
Finitely-valued Propositional Dynamic Logic

Igor Sedlár 1

The Czech Academy of Sciences, Institute of Computer Science
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Abstract

We study a many-valued generalization of Propositional Dynamic Logic where formu-
las in states and accessibility relations between states of a Kripke model are evaluated
in a finite FL-algebra. One natural interpretation of this framework is related to rea-
soning about costs of performing structured actions. We prove that PDL over any
finite FL-algebra is decidable. We also establish a general completeness result for a
class of PDLs based on commutative integral FL-algebras with canonical constants.
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1 Introduction

Propositional dynamic logic, PDL, is a well-known modal logic formalizing rea-
soning about structured actions, e.g. computer programs or actions performed
by physical agents, and their correctness properties [10,17]. PDL is subject to
two limiting design features. First, being based on classical propositional logic,
it formalizes actions that modify values of Boolean variables. A more general
setting, one where variables take values from an arbitrary set (integers, charac-
ters, trees etc.), is offered by variants of first-order Dynamic Logic, DL [16,17];
these variants, however, are mostly undecidable. Second, PDL can express the
fact that one action is guaranteed to attain a certain goal while another action
is not, but it is not able to express that one action is a more efficient way of
attaining the goal than another action. In other words, accessibility between
states mediated by actions is modelled as a crisp rather than a graded relation;
the former approach is a convenient idealization, but the latter one is more
realistic and often also practically required.
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Both of these limitations of “classical” PDL are avoided in a many-valued
setting. In such a setting, values of formulas in states of a Kripke model are
taken from an algebra that is typically distinct from the two-element Boolean
algebra used in classical PDL. In a many-valued setting, accessibility between
states can also be evaluated in such an algebra, naturally leading to a represen-
tation of “costs” or other “weights” associated with performing actions under
specific circumstances.

Research into many-valued modal logics dates back to the 1960s, see the
pioneering [25] and the later [23]. Fitting [11,12] was the first to study modal
logics where both formulas in states and accessibility relations between states in
the Kripke model take values from a non-Boolean algebra. Fitting considers fi-
nite Heyting algebras; generalizations studied for example in [4,7,6,15,28] focus
on various kinds of finite or infinite residuated lattices [13]. Residuated lattices
are algebraic structures related to substructural logics, with many important
special cases such as Boolean and Heyting algebras, relation algebras, lattice-
ordered groups, powersets of monoids, various algebras on the [0, 1]-interval
and so on.

Investigations of PDL based on residuated lattices are relatively scarce.
The work in [5,18,19] focuses on expressivity of PDL with many-valued ac-
cessibility, but technical results such as decidability or completeness are not
provided. Teheux [27] establishes decidability and completeness of PDLs based
on finite  Lukasiewicz chains and the present author [24] establishes decidabil-
ity and completeness of PDL extending the paraconsistent modal logic of [22];
both papers, however, deal with crisp acessibility relations. As an attempt to
sytematize the work in many-valued PDL, Madeira et al. [20,21] put forward
a general method of producing many-valued versions of PDL, based on the
matrix representation of Kleene algebras; their method, however, applies only
if models are defined to be finite.

In this paper we add to this literature by studying PDLs based on finite
Full Lambek algebras, that is, residuated lattices with a distinguished, though
arbitrary, 0 element. We assume that both evaluations of formulas in states and
accessibility between states are many-valued. Our main technical results are
general completeness and decidability proofs for logics in the family. To the best
of our knowledge, our results are the first decidability and completeness results
concerning non-crisp many-valued PDL. To be more specific, we work with
versions of test-free PDL based on finite Full Lambek algebras with canonical
constants; we prove that any PDL based on a finite FL-algebra with canonical
constants is decidable; we also establish a completeness result for PDLs based
on finite commutative integral FL-algebras with canonical constants.

The paper is structured as follows. Section 2 introduces the general frame-
work of PDL based on finite FL-algebras. We note that, for technical reasons
discussed in §6, our version of PDL uses the transitive closure operator, or
Kleene plus, as primitive instead of the more standard reflexive transitive clo-
sure operator, the Kleene star. An informal interpretation of the framework is
discussed in §3. Section 4 establishes our decidability result using a generaliza-
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tion of the smallest filtration technique. Section 5 establishes the completeness
result for PDLs based on finite integral commutative FL-algebras with canon-
ical constants. Our work there builds on the results of [4], but the canonical
model construction used in our proof is novel to this paper (it is a suitable
generalization of the greatest filtration construction, though the model itself is
infinite).

2 Preliminaries

In this section we briefly recall two-valued PDL (§2.1), and we define FL-
algebras and many-valued models for the language of PDL based on them
(§2.2). We point out some basic facts that we will use later on.

