices x0 . . . xn such that v = x0

and w = xn and xi
G→xi+1 for i ∈ {0, . . . , n − 1}. We write v

G→nw if there is
a path from v to w of length n. A directed acyclic graph (or dag for short)
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is a directed graph such that v
G→nv implies n = 0 for all v ∈ V. A two-color

directed acyclic graph (or 2-dag for short) G = ⟨VG ,
G→,

G
⇝⟩ is given by a set

of vertices VG and two disjoint sets of edges
G→ and

G
⇝ such that the graph

⟨VG ,
G→ ∪ G
⇝⟩ is acyclic. We omit the superscript when clear from context and

we denote by ∅ the empty 2-dag. We write u↭v if u⇝v or v⇝u.
If L is a set, a 2-dag is L-labeled if a label ℓ(v) ∈ L is associated to each

vertex v ∈ V . In this paper we fix the set of labels to be the set L = A∪{2,3},
where A is the set of propositional variables occurring in formulas. We use the
notation a, 2 and 3 to denote the graphs consisting of a single vertex labeled
by a, 2 and 3, respectively.

Definition 4.1 Let G, H, F be 2-dags with F ̸= ∅. We write RG
F for the set

of edges from the →-roots of G to the →-roots of F , that is RG
F = {(u, v) | u ∈

→
RG , v ∈

→
RF}. We define the following operations on 2-dags:

G +H = ⟨ VG ∪ VH ,
G→ ∪ H→ ,

G
⇝ ∪ H

⇝ ⟩
G−▷F = ⟨ VG ∪ VF ,

G→ ∪ F→ ∪RG
F ,

G
⇝ ∪ F

⇝ ⟩ and G−▷∅ = ∅
G∼▷H = ⟨ VG ∪ VH ,

G→ ∪ H→ ,
G
⇝ ∪ H

⇝ ∪RG
H ⟩

We associate to each formula F a L-labeled 2-dag JF K as follows:

JaK = a JA ⊃ BK = JAK−▷JBK J2AK = 2 ∼▷JAK
J⊤K = ∅ JA ∧BK = JAK + JBK J3AK = 3 ∼▷JAK (4)

For a sequent B1, . . . , Bn ⊢ A, we define JB1, . . . , Bn ⊢ AK as
J(B1 ∧ · · · ∧Bn) ⊃ AK.

Example 4.2 Consider the sequent Γ ⊢ A = 2a ⊃ 2(b∧ c), d ⊢ 3(e ⊃ f). We
have

J2a ⊃ 2(b ∧ c), d ⊢ 3(e ⊃ f)K =

2 2 3

a c f

b d e
((J2aK −▷ J2(b ∧ c)K ) + JdK) −▷ J3(e ⊃ f)K

In the following, we give a characterization of those 2-dags that are encod-
ings of formulas.

Definition 4.3 A L-labeled dag G = ⟨VG ,
G→⟩ is an arena if G is

- L-free: if a→u and a→w→v then u→v;

- Σ-free: if a→v, a→w, b→w and b→u then a→u or b→v;

A modal arena G = ⟨VG ,
G→,

G
⇝⟩ is an L-labeled 2-dag such that

- ⟨VG ,
G→⟩ is an arena;

- G is properly labeled : if v
G
⇝w, then ℓ(v) ∈ {2,3};

- ⇝ is modal, that is:
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MA.1 if v⇝w and w⇝u, then v⇝u ;
MA.2 if v⇝w and u⇝w, then u↭v ;
MA.3 if v⇝w and v⇝u, then u↛w ;

MA.4 if v⇝w and u→v, then u→w ;
MA.5 if v⇝w and v→u, then w→u ;
MA.6 if v⇝w and w→u, then v→u .

We write V A
G (resp. V 2

G , V 3
G ) for the subsets of vertices of G with labels

in A (resp. in {2}, in {3}). The vertices in V A
G are called atomic, and the

vertices in V 23
G = V 2

G ∪ V 3
G are called modal.

The relation between arenas and modality-free clean formulas has been
established in [17].

Lemma 4.4 ([17]) In an arena, if u→nw and v→mw, then

either {x | v→nx} ⊆ {x | w→mx} or {x | w→mx} ⊆ {x | v→nx} .

Theorem 4.5 ([17]) An L-labeled 2-dag G is an arena iff there is a modality-
free clean formula F such that G = JF K.

We now extend this result to modal formulas.

Lemma 4.6 Let G be a modal arena, and let u, v, w ∈ VG. If v⇝w then:

(i) v is a →-root iff w is a →-root;

(ii) v→nu iff w→nu;

(iii) if u→nv then u→nw.

Proof. The first statement follows from the fact that in a modal arena, if
v⇝w, then v→u iff w→u. The second statement is proven using the same
argument, proceeding by induction on n making use of Lemma 4.4. The third
statement is also proven using Lemma 4.4 and the fact that in a modal arena
if v⇝w and u→v, then u→w. 2

Lemma 4.7 If F is a formula, then the L-labeled 2-dag JF K is a modal arena.

Proof. By induction over the number of connectives and modalities of a for-
mula. It suffices to remark that the graph operations + and−▷ cannot introduce
forbidden modal arena configurations. Similarly, the operation ∼▷ introduces
no forbidden configurations whenever G = G1∼▷G2 with G1 a single vertex graph
of the form 2 or 3. 2

In order to prove the converse, we need the following definitions.

Definition 4.8 Let v be a modal vertex of a modal arena G. The scope of v
is the set

Scope(v) = { w ∈ VG | there is a u ∈ VG s.t. v⇝u and w→∗u and w↛∗v }

Intuitively, the scope of a modal vertex v in JF K is the set of vertices corre-
sponding to modalities and atoms in the scope of the corresponding modality
in F . To give an example, consider the arena in Example 4.2. There, e is in
the scope of the 3 while d is not. In fact, despite the existence of f such that
3⇝f and d→f and e→f , we have e ∈ Scope(3) since e→f and e↛f , while
d /∈ Scope(3) since d→f and d→3.
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Theorem 4.9 An L-labeled 2-dag G is a modal arena iff G = JF K for some
formula F .

Proof. The “if” direction has been shown in Lemma 4.7. For the “only if”
direction, we proceed by induction on the size of G. If G = ∅ then F = ⊤.
If |VG | = 1 then if ℓ(v) ∈ A, then F = a ∈ A, if ℓ(v) = 3 or ℓ(v) = 2 then

F = 3⊤ or F = 2⊤, respectively. Otherwise, since ⟨VG ,
G→⟩ is a arena, we

conclude by Lemma 4.4 (see [17]) that

(i) either every vertex in VG \
→
RG has a →-paths to all roots in

→
RG ,

(ii) or
→
RG admits a partition

→
RG = R1 ⊎R2 such that any vertex in G has

→-paths only to roots in one of the two sets.

If (i) holds, then we define G2 as the modal arena obtained from G taking the
vertices in V2 =

→
RG ∪

(⋃
v∈→

RG
Scope(v)

)
and G1 as the modal arena over the

remaining vertices V1 = VG \ V2. Since each vertex in G has a path to all the
roots in

→
RG , then there is a → from any root of G1 to any root of G2. Since by

definition
→
RG2

=
→
RG , then we have that G = G1−▷G2.