2.1 Two-valued PDL

We begin by recalling some well-known facts about two-valued test-free PDL;
see [17]. Fix Ac = {ai | i ∈ ω}, a countable set of atomic action expressions.
The set of standard action expressions, STA, is the closure of Ac under applying
binary operators ; (“composition”), ∪ (“choice”) and unary ∗ (“Kleene star”).
That is, STA are regular expressions over Ac without the empty expression.
For example, (a0; a1)∗ ∪ a0 is in STA. Let Pr = {pi | i ∈ ω} be a countable
set of propositional variables. Take 2, the two-element Boolean algebra on the
set {0, 1} with meet u, join t and complement −; the binary operation ⇒ is
defined as usual: a ⇒ b := −a t b. Formulas of the standard language for 2,
Fm(LSTA

2 ), are defined by

ϕ := p | c̄ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | [α]ϕ

where p ∈ Pr, c ∈ 2 and α ∈ STA. For example, p0 → [a0; (a1)∗](p1 → 0̄) is a
formula of LSTA

2 .
A 2-valued frame for STA is F = (S, {Rα}α∈STA) where S is a non-empty

set and, for each α ∈ STA, Rα is a function from S × S to 2. We denote
R(α) := {(s, t) | Rα(s, t) = 1}; and the functions in {Rα}α∈STA are required to
satisfy the following: (i) R(α ∪ β) = R(α) ∪R(β); (ii) R(α;β) = R(α) ◦R(β),
the composition of R(α) and R(β); (iii) R(α∗) = R(α)∗, the reflexive transitive
closure of R(α).

Let F = (S, {Rα}α∈STA) be a 2-valued frame. A 2-valued model based on F
is M = (S, {Rα}α∈STA, V ) where V : Fm(LSTA

2 )× S → 2 such that

• V (c̄, s) = c;

• V (ϕ ∧ ψ, s) = V (ϕ, s) u V (ψ, s), V (ϕ ∨ ψ, s) = V (ϕ, s) t V (ψ, s), and
V (ϕ→ ψ, s) = V (ϕ, s)⇒ V (ψ, s);

• V ([α]ϕ, s) = ⊔t∈S(Rα(s, t)⇒ V (ϕ, t)
)
.

Note that V ([α]ϕ, s) = ⊔Rα(s,t)=1V (ϕ, t). A formula ϕ is valid in M iff

V (ϕ, s) = 1 for all s; validity in frames and classes of frames is defined as
expected.

This is the standard presentation of test-free PDL, phrased in a way that
invites generalizations obtained by replacing 2 by another algebra. We will
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study some such generalizations in this paper but, as we discuss in more detail
below, the story is somewhat more complicated. For reasons discussed in §6,
our generalizations will use a different primitive iteration operator instead of
the Kleene star. The operator we will use, however, is conveniently related to
the Kleene star.

The set of action expressions over Ac, ACT , is the closure of Ac under
composition, choice and the unary operator + (“Kleene plus”). Formulas of
the language L2 are defined as expected (we omit reference to ACT ), with α ∈
ACT ; for example, p0 → [a0; (a1)+](p1 → 0̄) is a formula of L2. The definition
of 2-valued frames for ACT is the same as the definition of 2-valued frames for
STA, with an obvious exception, namely, the requirement that R(α+) be the
transitive closure of R(α), i.e. R(α+) =

⋃
n>0R

n(α), where R1(α) = R(α) and
Rn+1(α) = Rn(α) ◦ R(α). Compare this with the reflexive transitive closure
R(α)∗ =

⋃
n≥0R

n(α), where R0(α) = {(s, s) | s ∈ S}. Models based on frames
for ACT are defined as before.

Proposition 2.1 Let For each α ∈ ACT and ϕ ∈ Fm(L2),

V (ϕ ∧ [α+]ϕ, s) = 1 iff ∀t((s, t) ∈ R(α)∗ =⇒ V (ϕ, t) = 1) .

Proposition 2.1 implies that ϕ ∧ [α+]ϕ “simulates” [α∗]ϕ in L2. This pro-
vides a justification for our using languages based on ACT rather than on STA
in what follows. However, we admit that this choice is related to the technical
issues discussed in §6.

2.2 FL-algebras and finitely-valued PDL

In this section we generalize two-valued PDL by replacing the two-element
Boolean algebra 2 by a more general structure, namely, a finite FL-algebra.
FL-algebras provide semantics for a wide class of substructural logics [13].

Definition 2.2 An FL-algebra (“full Lambek algebra”, [13]) is a set X with
binary operations u,t, \, ·, / and two distinguished elements 1, 0 such that

• (X,u,t) is a lattice (let a v b iff a t b = b);

• (X, ·, 1) is a monoid;

• (\, ·, /) are residuated over (X,v), i.e.

a · b v c iff b v a\c iff a v c/b ;

• 0 is an arbitrary element of X.

Residuated lattices are 0-free reducts of FL-algebras. Each finite FL-algebra X
contains a least element ⊥X (for all a ∈ X, ⊥X v a) and a greatest element
>X (for all a ∈ X, a v >X).

We usually write ab instead of a · b and a⇒ b instead of b/a. Two varieties
of FL-algebras will be important in this paper:

• commutative FL-algebras satisfy ab = ba for all a, b ∈ X;
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• integral FL-algebras satisfy a v 1 for all a ∈ X.