If (ii) holds and
→
RG = R1 ⊎ R2 with R1 and R2 non-empty sets. Since ⇝

is modal, we have the following possibilities:

(a) if R1 = {v} and v⇝w for all w ∈ R2, then there is no u such that
u→v. Otherwise u→v and u→w for all w such that v⇝w, that is for
all w ∈ R2. This implies that u⇝w for all w ∈ →

RG , which contradicts
(ii). Thus we conclude that G = v∼▷G′ where G′ is the modal arena with
vertices Scope(v);

(b) if there are no ⇝-edges between R1 and R2, then G = G1 + G2 where G1
and G2 are the modal arenas with vertices V1 = {v | v→∗w for a w ∈ R1}
and V2 = {v | v→∗w for a w ∈ R2}. In fact by definition there are no
→-edges between vertices in V1 and V2 otherwise by Lemma 4.4 we should
have R1 = R2. Similarly there are no ⇝-edges between vertices in V1 and
V2 since there are no ⇝-edges between R1 and R2 (by hypothesis) and
if there is v ∈ V1 \ R1 and w ∈ V2 such that v⇝w, then by Lemma 4.6
w /∈ R2 and we should have again R1 = R2;

(c) otherwise, we pick a v ∈ →
RG ∩

⇝
RG and define R1 = {v} ∪ {w | v⇝w} and

R2 =
→
RG\R1. If there is no u ∈ →

RG such that v⇝̸u, then R1 =
→
RG and we

conclude by (a). If R2 ̸= ∅, then we define V1 = {v | v→∗w for a w ∈ R1}
and V2 = {v | v→∗w for a w ∈ R2} and we conclude by (b). 2

In light of this theorem, we may say that a vertex in JF K corresponds to an
occurrence of an atom or a modality in the formula F .

We conclude this section by remarking that modal arenas identify formulas

modulo the formula isomorphism f∼ defined by the relations in Equation (1).

Proposition 4.10 For any formulas F and G we have F f∼ G iff JF K = JGK.

Proof. This follows from the definition of the modal arena operations +, −▷
and ∼▷. 2
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5 Modal Arena Nets

We introduce the notion of CK- and CD-arena nets, which are modal arenas
equipped with an equivalence relation over vertices, satisfying certain condi-
tions capturing the idea of “axiom links” in proof nets. We then show the
correspondence between these modal arena nets and the linear proofs in LCKℓ

and LCDℓ, respectively.

Definition 5.1 A partitioned modal arena G = ⟨VG ,
G→,

G
⇝,

G∼⟩ is given by a

modal arena ⟨VG ,
G→,

G
⇝⟩ together with an equivalence relation

G∼ over vertices
such that:

- if v ∈ V A
G and v

G∼w, then w ∈ V A
G and ℓ(v) = ℓ(w);

- if v ∈ V A
G , then v

G∼w for a unique w ∈ V A
G .

In a partitioned modal arena we represent the equivalence relation ∼ by
drawing a (dashed non-oriented blue) edge v w between two distinct vertices
in the same ∼-class. For better readability, we only represent a minimal subset
of these edges relying on the fact that ∼ is an equivalence relation. By means
of example, if {u, v, w} is an ∼-class, we may only draw u v w omitting the
edge between u and w.

We say that a formula (or P-formula) F is associated to G = ⟨VG ,
G→,

G
⇝,

G∼⟩
if JF K = ⟨VG ,

G→,
G
⇝⟩, and we denote by ∅ the empty arena net.

Remark 5.2 If v and w are vertices in a partitioned modal arena G such that

v
G∼w, then v ∈ V 23

G iff w ∈ V 23
G . If an

G∼ equivalence class contains more than
two vertices then they are all labelled by 3 or 2.

If G is a modal arena and v ∈ VG , we define the depth of v (denoted d(v)) to
be the length of the →-paths from v to a →-root w ∈ →

RG . This is well-defined
as all such paths have the same length (see [17, Lemma 9]). The parity of
a vertex v is the parity of d(v), which can be either even or odd. We write
v◦ or v• if the parity of v is respectively even or odd. Note that if F ◦ is a
P-formula, then the parity of the vertices in JF ◦K are the same as the polarity
of the corresponding atoms (and modal subformulas) in F ◦.

The parity of an →-edge v→w is the parity of d(w). We say that an edge
v→w is a chord if there is a vertex u such that either v→u and u⇝w; or u→w
and u⇝v. By means of example, in the following modal arenas the edges a→b
are chords.

a 2 b 2 a b

We write by
G→• the set of odd →-edges in G that are not chords. In the

following, we may depict →-edges which are not →• -edges using dotted edges.
If v is a vertex in a modal arena G = JF K, we denote by v̂ either v itself

if there is no w such that v ∈ Scope(w), or the vertex w = v̂ such that v ∈
Scope(w) and w ∈ Scope(u) for all u ̸= w with v ∈ Scope(u). That is, if v ̸= v̂,
then v̂ is the first modal vertex we encounter on in the path from v to the
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2 2

2 2

a a

⇝

2 2

2 2

a a

2 2 3

a c f

b d e

⇝

2 2 3

a c f

b d e

Fig. 5. The arenas of the sequents ⊢ 22a ⊃ 22a and 2a ⊃ 2(b ∧ c), d ⊢ 3(e ⊃ f)
and the corresponding graphs obtained by replacing the ⇝-edges with ⇝∂-edges.

root of the formula tree of F . By means of example, in Example 4.2 we have
f̂ = ê = 3̂ = 3 and d̂ = d.

We define the edge relation
G
⇝∂ as follows

v
G
⇝∂w if either w◦ and w = v̂ ̸= v, or v• and v = ŵ ̸= w

Intuitively, the ⇝∂-edges connect a modality to the root of the formula in
its scope “one step at the time” (see Figure 5). Note that v•⇝∂w

• implies
v•⇝w•, while v◦⇝∂w

◦ implies w◦⇝v◦.

Definition 5.3 A partitioned modal arena G is linked if every
G∼-class is of

the form {v•1 , . . . , v•n, w◦}. This induces the set directed edges
G
⇀ = {(v, w) |

v•
G∼w◦}. The linking graph

↷
G of a modal arena is the directed graph with

vertices VG and edges
G→• ∪

G
⇝∂ ∪

G
⇀. We say that path in

↷
G is checked if it

ends in a vertex in
→
RG ∩

⇝
RG and it contains no edge v⇀w with w a modal

vertex with Scope(w) ̸= ∅.
A CK-arena net is a linked modal arena which satisfies Conditions (i)–(iv)

below:

(i)
↷
G is acyclic: every checked path is acyclic;

(ii)
↷
G is functional : every checked path in

↷
G from a vertex v• to a root includes

a vertex w◦ such that v→w;

(iii) G is functorial : if v⇝w and w∼w′ then there is v′ such that v∼v′ and
v′⇝w′;

(iv) G is CK-correct : if {v•1 , v•2 , . . . , v•n, w◦} is a ∼-class of modal vertices, then
either v1, v2, . . . , vn, w ∈ V 2

G or there is a unique i such that vi, w ∈ V 3
G .

A linked modal arena is a CD-arena net if it satisfies Conditions (i)-(iii) above,
plus the following:

(v) G is CD-correct : if {v•1 , v•2 , . . . , v•n, w◦} is a ∼-class of modal vertices, then
either v1, v2, . . . , vn, w ∈ V 2

G or w ∈ V 3
G there is at most one i ∈ {1, . . . , n}

such that vi ∈ V 3
G .

A modal arena net is either a CK- or a CD-arena net. An arena net is a modal
arena net with V 23 = ∅. Note that in this case Conditions (iii)-(v) are vacuous.

The intuition for Conditions (iv) and (v) is that ∼-classes represent either
atoms paired by an ax, or the set of modalities introduced by a same instance
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−−−−−−−− ax
a a

F ,G ⊢ H
−−−−−−−−−−−− ⊃◦
F ⊢ G−▷H

F ⊢ G J ,K ⊢ H
−−−−−−−−−−−−−−−−−−−−− ⊃•
F ,J ,G−▷K ⊢ H

F ⊢ G I ⊢ K
−−−−−−−−−−−−−−−−− ∧◦
F , I ⊢ G +K

F ,G,H ⊢ K
−−−−−−−−−−−−−−−− ∧•
F ,G +H ⊢ K

⟨G1, . . . ,Gn ⊢ H |
G∼⟩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k2

⟨2∼▷G1, . . . ,2∼▷Gn ⊢ 2∼▷H | G∼ ∪ k∼⟩

⟨G1, . . . ,Gn ⊢ H |
G∼⟩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k3

⟨2∼▷G1, . . . ,3∼▷Gi, . . . ,2∼▷Gn ⊢ 3∼▷H | G∼ ∪ k∼⟩

−− ⊤◦
∅

F ⊢ G
−−−−−−−−− ⊤•
∅,F ⊢ G

⟨G1, . . . ,Gn ⊢ H |
G∼⟩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− d
⟨2∼▷G1, . . . ,2∼▷Gn ⊢ 3∼▷H | G∼ ∪ k∼⟩

Fig. 6. Translation of LCKℓ and LCDℓ sequent rules in modal arenas rules where
k∼

is the equivalence class containing all vertices in the conclusion which are not in the
premise. Note that G,H and K have to be non-empty.

of a K2, K3 or D-rule. Following this intuition, if c = {v0, v1, . . . , vn} ⊆ V 23
G

is a ∼-class, then the modal arena with vertices
⋃

v∈c Scope(v) corresponds to
the sub-proof of the premise of any such rule.

Lemma 5.4 Let X ∈ {CK,CD} and F be a clean P-formula. If
LXℓ

F , then

there is a X-arena net G = ⟨VG ,
G→,

G
⇝,

G∼⟩ such that JF K = ⟨VG ,
G→,

G
⇝⟩.

Proof. Let D be a derivation of F in LXℓ. We proceed by induction on D
translating it into a derivation of the desired modal arena net G via the rules
in Figure 6. By definition, each rule in LXℓ preserves X-arena net conditions,
that is, if the premises of a rule are X-arena nets, then the conclusion is. Note
that Condition (iv) fails for the rule D, while Condition (v) holds. 2

Lemma 5.5 Let X ∈ {CK,CD} and F be a clean P-formula. If G is an X-arena

net with associated P-formula F , then
LXℓ

F .

Proof. We prove the theorem for CK-arena nets since the proof for CD-arena
nets is similar by considering also the rule D.

If G = ⟨∅, ∅, ∅, ∅⟩, we conclude since J⊤K = ∅ and
LCKℓ

⊤◦. Otherwise to
prove this theorem we define from the CK-arena net G, with associated clean
P-formula F , an arena net ∂(G) with associated formula ∂(F ). We then use use
of the result in [17] on (non-modal) arena nets to produce an LXℓ-derivation of
∂(F ). Then we conclude by showing how to define a LXℓ-derivation of F using
the LIℓ-derivation of ∂(F ).

Step 1: definition of ∂(G). Let G = ⟨VG ,
G→,

G
⇝,

G∼⟩ be a CK-arena net. We
write v ↓∼w either if v̂∼ŵ, or if v = v̂ and w = ŵ, that is, v ↓∼w iff either both
v and w are not in the scope of any modality, or both v and w belong to the
scope of modalities in the same ∼-class.

We define the arena ∂(G) by removing all ⇝-edges in G and keeping only
the → between vertices v, w ∈ VG such that v ↓∼w. Then we replace each modal
vertex v by a pair of ⇀-linked vertices vin, vout in such a way that the vertex
vin keeps track of the subformulas of the modality, while vout is a placeholder
to keep track of the interaction of the subformulas with the context.

Formally we define ∂(G) = ⟨∂(VG) , ∂(
G→ ∪ G
⇝) ,

∂(G)∼ ⟩ by:
- ∂(VG) = V A

G ∪ {vin, vout | v ∈ V 23
G } ;
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- ∂(
G→ ∪ G
⇝) is the union of the following five sets:{

(lout, rout) | l⇀r
} ⋃ {

(u, v) | u ↓∼v and u→v
}{

(u, rin) | u⇝∂r
} ⋃ {

(lin, u) | l⇝∂u
}{

(u,mout) | u→m and u ↓∼m
} ⋃ {

(mout, v) | m→v and m ↓∼v
}{

(mout, nout) | m→n and m ↓∼n
} ⋃ {

(mout, nout) | m→n and m ↓∼n
}

where we assume u, v ∈ V A
G and l•, r◦,m, n, p ∈ V 23

G ;

-
∂(G)∼ is defined as: v

∂(G)∼ w if v
G∼w and as vin

∂(G)∼ vout for each v ∈ V 23
G .

See the first line of Figure 8for a running example.

We observe that if {v◦0 , v•1 , . . . , v•n} is a
G∼-class of modal vertices, then a P-

formula associated to G is of the form H = H{ℓ(v0)A◦
0}{ℓ(v1)A•

1} · · · {ℓ(vn)A•
n}

for an (n+ 1)-ary context H{ } · · · { }. In this case, a P-formula associated to
the arena ∂(G) is of the form ∂(H) = ∂(H){vout0

◦}{vout1
•} · · · {voutn

•}{H•
c } with

∂(H){ } · · · { } is an (n+ 2)-ary context, fresh propositional variables vini , v
out
i

for all i ∈ {0, . . . , n} and

H•
c =

(((
vin1 ⊃ ∂(A•

1) ∧ · · · ∧ vinn ⊃ ∂(A•
n)
)
⊃ ∂(A◦

0)
)
⊃ vin0

)•

Step 2: proof that ∂(G) is an arena net. We observe that, by definition of

∂(G), every path ∂(p) in
↷

∂(G) can be constructed from a checked path p in
↷
G

by induction:

- the empty path is a path in both
↷
G and

↷
∂(G);

- if p = v · p′
· if v ∈ V A

G , then ∂(p) = v · ∂(p)′;
· if v◦ ∈ V 23

G , then ∂(p) = vout · vin · ∂(p)′;
· if v• ∈ V 23

G , then ∂(p) = vin · vout · ∂(p)′;
We remark that the parity of atomic vertices is preserved by ∂, while the parity
of a modal vertex v ∈ VG is the same as the corresponding vertex vout ∈ V∂(G).
Since if v• then vout⇀vin, and if v◦ then vin⇀vout, then we have that in ∂(G)
an even (odd) vertex may occur only in a even (odd) position in a path in

↷
G .