Note that in commutative FL-algebras a\b = b/a.

Example 2.3 The two-element Boolean algebra 2 is a commutative integral
FL-algebra, where · is u and \ (identical to /) is ⇒.

Example 2.4 Let N > 0 and define N = (N,max,min,+N ,→N ) where

a+N b = min(a+ b,N − 1) and a→N b = max(b− a, 0) .

N is a finite commutative integral FL-algebra, with 0 as the monoid identity
with respect to +N and the greatest element under the ≥-ordering induced by
takingmin as join. We note that N is isomorphic to theN -element  Lukasiewicz
lattice  LN over { k

N−1 | k ∈ N}.
Example 2.5 As an example of a non-commutative, non-integral infinite FL-
algebra, take the power set of the free monoid over some set Σ, i.e. the set
of languages over Σ, with intersection as meet, union as join, L · L′ := {xx′ |
x ∈ L & x′ ∈ L′}, {ε} as the monoid identity (ε is the empty word) and
L\L′ := {x ∈ Σ | L · {x} ⊆ L′}, L′/L := {x ∈ Σ | {x} · L ⊆ L′}.

The following lemma summarizes some of the properties of FL-algebras
we will rely on in this paper (we will often say that something holds “by the
properties FL-algebras” in our proofs).

Lemma 2.6 Let X be an arbitrary FL-algebra. Then (i) a v b iff 1 v a⇒ b;
(ii) If a v b and c v d, then b ⇒ c v a ⇒ d, b\c v a\d and ac v bd;
(iii) (atb)c = actab and c(atb) = catcb; (iv) a⇒ (buc) = (a⇒ b)u(a⇒ c);
(v) a t b ⇒ c = (a ⇒ c) u (b ⇒ c); (vi) a ⇒ (b ⇒ c) = ab ⇒ c;
(vii) (a⇒ b)(b⇒ c) v a⇒ c; (viii) (1⇒ a) = a

If S is a non-empty set, then Π(S) is the set of all finite sequences of
elements of S; that is, π ∈ Π(S) iff π is a function from some n ∈ ω, called the
length of π, to S. The unique sequence of length 0 is ∅. If π is a sequence of
length n and s ∈ S, then π_s is the unique sequence of length n+ 1 such that
(π_s)(k) = π(k) for all k < n and (π_s)(n) = s. Note that each sequence π
of length n > 0 can be expressed as (. . . (∅_π(0))_ . . .)_π(n− 1).

Definition 2.7 Let X be a finite FL-algebra and S a non-empty set. A binary
X-valued relation on S is any function from S × S to X. Let R,Q be binary
X-valued relations on a set S; then

• the union of R and Q is the function R ∪ Q defined by (R ∪ Q)(s, t) :=
R(s, t) tQ(s, t);

• the composition of R and Q is the function R◦Q defined by (R◦Q)(s, t) =⊔
x∈S

(
R(s, x) ·Q(x, t)

)
;

• the transitive closure of R is the function R+ defined by R+(s, t) =⊔
π∈Π(S)Rsπt where Rsπt is defined as follows:

· Rs∅t = R(s, t) and
· Rs(π_u)t = Rsπu ·R(u, t).
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We say that Q extends R, notation R v Q, iff R(s, t) v Q(s, t) for all s, t ∈ S;
R is the smallest relation in a set {Ri}i∈I if R = Ri for some i ∈ I and each
Ri extends R. R is transitive if R(s, t) ·R(t, u) v R(s, u) for all s, t, u ∈ S; and
R is reflexive if 1 v R(s, s) for all s ∈ S.

Note that we need to assume that all the required joins exist in X; hence
the restriction to finite FL-algebras (however, a restriction to complete X is
sufficient, as is the assumption that R,Q are “X-safe” [14, ch. 5]).

Proposition 2.8 Let X be a finite FL-algebra and R a binary X-valued rela-
tion on a set S. Then R+ is the smallest transitive relation extending R. For
any R, define R∗ as follows:

R∗(s, t) =

{
1 if s = t

R+(s, t) otherwise.

Then R∗ is the smallest reflexive transitive relation extending R.

Proof. It is clear that R+ is a transitive relation extending R. Now assume
that so is Q. The conclusion that R+ v Q follows from two facts that are
easily established by induction on the length of π: (a) For all s, t ∈ S and
π ∈ Π(S), Rsπt v Qsπt (the assumption that R v Q is used here); (b) For
all s, t ∈ S and π ∈ Π(S), Qsπt v Q(s, t) (the assumption that Q is transitive
is used). Since X is finite, the two claims imply that, for any given s and t,⊔
π Rsπt v

⊔
π Qsπt v Q(s, t).

It is clear that R∗ is a reflexive transitive relation extending R. If so is
Q, then we reason for any given s and t by cases as follows. If s = t, then
R∗(s, t) v Q(s, t) is equivalent to 1 v Q(s, s), which holds by reflexivity of
Q. If s 6= t, then R∗(s, t) v Q(s, t) is equivalent to R+(s, t) v Q(s, t), which
follows from the assumption that Q is a transitive relation extending R. Hence,
R∗(s, t) v Q(s, t) for any s and t. 2

Lemma 2.9 Let X be a finite FL-algebra and S a set; the X-valued identity
relation on S is defined as follows:

IdX(s, t) :=

{
1 if s = t

⊥X otherwise.