We conclude since from any path in
↷

∂(G) we obtain a path in
↷
G by replacing

every subpath vout⇀vin and vin⇀vout by a the corresponding modal vertex v
in G.

By this correspondence between checked paths in
↷
G and paths in

↷
∂(G) we

conclude that
↷

∂(G) is acyclic and functional. That is, ∂(G) is an arena net.
Step 3: construct the derivation associated to ∂(G). Since ∂(G) is an arena

net, then we apply the result in [17] to produce a derivation in LIℓ of the formula
∂(F ). In such a derivation, by functionality and functoriality of G, whenever
v and w are modal vertices such that v

G
⇀w, then if a path in

↷
∂(G) contains

vout, then it also contains vin, win, wout. This means that if c = {v◦0 , v•1 , . . . , v•n}
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CKℓ

A•
1, . . . , A

•
n, A

◦
0

∂(D′)
∥∥∥∥LIℓ

2out•
1 , . . . ,2out•

n , F •
c ,2

out◦
0

D{2out◦
0 }{2out•

1 }···{2out•
n }{F•

c }
∥∥∥∥CKℓ

∂(F ){2out◦
0 }{2out•

1 } · · · {2out•
n }{F •

c }

⇝

CKℓ

A•
1, . . . , A

•
n, A

◦
0−−−−−−−−−−−−−−−−−−−−−−− k2

2A•
1, . . . ,2A

•
n,2A

◦
0

D{2A◦
0}{2A•

1}···{2A•
n}{∅}

∥∥∥∥CKℓ

F{20A
◦
0}{21A

•
1} · · · {2nA

•
n}

Fig. 7. An example of the construction of the derivation of F from the derivation of
∂(F ) assuming that in G there is only one ∼-class of the form {20, . . . ,2n}

is an
G∼-class of vertices in

G
⇝, then any derivation of ∂(F ) in LXℓ contains a

subderivation of the sequent vout1
•
, . . . , voutn

•
, H•

c , v
out
0

◦
of the following form

−−−−−−−−−−− ax
vout1

•
, vin1

◦ · · · −−−−−−−−−−− ax
voutn

•
, vinn

◦ LIℓ

∂(A1)
•, . . . , ∂(An)

•, ∂(A0)
◦

========================================================================== ⊃L

vout1
•
, . . . , voutn

•
, vin1 ⊃ ∂(A1)

•, . . . , vinn ⊃ ∂(An)
•, ∂(A0)

◦
================================================================== ∧L

vout1
•
, . . . , voutn

•
,
∧n

i=1(v
in
i ⊃ ∂(Ai))

•, ∂(A0)
◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃R

vout1
•
, . . . , voutn

•
,
∧n

i=1(v
in
i ⊃ ∂(Ai)) ⊃ ∂(A0)

◦
−−−−−−−−−−− ax
vin0

•
, vout0

◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

vout1
•
, . . . , voutn

•
,
(∧n

i=1(v
in
i ⊃ ∂(Ai)) ⊃ ∂(A0)

)
⊃ vin0

•
, vout0

◦

In order to construct a derivation in LCKℓ of the formula F it suffices to

proceed by induction over the number of
G∼-classes of modal vertices. Starting

from the top of the derivation, we replace every such subderivation in the
derivation of ∂(F ) with an application of a K2- or a K3-rule, we remove all
the occurrences of the formula H•

c =
(∧n

i=1(v
in
i ⊃ ∂(Ai)) ⊃ ∂(A0)

)
⊃ vin0

•
in

the derivation, and we replace for each i ∈ {0, . . . , n} the atom vini with the
corresponding formula ℓ(vi)Ai as shown in Figure 7. For a running example,
refer to the lower line of Figure 8. 2

By Lemma 5.4 and Lemma 5.5 we have the following theorem.

Theorem 5.6 Let X ∈ {CK,CD} and F be a clean P-formula. Then

LXℓ

F ⇐⇒ there is a X-arena net G with G = JF K

6 Skew Fibrations

After having characterized the linear part of a proof in CK or CD, we will
now characterize the maps between modal arenas that characterize derivations
built from the deep rules w•

↓ for weakenning and c•↓ for contraction (shown in
Figure 3).

Let u, v, and w be vertices in a modal arena. We say that u is a meeting
point of v and w whenever v→∗u and w→∗u, and there is no vertex u′ ̸= u
such that v→∗u′ and w→∗u′ and u′→∗u. The meeting depth of v and w is the
depth of their meeting point, or -1 if no meeting point exists. Note that this is
well defined as all meeting points of v and w have the same depth (this follows
from [17, Lemma 9]). Two distinct vertices v and w are conjunct, denoted v⋏w
if their meeting depth is odd (or equal to -1).
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c b

c 2
1

2
0

b

a a

∂
⇝

c b

c 2
out

1
2

in

1
2

in

0
2

out

0
b

a a

⇕ ⇕

−−−−−− ax
c•, c◦

−−−−−−− ax
a•, a◦

−−−−−−−−−−− k2
2a•,2a◦

−−−−−−−−−−−−−−−−−−−−−−−− ⊃•
c•, c ⊃ 2a•,2a◦

−−−−−−−−−−−−−−−−−−−−−−− ⊃◦
c•, (c ⊃ 2a) ⊃ 2a◦ −−−−−− ax

b•, b◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃•
c•, ((c ⊃ 2a) ⊃ 2a) ⊃ b•, b◦

∂−1

⇝ −−−−−− ax
c•, c◦

−−−−−−−−−−−− ax
2in

1
•
,2out

1
◦ −−−−−−− ax

a•, a◦
−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

2out
1

•,2in
1 ⊃ a•, a◦

−−−−−−−−−−−− ax
2in

0
•
,2out

0
◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

2out
1

•,2in
1 ⊃ a•, a ⊃ 2in

0
•
,2out

0
◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

2out
1

•, (2in
1 ⊃ a) ∧ (a ⊃ 2in

0 )
•,2out

0
◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

c•, c ⊃ 2out
1

•, (2in
1 ⊃ a) ∧ (a ⊃ 2in

0 )
•,2out

0
◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃R

c•, (2in
1 ⊃ a) ∧ (a ⊃ 2in

0 )
•, (c ⊃ 2out

1 ) ⊃ 2out
0

◦ −−−−−− ax
b•, b◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

c•, (2in
1 ⊃ a) ∧ (a ⊃ 2in

0 )
•, ((c ⊃ 2out

1 ) ⊃ 2out
0 ) ⊃ b•, b◦

Fig. 8. A K-arena net G with associated formula (c ∧ ((c ⊃ 2a) ⊃ 2a) ⊃ b) ⊃ b, its
corresponding arena ∂(G), the LCKℓ-derivation associated to G and the LIℓ-derivation
associated to ∂(G)

Definition 6.1 Amodal arena homomorphism is either a map ∅G : ∅ → G from
the empty 2-dag to a modal arena G, or a structure preserving map f : H → G
between two modal arenas, i.e., its a function f : VH → VG that preserves: 3

→ : if v
H→w then f(v)

G→f(w) d : d(v) = d(f(v))

⇝ : if v
H
⇝w then f(v)

G
⇝f(w) ℓ : ℓ(v) = ℓ(f(v))

A (modal) skew fibration is a modal arena homomorphism f : H → G which:

- preserves ⋏: if v ⋏H w then f(v)⋏G f(w);

- is a skew lifting : if f(v)⋏Gw, then there exists u with u⋏Hv and f(u) ⋏̸Gw.

- is a modal lifting : if f(v)
G
⇝f(w), then there exists u with u

H
⇝w and

f(u) = f(v).

Lemma 6.2 The composition of two skew fibrations is a skew fibration.

Proof. By definition, the composition preserves →, ⇝, ℓ and d. Then the
preservation of ⋏ and the skew lifting condition of the composition are guar-
anteed as consequence of the preservation of d and →. Similarly, the modal
lifting condition of the composition is guaranteed as consequence of the preser-
vation of ⇝ and the fact that source and target of a skew fibration are modal
arenas. 2

In order to prove the correspondence between {c•↓,w•
↓} derivations and skew

fibrations, we provide the following definition.

3 In [17] the definition of skew fibration only demands the weaker root preserving condition
(that is, if v ∈ →

RH then f(v) ∈ →
RG) instead of the depth preserving condition d(v) = d(f(v))

that we use here. However, in the same paper it is proven that root preservation is equivalent
to depth preservation.
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Definition 6.3 If f1 : H1 → G1 and f2 : H2 → G2 are modal arena homomor-
phisms such that H1 and H2 are disjoint modal arenas, we define the following
modal arena homomorphisms:

f1 + f2 = f1 ∪ f2 : H1 +H2 → G1 + G2
f1−▷f2 = f1 ∪ f2 : H1−▷H2 → G1−▷G2 (H2, G2 ̸= ∅)
f1∼▷f2 = f1 ∪ f2 : H1∼▷H2 → G1∼▷G2
[f1, f2] = f1 ∪ f2 : H1 +H2 → G (G1 = G2 = G)

(5)

Lemma 6.4 The operations from Definition 6.3 preserve skew fibration prop-
erties.

Proof. It suffices to check that if f1 and f2 are skew fibrations, then also
f1 + f2, f1−▷f2, f1 ∪ f2, f1∼▷f2 and [f1, f2] are. 2

Lemma 6.5 Let H ′ and H be P-formulas. If H ′
{c•↓,w•↓}

H, then there is a skew
fibration f : JH ′K→ JHK.

Proof. After Lemma 6.2, it suffices to prove that if
H ′
−−− ρ
H

for a ρ ∈ {w•
↓, c

•
↓}.

then there is a skew fibration f : JH ′K → JHK. This is immediate after
Lemma 6.4 after remarking that any map ∅G : ∅ → G is a skew fibration. 2

To prove the converse, we need some additional definitions and results.

Definition 6.6 Two distinct vertices v and w in a modal arena they are dis-
junct, denoted v ⋎ w, if their meeting depth is even. An odd skew fibration is
either a map ∅G : ∅ → G, or a modal arena homomorphism f : H → G which:

- preserves ⋎: if v ⋎H w then f(v)⋎G f(w);

- is a odd skew lifting : if f(v) ⋎G w, then there exists u with v ⋎H u and
f(u) ̸⋎Gw.

Lemma 6.7 If f : H → G be a modal arena homomorphism and G = G1 + G2,
then f = f1 + f2 with f1 : H1 → G1 and f2 : H2 → G2 modal arena homomor-
phisms for some H1,H2 such that H = H1 +H2.

Proof. Since f preserves →, then if v→∗w for a w ∈ →
RG then f(v)→∗f(w).

Thus if G = G1 + G2, then there is a partition
→
RG =

→
RG1 ⊎

→
RG2 . As remarked

in the proof of Theorem 4.9, in construction such partition, because of ⇝-
coherence, whenever v⇝w then v and w belong to the same subset. Then we
can define VH1

and VH2
as the sets of vertices of H which images by f admit

a →-path to a vertex in
→
RG1

and
→
RG2

respectively. The modal arenas H1 and
H2 are defined from H by the sets VH1 and VH2 respectively. 2

Lemma 6.8 Let f : H → G be a skew fibration or an odd skew fibration, with
G = G1−▷G2 and G1 modal arenas. If there exist two modal arenas H′ and H′′

such that H = H′−▷H′′ and H′′ cannot be written as −▷ of two modal arenas,
then f(v) ∈ VG2

for all v ∈ VH′′ .

Proof. Let v ∈ H′′ such that f(v) ∈ G1. Since f preserves d, then v /∈ →
RH.

Thus H′′ cannot be a single-vertex modal arena. If H′′ is a + of two modal
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arenas, then there is z ∈ →
RH′′ such that v↛∗z, hence v⋏z inH but f(v) ̸ ⋏f(z)

in G. Therefore f is not a skew fibration. Let f(z) = w. Then f(v)⋎w because
f(v) ∈ G1 and w ∈ →

RG . If there is a u with v ⋎ u in H then there is x ∈ VH
such that u→x◦ and v→x◦. Since x→∗w we have f(u)⋎w, which means that
f cannot be an odd skew fibration either. Then H′′ has to be of the shape
w∼▷H′′

2 and f(w) ∈ G2 because v ∈ →
RH. We can conclude as for the previous

case that f is not an even or odd skew fibration. Contradiction. 2

Lemma 6.9 Let f : H → G is an odd skew fibration, with G = G1−▷G2 for a
modal arena G1. If there is a modal arena H′ such that H = H′−▷H′′, then there
are H1 and H2 such that H = H1−▷H2 and f = f1−▷f2 where f1 : H1 → G1
and f2 : H2 → G2 are modal arena homomorphisms.

Proof. By hypothesis, we can assume that H is of the form H = H′−▷H′′

where H′′ is not a −▷ of two modal arenas. We conclude by Lemma 6.8 that
f(v) ∈ VG2 for any v ∈ VH′′ . If VG2 = f(VH′′), then we conclude that H1 = H′

and H2 = H′′. Otherwise, let H′ = H′
1 + · · ·+H′

n such that H′
i is a + of two

modal arenas for no i ∈ {1, . . . , n}. If v, w ∈ VH′ , then there is a (→← ∪↭)-
path from v to w in VH′ iff there is i ∈ {1, . . . , n} such that v, w ∈ VH′

i
. Since

→
RG ⊂ f(VH′′), this implies that if there is i ∈ {1, . . . , n} such that v, w ∈ VH′

i
,

then there is (→← ∪↭)-path from f(v) to f(w) in VG \
→
RG . That is, f(VH′

i
) is

either a subset of VG1
or a subset of VG2

for all i ∈ {1, . . . , n}. Without loss of
generality we assume there is j such that that f(VH′

i
) ⊂ VG1

for all i ≤ j. We
conclude that H1 = H′

1 + · · ·+H′
j and H2 = (H′

j+1 + · · ·+H′
n)−▷H′′. 2

Lemma 6.10 Let f : H → G be a modal arena homomorphism and G = v∼▷G′.
If f is a skew fibration then, H = w∼▷H′ and f = 1w∼▷f ′ with f ′ : H′ → G′ a
skew fibration. If f is odd skew fibration, then

- either H = w∼▷H2 and f = 1w∼▷f2 with f2 : H2 → G2 an odd skew
fibration;

- or H = (w∼▷H1) +H2 and f = [f1, f2] with f1 : (w∼▷H1)→ (v∼▷G2) and
f2 : H2 → (v∼▷G2).