If X is integral, then R∗ = IdX ∪R+ for any binary X-valued relation on S.

Proof. We omit the proof; we just note that if s = t, thenR∗(s, t) = IdX(s, t)t
R+(s, t) is equivalent to R+(s, t) v 1, which is guaranteed to hold only if X is
integral. 2

Definition 2.10 Let X be a finite FL-algebra. An X-valued frame for ACT
is a pair F = (S, {Rα}α∈ACT ) where S is a non-empty set and, for all α ∈
ACT , Rα is an X-valued binary relation on S such that (i) Rα∪β = Rα ∪Rβ ;
(ii) Rα;β = Rα ◦Rβ ; and (iii) Rα+ = R+

α .
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X-valued frames will also be referred to as X-frames or simply frames if X is
clear from the context or immaterial. We will sometimes write Rαst instead of
Rα(s, t).

Definition 2.11 Formulas of the language LX are defined as follows:

ϕ := p | c̄ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ\ϕ | ϕ · ϕ | ϕ/ϕ | [α]ϕ ,

where p ∈ Pr, c ∈ X and α ∈ ACT . We use ⊥,> instead of ⊥X and >X ,
respectively. We often write ϕψ instead of ϕ · ψ, ϕ → ψ instead of ψ/ϕ, m
instead of am, and αβ instead of α;β. We define ϕ↔ ψ := (ϕ→ ψ)∧(ψ → ϕ),
¬ϕ := ϕ→ ⊥ and 〈α〉ϕ := ¬[α]¬ϕ.

Note that we use the same symbol ⊗ ∈ {\, ·, /} for the implication and
fusion connectives of the language and for the residuated operations on FL-
algebras. We will denote the operations on a given X as ⊗X in contexts where
it is convenient for the reader to distinguish the connectives of the language
from the operations on the algebra. (However, ⇒ denotes the operation /X

and → denotes the connective / throughout.)

Definition 2.12 A model based on an X-frame (S, {Rα}α∈ACT ) is M =
(S, {Rα}α∈ACT , V ), where V is a function from Fm(LX)× S to X such that

• V (c̄, s) = c;

• V (ϕ ∧ ψ, s) = V (ϕ, s) u V (ψ, s) and V (ϕ ∨ ψ, s) = V (ϕ, s) t V (ψ, s);

• V (ϕ⊗ ψ, s) = V (ϕ, s)⊗X V (ψ, s) for ⊗ ∈ {\, ·, /};
• V ([α]ϕ, s) = ⊔t∈S(Rαst⇒ V (ϕ, t)

)
.

A formula ϕ is valid in M iff 1 v V (ϕ, s) for all s in M. Validity in frames
and classes of frames is defined as expected. The theory of a frame is the set
of formulas valid in the frame; the theory of a class of frames is the set of
formulas valid in each frame in the class. Th(X) is the theory of the class of
all X-frames.

The following addendum to Proposition 2.1 suggests that integral FL-
algebras are particularly suitable for us.

Proposition 2.13 Take an arbitrary X-frame for a finite integral X. Then
V (ϕ ∧ [α+]ϕ, s) = ⊔t∈S(R∗αst⇒ V (ϕ, t)).

Proof. The v-inequality is straightforward and the w-inequality follows from
Lemma 2.9. 2

It is clear that two-valued PDL is a special case of the present framework
for X = 2.

Lemma 2.14 The following are valid in each X-frame:
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(a) [α](ϕ ∧ ψ)↔ ([α]ϕ ∧ [α]ψ)

(b) [α ∪ β]ϕ↔ ([α]ϕ ∧ [β]ϕ)

(c) [αβ]ϕ↔ [α][β]ϕ

(d) [α+]ϕ↔ [α](ϕ ∧ [α+]ϕ)

Proof. To prove that ϕ↔ ψ is valid if suffices to show that V (ϕ, s) = V (ψ, s)
for all s in all models. (a) The proof relies on the fact that a ⇒ (b u c) =
(a ⇒ b) u (a ⇒ c) in all FL-algebras. (b) The proof relies on the fact that
(a t b) ⇒ c = (a ⇒ c) u (b ⇒ c) in all FL-algebras. (c) The proof relies
on the fact that a ⇒ (b ⇒ c) = ab ⇒ c in all FL-algebras. (Note that
composition of relations needs to be defined using monoid multiplication ·, not
lattice meet.) (d) The proof relies on the fact that Rαst v Rα+st, it also uses
simple composition of paths. 2

We will discuss an informal interpretation of a special case of the many-
valued framework in the next section. Speaking generally, however, we may
adapt the slogan characterizing modal logic as providing languages for talking
about relational structures [3, p. viii] and say that many-valued modal logics
provide simple yet expressive languages for talking about many-valued relational
structures. Examples of many-valued relational structures include weighted
structures such as weighted graphs etc. Choosing an FL-algebra as the algebra
of weights brings the framework closer to substructural logics that include
well-known formalisms for reasoning about resources (variants of linear logic)
or graded properties and relations (fuzzy logics). Many-valued PDL adds to
this the capacity to articulate reasoning about structured many-valued relations
using the PDL relational operations of choice, composition and iteration. An
intriguing connection here is the relation of finitely-valued PDL to weighted
automata over finite semirings [9], but a more thorough investigation of this
connection is left for another occasion.