Proof. If f is a skew fibration, then to conclude it suffices to remark there is
a unique w such that f(w) = v since v ∈ →

RG . If f is an odd skew fibration,
let w such that f(w) = v. If VH \ {w} = Scope(w), then we can conclude.
Otherwise we conclude with H2 be the modal arena with vertices in VH \
({w} ∪ Scope(w)). 2

Lemma 6.11 Every skew fibration is of the form 1G , f◦ +
g◦ , f•−▷g◦ or 1v∼▷g◦ . Every odd skew fibration is of the form
1G , [f•, g•] , f• + g• , f◦−▷g• , 1v∼▷g• or ∅G , where f◦ and g◦ are
skew fibrations, f• and g• are odd skew fibrations, v ∈ V 23

JHK, and G can be any
modal arena.

Proof. By case analysis, let f : H → G be a modal arena homomorphism,
remarking that for any modal arena G, the identity map 1G is by definition an
even and an odd skew fibration. If f◦ : H → G is a skew fibration, then
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- if G is a single-vertex modal arena, then H cannot be either of the shape
H1 + H2 or H1∼▷H2 otherwise f would not preserve ⋏, or of the shape
H1−▷H2 otherwise it would not preserve d. Then f = 1v with v the unique
vertex in VH = VG ;

- if G = G1 +G2, then by Lemma 6.7 we have that f◦ = f1 + f2 with f1 and
f2 arena homomorphisms. Since f◦ is an even skew fibration, it follows
by definition of + that f1 and f2 are skew fibrations;

- if G = G1−▷G2, then we define V1 = {v ∈ VH | f(v) ∈ G1} and V2 = {v ∈
VH | f(v) ∈ G2}. We have that V2 ̸= ∅ since f preserve d. If V1 = ∅,
then f = ∅G1

−▷f2 with f2 : H → G2. Otherwise, V1 ̸= ∅ and H cannot be
a single vertex. Similarly, H cannot be of the shape H1 + H2 otherwise
f would not preserve ⋏, nor of the shape v∼▷H2 otherwise f would not
be modal. We conclude by Lemma 6.9 that f = f1−▷f2. Moreover, since
f is a skew fibration if follows that f2 also preserves ⋏ and satisfies skew
lifting while f1 preserve ⋎ and satisfies odd skew lifting;

- if G = v∼▷G2, we conclude by Lemma 6.10 .

If f• : H → G is an odd skew fibration, then we proceed similarly. If G is a
single-vertex modal arena, then H cannot be of the shape H1∼▷H2 otherwise f
it would not be modal, or of the shape H1−▷H2 otherwise it would not preserve
d. Let H = H1+H2 such that H1 ̸= H′

1+H′′
1 . Since f

• preserve d and ⇝, then
H1 is a single-vertex modal arenas. Moreover, f2 : H2 → G2 is an odd skew
fibration by definition. Then f = [1v, f2] with v the unique vertex in VH = VG ;

If G = G1 + G2, G = G1−▷G2 or G = v∼▷G2 we apply a similar reasoning in
the case of f skew fibration. 2

Lemma 6.11 is now enough to complete the proof of Theorem 6.12: Given a
skew fibration f , we can decompose f as an expression with the operations in
Lemma 6.11, which can then be immediately transformed into a deep inference
derivation using only w•

↓ and c•↓. (This is a standard operation in deep inference,
see e.g. [15].)

Theorem 6.12 Let H and H ′ be P-formulas.

H ′
{c•↓,w•↓}

H ⇐⇒ there is a skew fibration f : JH ′K→ JHK

Proof. To prove the “if” direction, it suffices to prove that if
H ′
−−− ρ
H

for a ρ ∈

{w•
↓, c

•
↓}, then there is a skew fibration f : JH ′K → JHK. Then we conclude by

Lemma 6.2.
By Lemma 6.11, we have that any skew fibration can be written as com-

position from 1v : v → v and ∅G : ∅ → G via the operations in (5) above. In
particular, each ∅G occurring in the decomposition corresponds to an appli-
cation of a w•

↓, while each occurrence of [−,−] corresponds to an application
of a c•↓. We conclude by reconstructing a derivation in {c•↓,w•

↓} using this
decomposition and the correspondence between P-formulas and modal arenas
(Theorem 4.9). 2
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Γ, A,B,C ⊢ D
−−−−−−−−−−−−−−−−−−− ⊃R

Γ, A,B ⊢ C ⊃ D
−−−−−−−−−−−−−−−−−−−−− ∧L
Γ, A ∧B ⊢ C ⊃ D

≡
Γ, A,B,C ⊢ D
−−−−−−−−−−−−−−−−−−− ∧L
Γ, A ∧B,C ⊢ D

−−−−−−−−−−−−−−−−−−−−− ⊃R

Γ, A ∧B ⊢ C ⊃ D

Γ, A,B ⊢ C
−−−−−−−−−−−−−−− ∧R
Γ, A ∧B ⊢ C ∆ ⊢ D
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

Γ,∆, A ∧B ⊢ C ∧D

≡
Γ, A,B ⊢ C ∆ ⊢ D
−−−−−−−−−−−−−−−−−−−−−−−− ∧L
Γ,∆, A,B ⊢ C ∧D
−−−−−−−−−−−−−−−−−−−−−−−− ∧R
Γ,∆, A ∧B ⊢ C ∧D

Fig. 9. Examples of independent rule permutations.

7 Combinatorial Proofs

We can now combine the results of the previous sections, to define combinatorial
proofs for the logics CK and CD, and to prove their soundness and completeness.

Definition 7.1 A modal intuitionistic combinatorial proof is a skew fibration
f : G → JF K from a modal arena net G to the modal arena of a formula F .
We say f is a CK-intuitionistic combinatorial proof, or CK-ICP, (resp. CD-
intuitionistic combinatorial proof, or CD-ICP) if G is a CK-arena net (resp. CD-
arena net).

The intuitionistic combinatorial proofs (or ICPs) from [17] are the special
cases where no modalities occur, that is, an ICP is a skew fibration f : G → JF K
from an arena net G to the arena of a modality-free formula F .

Theorem 7.2 (Soundness and Completeness) If F is a formula and X ∈
{CK,CD}, then

LX

F iff there is an X-ICP f : G → JF K.

Proof. By Theorem 3.1 there are P-formulas H and H ′ such that F = ⌊H⌋

and H ′ is clean and
LX

F ⇐⇒
LXℓ

H ′
{c•↓,w•↓}

H. In Theorem 5.6 we have

shown that
LXℓ

H ′ iff there is an X-arena net G with H ′ the formula associated

to G. In Section 6 we have shown that H ′
{c•↓,w•↓}

H iff there is a skew fibration
f : JH′K → JHK. This is equivalent to having an X-ICP f : G → JF K, since
JHK = JF K. 2

Lemma 7.3 Let X ∈ {CK,CD}. If H and G are 2-dags and f : VH → VG, then
it can be checked in polynomial time (in the size of H and G) whether f is an
X-ICP.

Proof. All the following checks can be done in polynomial time: that a 2-dag
G is a modal arena; that a modal arena is an X-arena net; and that a map
between two modal arenas is a skew fibration. 2

Corollary 7.4 Let X ∈ {CK,CD}. Then the X-ICPs form a sound and com-
plete proof system in the sense of Cook and Reckhow [10].

8 On Proof Equivalence for Constructive Modal Logics

Let us now compare various notions of proof equivalence in constructive modal
logics, building from the previous results in [17], where the authors show that
intuitionistic combinatorial proofs capture a finer notion of proof equivalence
than the one induced by the simply typed lambda calculus or by winning inno-
cent strategies from games semantics [1,22,27].

In the following, we use ≡ to denote the proof equivalence over derivations
generated by independent rule permutations, that is, permutations of infer-
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Γ, A,A,B,B ⊢ C
−−−−−−−−−−−−−−−−−−−− 2× C

Γ, A,B ⊢ C
−−−−−−−−−−−−−−− ∧L
Γ, A ∧B ⊢ C

≡c

Γ, A,A,B,B ⊢ C
−−−−−−−−−−−−−−−−−−−−−−−− 2× ∧L
Γ, A ∧B,A ∧B ⊢ C
−−−−−−−−−−−−−−−−−−−−−−−− C

Γ, A ⊢ B

Γ ⊢ C
−−−−−−−−−−−−− 2×W
Γ, A,B ⊢ C
−−−−−−−−−−−−−−− ∧L
Γ, A ∧B ⊢ C

≡c

Γ ⊢ C
−−−−−−−−−−−−−−− W
Γ, A ∧B ⊢ C

Γ, A,A ⊢ B
−−−−−−−−−−−−− C
Γ, A ⊢ B

−−−−−−−−−−−−− W
Γ, A,A ⊢ B

≡c Γ, A,A ⊢ B

Γ, A ⊢ B
−−−−−−−−−−−−− W
Γ, A,A ⊢ B
−−−−−−−−−−−−− C
Γ, A ⊢ B

≡c Γ, A ⊢ B

Γ ⊢ A

∆, B ⊢ C
−−−−−−−−−−− W
∆, B ⊢ C

−−−−−−−−−−−−−−−−−−−− ⊃L

Γ,∆, A ⊃ B ⊢ C

≡e

∆, B ⊢ C
==================== W
Γ,∆, A ⊃ B ⊢ C

Γ ⊢ A

∆, B,B ⊢ C
−−−−−−−−−−−−−− C
∆, B ⊢ C

−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ, A ⊃ B ⊢ C

≡u

Γ ⊢ A

Γ ⊢ A ∆, B,B ⊢ C
−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ,∆, A ⊃ B,B ⊢ C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ,Γ,∆, A ⊃ B,A ⊃ B ⊢ C
================================ C

Γ,∆, A ⊃ B ⊢ C

Γ ⊢ A
−−−−−−−−−− W
Γ, B ⊢ A

−−−−−−−−−−−−−−−− K2

2Γ,2B ⊢ 2A

≡2c

Γ ⊢ A
−−−−−−−−−−− K2

2Γ ⊢ 2A
−−−−−−−−−−−−−−−− W
2Γ,2B ⊢ 2A

Γ, B,B ⊢ A
−−−−−−−−−−−−− C
Γ, B ⊢ A

−−−−−−−−−−−−−−−− K2

2Γ,2B ⊢ 2A

≡2c

Γ, B,B ⊢ A
−−−−−−−−−−−−−−−−−−−−−− K2

2Γ,2B,2B ⊢ 2A
−−−−−−−−−−−−−−−−−−−−−− C

2Γ,2B ⊢ 2A

Γ, B ⊢ A
−−−−−−−−−−−−− W
Γ, B,C ⊢ A

−−−−−−−−−−−−−−−−−−−−−− K3

2Γ,3B,2C,⊢ 2A

≡2c

Γ, B ⊢ A
−−−−−−−−−−−−−−−− K3

2Γ,3B ⊢ 3A
−−−−−−−−−−−−−−−−−−−−−− W
2Γ,3B,2C ⊢ 2A

Γ, B, C,C ⊢ A
−−−−−−−−−−−−−−−−− C
Γ, B,C ⊢ A

−−−−−−−−−−−−−−−−−−−−−− K2

2Γ,3B,2C ⊢ 3A

≡2c

Γ, B,C,C ⊢ A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K2

2Γ,3B,2C,2C2 ⊢ 3A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− C

2Γ,3B,2C ⊢ 3A

Γ ⊢ A
−−−−−−−−−− W
Γ, B ⊢ A

−−−−−−−−−−−−−−−− D
2Γ,2B ⊢ 3A

≡2c

Γ ⊢ A
−−−−−−−−−−− D
2Γ ⊢ 3A

−−−−−−−−−−−−−−−− W
2Γ,2B ⊢ 3A

Γ, B,B ⊢ A
−−−−−−−−−−−−− C
Γ, B ⊢ A

−−−−−−−−−−−−−−−− D
2Γ,2B ⊢ 3A

≡2c

Γ, B,B ⊢ A
−−−−−−−−−−−−−−−−−−−−−− D
2Γ,2B,2B ⊢ 3A
−−−−−−−−−−−−−−−−−−−−−− C

2Γ,2B ⊢ 3A

Γ ⊢ A
−−−−−−−−−− W
Γ, B ⊢ A

−−−−−−−−−−−−−−−− K3

2Γ,3B ⊢ 3A
−−−−−−−−−−−−−−−−−−−−−− W
2Γ,3B,3C ⊢ 3A

≡3w

Γ ⊢ A
−−−−−−−−−− W
Γ, C ⊢ A

−−−−−−−−−−−−−−−− K3

2Γ,3C ⊢ 3A
−−−−−−−−−−−−−−−−−−−−−− W
2Γ,3B,3C ⊢ 3A

Fig. 10. Non independent rule permutations

ence rules whose active formulas and principal formulas are disjoint, as in the
examples shown in Figure 9. Then, in Figure 10, we show examples of rule per-
mutations which are non-independent. Based on these, we define the following
proof equivalences:

≡ICP := (≡ ∪ ≡e ∪ ≡c) ≡λ := (≡ICP ∪ ≡u) ≡WIS := (≡λ ∪ ≡2c)

Note that ≡ICP and ≡λ can be defined in the same way for the non-modal case.
Indeed, it has been shown in [17] that ≡ICP is the proof equivalence induced
by intuitionistic combinatorial proofs. We extend this result to the modal case
in Theorem 8.1 below. In the modality-free case, ≡λ corresponds to the proof
identifications made by the simply-typed λ-calculus, and we conjecture that
in the case with modalities, the proof equivalence ≡λ is the same as the one
induced by λ-terms/natural deduction proofs presented in [7] for constructive
modal logics. We also conjecture that the proof equivalence ≡WIS is the same
as the one induced by the winning strategies presented in [3]. However, it is
worth remarking that even though ≡3w seems to be in the same spirit as ≡2c,
this permutation is even beyond the winning strategies of [3]. For this reason it
is listed separately in Figure 10. Note that according to our conjecture, there is
no one-to-one correspondence between winning innocent strategies and λ-terms
(natural deduction proofs) for constructive modal logics. This is in contrast
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with the result in propositional intuitionistic logic [22], where ≡λ and ≡WIS

coincide.

Theorem 8.1 Let X ∈ {CK,CD} and let D and D′ be derivations in LX. Then
we have D ≡ICP D′ iff D and D′ are represented by the same X-ICP.