3 Motivation

This section discusses the informal interpretation of finitely-valued PDL. We
give two general interpretations of the framework first and then we zoom in to
PDLs over a specific class of FL-algebras. Our overview is cursory; the present
paper is focused more on basic technical results than on informal interpreta-
tions and applications. A more thorough exploration of the latter is left for
another occasion. We only note here that we consider many-valued PDL to be
sufficiently mathematically interesting to be studied independently of informal
interpretations and applications.

We have mentioned before the slogan that modal logics provide simple yet
expressive languages for talking about relational structures [3, p. viii]; by the
same token, many-valued modal logics can be seen as providing means of talking
about “weighted” relational structures. Two-valued PDL has been applied to
at least two kinds of relational structures which have very natural weighted
generalizations. We discuss these in turn.

First, take the interpretation of modal logic that relates it to description
logics [2]. Simply put, formulas of a modal language can be seen as express-
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ing “concepts”, i.e. properties of objects, and indices of modal operators as
expressing various “roles”, i.e. relations between objects. On this reading,
“states” in a Kripke model represent arbitrary objects and “accessibility re-
lations” between them represent relations between these objects. Structured
modal indices that come with PDL (i.e. “action expressions” as we call them)
can be seen as expressing structured relations between objects; union, composi-
tion and transitive closure have been found particularly suitable for expressing
various important concepts and roles [1]. Many-valued description logics (see
[26] for instance) are a generalization of description logics designed for man-
agement of uncertain and imprecise information. These logics can express the
fact that an object is subsumed under a given concept (e.g. “tall” if the reader
will forgive the platitudinous example) only to some degree or that only im-
precise information about a relation holding between two objects is available.
Finitely-valued PDL as presented here can be seen as a family of many-valued
description logics with transitive closure of roles.

Second, the original motivation of PDL was reasoning about the behaviour
of computer programs [10]. From a more general perspective, PDL can be seen
as a logic formalising reasoning about types of structured actions, represented
by “action expressions”. On this reading, a Kripke frame consists of states and
transitions between states labelled by types of action; for instance Rαst means
that action of type α can be used to get from state s to state t. States can be
thought of as physical locations, states of a complex system such as a database
or states of a computer during the run of a program; but states can also be
thought of as “states of the world” that can be modified by actions of intelligent
agents. PDL can be used to formalize reasoning about properties of actions that
modify these kinds of states. One important example is correctness, related to
the question if a specific kind of action is guaranteed to lead to a specific
outcome when performed under specific circumstances. (This more general
perspective makes PDL relevant to automated planning, for example.) Many-
valued Kripke models can be seen as transition systems where transitions carry
weights; these can be costs or resources needed to perform a transition using
the given action type. Běhounek [5] suggested a many-valued version of PDL
for reasoning about costs of program runs that is close to our framework, but
he did not establish completeness or decidability results.

Let us now discuss a special case of the finitely-valued PDL framework
giving rise to a natural class of weighted relational structures; we show
that formulas of the PDL language are able to express interesting features
of these structures. Let N be the FL-algebra of Example 2.4, that is,
N = (N,max,min,+N ,→N ) where

a+N b = min(a+ b,N − 1) and a→N b = max(b− a, 0) ,

where N ∈ ω is non-empty. The set N is seen as a weight scale with 0 rep-
resenting zero weight (“for free”) and N − 1 representing the maximal weight
(considered “infeasible”). The operation +N , namely, sum bounded by the
maximal weight, represents weight addition. N is given a (distributive) lattice
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structure by including max as meet and min as join; the associated lattice
order v is defined as usual, a v b iff min(a, b) = b. Hence, a v b (i.e. b ≤ a)
means that weight b is at most as big as weight a. The choice of max as meet
and min as join—not the other way around—may seem unintuitive at first,
but it yields the result that a v 0 for all a ∈ N . It is important to note in this
respect that 0 is the identity element with respect to +N . (Hence, choosing the
natural ordering on N as our lattice ordering would mean that each element
of the lattice would be above the monoid identity, which is problematic given
our definition of validity.) It is clear that a +N b = b +N a. The residual →N

of +N is truncated subtraction or monus; the crucial feature of →N is that
a →N b = 0 iff a v b (iff b v a). We note that N is isomorphic to the N -
element  Lukasiewicz lattice  LN over { k

N−1 | k ∈ N}, but we prefer N to  LN
as a representation of an N -element weight scale.