Proof. This is a direct consequence of the result on intuitionistic combina-
torial proofs in [17]. It suffices to observe that if weakening and contraction
rules could be permuted below/above K-rules, this would change the number of
modalities handled by these rules. However, in CK-ICPs there is a one-to-one
correspondence between ∼-classes and applications of K- and D-rules and at
the same time a one-to-one correspondence between the number of modalities
handled by each of these rules and the vertices in such ∼-equivalence class.
Therefore the equivalence relation ≡ICP does not allow to permute weakening
and contraction rules over K- and D-rules. 2

The rule permutations in ≡2c are well-known in linear logic, as they cor-
respond to the possibility of moving both weakening and contraction gates
outside a !?-box in multiplicative exponential proof nets (see the notion of
generalized ?-nodes introduced in [11] allowing to capture both the rule per-
mutations in ≡c and ≡2c). It has been observed before (see, e.g., [2]), that
including the ≡2c rule permutations in the proof equivalence of classical linear
logic makes proof equivalence PSPACE-complete. This immediately follows
from the result in [16] about PSPACE-completeness of proof equivalence for
multiplicative linear logic with units. More precisely, multiplicative linear logic
proof nets require each ⊥-gate to be attached to an axiom by a so-called “jump”
in order to guarantee a polynomial proof equivalence.

A similar phenomenon occurs in the constructive modal logics studied in
our paper since in combinatorial proof each ⊤•-rule instance is linked to a K-
or a D-rule instance occurring below it. Since rule permutations in ≡2c or ≡3w

trigger a “jump-rewiring” mechanism similar to the one observed in [16], we
conjecture that proof equivalence including these permutations is PSPACE-
hard.

9 Conclusions and Future Works

We have presented the syntax of combinatorial proofs for the disjunction-free
fragment of the constructive modal logics CK and CD. We have proved that
(1) this syntax is a sound and complete proof system in the sense of Cook and
Reckhow [10], and that (2) it enforces a notion of proof equivalence which is
finer than the one provided by natural deduction proofs, but still coarser than
plain sequent calculus.

In future work we want to further investigate the various notions of proof
equivalence for constructive modal logics, and in a next step study combinato-
rial proofs for other variants of intuitionistic modal logics.



Acclavio and Straßburger 35

References

[1] Abramsky, S., P. Malacaria and R. Jagadeesan, Full abstraction for pcf, in: International
Symposium on Theoretical Aspects of Computer Software, Springer, 1994, pp. 1–15.

[2] Acclavio, M., Exponentially handsome proof nets and their normalization, Electronic
Proceedings in Theoretical Computer Science 353 (2021), pp. 1–25.
URL https://doi.org/10.4204%2Feptcs.353.1

[3] Acclavio, M., D. Catta and L. Straßburger, Game semantics for constructive modal
logic, in: International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, Springer, 2021, pp. 428–445.

[4] Acclavio, M. and L. Straßburger, From syntactic proofs to combinatorial proofs, in:
International Joint Conference on Automated Reasoning, Springer, 2018, pp. 481–497.

[5] Acclavio, M. and L. Straßburger, On combinatorial proofs for logics of relevance
and entailment, in: International Workshop on Logic, Language, Information, and
Computation, Springer, 2019, pp. 1–16.

[6] Acclavio, M. and L. Straßburger, On combinatorial proofs for modal logic, in: S. Cerrito
and A. Popescu, editors, Automated Reasoning with Analytic Tableaux and Related
Methods (2019), pp. 223–240.

[7] Bellin, G., V. De Paiva and E. Ritter, Extended Curry-Howard correspondence for a
basic constructive modal logic, in: In Proceedings of Methods for Modalities, 2001.

[8] Benjamin, R. and L. Straßburger, Towards a combinatorial proof theory, in: Tableaux
2019, Springer, 2019.

[9] Bierman, G. M. and V. C. de Paiva, On an intuitionistic modal logic, Studia Logica 65
(2000), pp. 383–416.

[10] Cook, S. A. and R. A. Reckhow, The relative efficiency of propositional proof systems,
J. of Symb. Logic 44 (1979), pp. 36–50.

[11] Danos, V. and L. Regnier, Proof-nets and the Hilbert space, in: Proceedings of the
Workshop on Advances in Linear Logic (1995), p. 307–328.

[12] Davies, R. and F. Pfenning, A modal analysis of staged computation, Journal of the
ACM 48 (2001), pp. 555–604.

[13] Fairtlough, M. and M. Mendler, Propositional lax logic, Information and Computation
137 (1997), pp. 1–33.

[14] Fitch, F. B., Intuitionistic modal logic with quantifiers, Portugaliae mathematica 7
(1948), pp. 113–118.

[15] Guglielmi, A., T. Gundersen and M. Parigot, A Proof Calculus Which Reduces Syntactic
Bureaucracy, in: C. Lynch, editor, Proceedings of the 21st International Conference on
Rewriting Techniques and Applications, Leibniz International Proceedings in Informatics
(LIPIcs) 6 (2010), pp. 135–150.
URL http://drops.dagstuhl.de/opus/volltexte/2010/2649

[16] Heijltjes, W. and R. Houston, No proof nets for MLL with units: proof equivalence in
MLL is PSPACE-complete, in: T. A. Henzinger and D. Miller, editors, Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014 (2014), pp. 50:1–50:10.

[17] Heijltjes, W., D. Hughes and L. Straßburger, Intuitionistic proofs without syntax, in:
LICS 2019 - 34th Annual ACM/IEEE Symposium on Logic in Computer Science (2019),
pp. 1–13.
URL https://hal.inria.fr/hal-02386878

[18] Heilala, S. and B. Pientka, Bidirectional decision procedures for the intuitionistic
propositional modal logic IS4, in: International Conference on Automated Deduction,
Springer, 2007, pp. 116–131.

[19] Hughes, D., Proofs without syntax, Annals of Math. 164 (2006), pp. 1065–1076.

[20] Hughes, D. J. D., First-order proofs without syntax (2019).

[21] Hughes, D. J. D., L. Straßburger and J. Wu, Combinatorial proofs and decomposition
theorems for first-order logic, in: 36th Annual ACM/IEEE Symposium on Logic in

https://doi.org/10.4204%2Feptcs.353.1
http://drops.dagstuhl.de/opus/volltexte/2010/2649
https://hal.inria.fr/hal-02386878


36 Combinatorial Proofs for Constructive Modal Logic

Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021 (2021), pp. 1–
13.
URL https://doi.org/10.1109/LICS52264.2021.9470579

[22] Hyland, J. and C.-H. Ong, On full abstraction for PCF: I, II, and III, Information and
Computation 163 (2000), pp. 285 – 408.
URL http://www.sciencedirect.com/science/article/pii/S0890540100929171

[23] Kojima, K., “Semantical study of intuitionistic modal logics,” Ph.D. thesis, Kyoto
University (2012).

[24] Kuznets, R., S. Marin and L. Straßburger, Justification logic for constructive modal logic,
Journal of Applied Logics: IfCoLog Journal of Logics and their Applications 8 (2021),
pp. 2313–2332.
URL https://hal.inria.fr/hal-01614707

[25] Lamarche, F., Proof nets for intuitionistic linear logic: Essential nets (2008).
URL https://hal.inria.fr/inria-00347336
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