N -frames are weighted relational structures that can be informally inter-
preted in a number of ways. On the “description reading”, for instance, states
s ∈ S are objects and Rα represent structured weighted relations between these
objects. On the “transition cost reading”, states can be seen as physical lo-
cations or states of a system and Rαst ∈ N is the cost of accessing state t
from s by performing action α (hence, frames are weighted labelled transition
systems). If Rαst = N − 1, then we say that t is not in relation α with s,
or that t cannot be accessed from s by performing α; if Rαst = 0, then t is
“clearly” in relation α with s, or t can be accessed from s by α for free. Let
us now discuss some properties of weighted relational structures that can be
expressed by PDL formulas.

Since N is (N − 1)-involutive, i.e. (a ⇒ (N − 1)) ⇒ (N − 1) = a for all
a ∈N , we have

V (〈α〉0̄, s) =
⊔
t∈S

(
Rαst+N 0

)
= min

{
Rαst | t ∈ S

}
.

In other words, V (〈α〉0̄, s) is the minimal guaranteed cost of performing α at s
(on the transition cost reading) or the maximal degree to which s is α-related
to any object (on the description reading). Let us write simply α instead of
〈α〉0̄ if the context clears up any possible confusion. Note that a ⇒ b is the
difference between b and a if a < b and 0 otherwise. The following features
of weighted relation structures can be expressed (we use the transition cost
reading and the reader is invited to translate to the description reading):

• the minimal cost of performing α is at most m (this is true in state s if
V (m̄→ α, s) = 0); the “at least” direction is expressed dually;

• performing α is at least as costly as performing β (this is true in state s
if V (α→ β, s) = 0); the “at most” direction is expressed dually;

• the difference between the minimal guaranteed cost of β and α is at most
m (this is true in state s if V (m̄→ (α→ β), s) = 0).

On the transition cost reading, atomic formulas in Pr can be seen as rep-
resenting various items that can be obtained at states for a given cost, with
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V (p, s) representing the cost of item p at s (e.g. time needed to charge the bat-
tery at the charger location). Observe that V (〈α〉p, s) =

⊔
t∈S(Rαst+NV (p, t))

is the minimal cost of getting from s to a state t by performing α and obtaining
p at t; we may also say that this is the minimal guaranteed cost of obtaining
p by α. On the description reading, atomic formulas can be seen as express-
ing graded, imprecise or vague properties of objects; thus the value of 〈α〉p
at s is the “grade of truth” of the statement that s is α-related to an object
with property p. The interesting case obtains where both the relation and the
property are graded or vague; think of “Alice was in contact with a person dis-
playing symptoms of COVID-19”. We write ϕα instead of 〈α〉ϕ. The following
features of weighted relation structures can be expressed (we use the transi-
tion cost reading and the reader is again invited to translate to the description
reading):

• the minimal cost of obtaining p by α is at most m (this is true in state s
if V (m̄→ pα, s) = 0); the “at least” direction is expressed dually;

• obtaining p by α is at least as costly as obtaining q by β (this is true in
state s if V (pα → qβ , s) = 0); the “at most” direction is expressed dually;

• the difference between the minimal guaranteed cost of obtaining q by β
and obtaining p by α is at most m (this is true in state s if V (m̄→ (pα →
qβ), s) = 0).

This cursory overview shows that the PDL language provides means to ex-
pressing a variety of features of weighted relational structures and so finitely-
valued PDL can be used to formalize reasoning about these features. A more
thorough exploration of expressivitiy and applications is left for another occa-
sion.

4 Finite model property and decidability

In this section we prove that Th(X) is decidable for all finite X. We prove
this by showing that each such Th(X) has the bounded finite model property.
The result is established using a many-valued generalization of the smallest
filtration construction; see [8], where the construction is applied to some many-
valued modal logics with 2 and 3. 2 Even though the decidability result is not
surprising, we consider it to be a “sanity check” for the many-valued dynamic
framework. We note that presence of canonical constants is not necessary for
the decidability result (in contrast to the completeness result of §5).

Definition 4.1 The closure of a set of formulas Ψ is the smallest Φ ⊇ Ψ such
that

• Φ is closed under subformulas (that is, if ϕ ∈ Φ and ψ is a subformula of
ϕ, then ψ ∈ Φ);

• [α ∪ β]ϕ ∈ Φ implies [α]ϕ ∈ Φ and [β]ϕ ∈ Φ;

2 We are grateful to an anonymous reviewer for pointing the reference out.
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• [αβ]ϕ ∈ Φ implies [α][β]ϕ ∈ Φ;

• [α+]ϕ ∈ Φ implies [α][α+]ϕ ∈ Φ and [α]ϕ ∈ Φ.

Φ is closed iff Φ is the closure of Φ.

Definition 4.2 For each set of formulas Φ and each model M, we define the
binary two-valued equivalence relation ≈Φ on states of M by

s ≈Φ t ⇐⇒ (∀ϕ ∈ Φ)
(
V (ϕ, s) = V (ϕ, t)

)
.

The equivalence class of s under ≈Φ will be denoted as [s]Φ or just as [s] if Φ
is clear from the context.

Definition 4.3 Take an X-valued model M and a finite closed set Φ. The
filtration of M through Φ is the X-valued model MΦ = (SΦ, RΦ, V Φ) such that

• SΦ = {[s] | s ∈ S};
• RΦ

am([s], [t]) =
⊔{

Ram(u, v) | s ≈Φ u & t ≈Φ v
}

; RΦ
α for α /∈ Ac is

defined as in models;

• V Φ(p, [s]) = V (p, s) for p ∈ Φ; V Φ(p, [s]) = 0X for p /∈ Φ; V Φ(ϕ, [s]) for
ϕ /∈ Pr is defined as in models.

It is clear that if Φ is the closure of a finite set Ψ, then Φ is finite. If Φ
is finite, then so is MΦ; in fact, |SΦ| ≤ |X||Φ|. We usually omit reference to
Φ while discussing accessibility relations on SΦ and we also write ≈ instead of
≈Φ. We will write Rm instead of Ram . In the rest of the section, we fix an
X-model M and a finite closed set Φ.

Lemma 4.4 For all α ∈ ACT and all x, y ∈ S,

(a) Rαxy v Rα[x][y];

(b) For all [α]ϕ ∈ Φ, V ([α]ϕ, x) v Rα[x][y]⇒ V (ϕ, y).

Proof. Both claims are established by induction on the complexity of α. The
base case of (a) holds by definition and the rest is established easily using the
induction hypothesis. In the case of α = β+, we define for each π ∈ Π(S) of
length n the sequence [π] ∈ Π(SΦ) of length n by [π](k) := [π(k)] for all k < n;
it is then easy to establish by induction on n that Rβxπy v Rβ [x][π][y].)

The base case of (b) is follows from the fact that, for all x′ ∈ [x] and y′ ∈ [y],⊔z∈S(Rmx′z ⇒ V (ϕ, z)
)
·Rmx′y′ v V (ϕ, y′) using the definition of ≈Φ, closure

of Φ under subformulas and properties of FL-algebras. The fact itself follows
easily from properties of FL-algebras. The induction step uses Lemma 2.14
and is easy; for instance, in the case α = β+ we may use the fact that, for all
x and y, V ([β](ϕ ∧ [β+]ϕ, x) v Rβ [x][y] ⇒ V ([β+]ϕ, y) and hence, for all s, t
and π ∈ Π(S), V ([β+]ϕ, s) v Rβ [s][π][t]⇒ V (ϕ, t) as required. 2

Lemma 4.5 For all models M, all ϕ ∈ Φ and s ∈M, V (ϕ, s) = V Φ(ϕ, [s]).

Proof. The proof is by induction on the complexity of ϕ. The base case ϕ ∈ Pr
holds by definition, the cases for constants and propositional connectives are
trivial and the case ϕ = [α]ψ is established using Lemma 4.4. 2
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Theorem 4.6 Th(X) is decidable for each finite X.

Proof. Lemma 4.5 implies ϕ ∈ Th(X) iff ϕ is valid in all frames where |S| ≤
|X||Φ| where Φ is the closure of {ϕ}. Now m := |X| = m, n := m|Φ| and let
n-frames be the frames with |S| ≤ n. There are at most

n×mn2

n-frames. On each n-frame, there are n ×mω models, but there are at most
n × |Φ| ×m possible ways to evaluate elements of |Φ| on an n-frame. Hence,
there are at most

mn2+1 × n2 × |Φ|

models to check. It is not hard to show that there is an algorithm checking
validity of formulas in finite models. 2

5 Completeness

Bou et al. [4] establish a general weak completeness result for modal logics based
on finite commutative integral FL-algebras with canonical constants where 0
is the bottom element. In this section we build on their work to show how
a Hilbert-style axiomatic presentation of any finite commutative integral FL-
algebra X with canonical constants can be extended to a sound and weakly
complete axiomatization of PDL based on X. The restriction to commutative
FL-algebras seems to be necessary for our style of argument to go through and
we discuss this at appropriate places in more detail; the restriction to integral
FL-algebras is convenient. We leave generalizations of our result as an open
problem.

Fix a finite commutative integral FL-algebra X with canonical constants
denoting elements of X, together with a Hilbert-style axiomatic presentation
Log(X) in the language LX that is strongly complete with respect to X. That
is, we assume that ϕ ∈ LX is derivable from Γ ⊆ LX in Log(X), in sym-
bols Γ `Log(X) ϕ, iff each non-modal homomorphism u : LX → X such that
1 v ⊔u[Γ] satisfies 1 v u(ϕ) (values u([α]ψ) of modal formulas under u are ar-
bitrary, so u “treats” modal formulas as propositional atoms). 3 For the details
on how Log(X) looks like, see [4]. Since X is finite, `Log(X) is finitary in the
sense that if Γ `Log(X) ϕ, then there is a finite ∆ ⊆ Γ such that ∆ `Log(X) ϕ.
We note that `Log(X) is also monotonic in the sense that if Γ `Log(X) ϕ and
Γ ⊆ ∆, then ∆ `Log(X) ϕ.

Since X is commutative, we have a\b = b/a and so we use only a single
“official” implication operator →; see [13, p. 95]. Recall that ϕ ↔ ψ := (ϕ →
ψ) ∧ (ψ → ϕ); we define similarly a⇔ b := (a⇒ b) u (b⇒ a).

3 A function f : LX → X is a non-modal homomorphism iff f(c̄) = c and f commutes
with the propositional connectives ⊕ of LX and the corresponding operations ⊕X on X; we
assume that ∧X is u and ∨X is t.
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Definition 5.1 PDL(X) is the Hilbert-style axiom system extending Log(X)
with the following axioms and rules (for all formulas ϕ,ψ, all action expressions
α, β ∈ ACT and all canonical constants c̄):

(A-1) [α]1̄

(A-reg) [α]ϕ ∧ [α]ψ → [α](ϕ ∧ ψ)

(A-c̄) [α](c̄→ ϕ)↔ (c̄→ [α]ϕ)

(R-mon)
ϕ→ ψ

[α]ϕ→ [α]ψ

(A-∪) [α ∪ β]ϕ↔ ([α]ϕ ∧ [β]ϕ)

(A-;) [αβ]ϕ↔ [α][β]ϕ

(A-+) [α+]ϕ↔ [α](ϕ ∧ [α+]ϕ)

(R-+)
ϕ→ [α]ϕ

ϕ→ [α+]ϕ

The notions of proof, derivability, theorem and a formula derivable from a set
of formulas are defined as usual (see [4]). Thm(PDL(X)) is the set of theorems
of PDL(X).

Since X is fixed, we write L instead of Log(X), PDL instead of PDL(X), Thm
instead of Thm(PDL(X)) and L instead of LX for the rest of this section.

Theorem 5.2 If ϕ is a theorem of PDL, then ϕ is valid in the class of all
X-frames.

Proof. The axioms and the rule in the left column are taken from [4]. Validity
of the axioms in the right column in all FL-algebras was established in Lemma
2.14. To show that the rule (R-+) preserves validity in models, assume that
V (ϕ, s) v V ([α]ϕ, s) for all s in an arbitrary model. Take some t and assume
that a v V (ϕ, t); we prove that a v Rα+tu ⇒ V (ϕ, u) for all u. The claim to
be proved is equivalent to (∀π ∈ Π(S))(a v Rαtπu ⇒ V (ϕ, u)). This claim is
easily established by induction on the length of π. 2

We note that, without the assumption of commutativity, versions of (A-c̄) are
not sound; the axiom is used in the proof of Lemma 5.6 which is in turn applied
in most of our arguments below.

From now on, let S be the set of non-modal homomorphisms s : L → X
such that s[Thm] = {1} and let Φ be a fixed finite closed set.

Definition 5.3 The Φ-equivalence relation on S is an X-valued binary rela-
tion ∼Φ on S defined by

s ∼Φ t := ⊔ϕ∈Φ

(
s(ϕ)⇔ t(ϕ)

)
.

If Φ is clear from the context, we will write s ∼ t or just st instead of s ∼Φ t.

Lemma 5.4 The relation ∼Φ is an X-valued equivalence relation, that is, (a)
1 v s ∼ s, (b) s ∼ t = t ∼ s and (c) (s ∼ t)(t ∼ u) v s ∼ u, for all s, t, u ∈ S.

Proof. Claims (a) and (b) are clear; claim (c) follows from Lemma 2.6. 2

Completeness proofs for two-valued PDL typically use a filtration-like con-
struction of the canonical model, where states are (or boil down to) equivalence
classes of states taken from some other structure. A natural approach in our
case would be to take “equivalence classes” of non-modal homomorphisms un-
der ∼, where s ∼ t expresses “how much equivalent” s and t are with respect



Sedlár 575

to Φ. However, in our case a simpler approach is available. We take S itself as
the set of states of the canonical model and we refer to Φ only in the definition
of the canonical Rα, which is a generalization of the definition of accessibility
relations in the greatest filtration of a Kripke model.

Definition 5.5 The canonical model modulo Φ is M = (S,R, V ) where

• S is the set of non-modal homomorphisms s : L →X such that s[Thm] =
{1};

• Rmst := ⊔[m]ϕ∈Φ

(
s([m]ϕ) ⇒ t(ϕ)

)
for all am ∈ Ac and Rαst for α 6∈ Ac

is defined as in models;

• V (p, s) := s(p) and V (ϕ, s) for ϕ 6∈ Pr is defined as in models.

We define for each α the relation RLα on S by RLαst := ⊔ϕ∈L(s([α]ϕ)⇒ t(ϕ)
)
.

Note that RLnst v Rnst for all an ∈ Ac and all s, t since RLn “cares” about
more formulas. RLα is the usual canonical many-valued accessibility relation,
see [4], but we cannot use it here because of the presence of the Kleene plus
iteration operator in ACT , similarly as in the case of two-valued PDL.

The following lemma states some properties of RLα that will be useful in our
proofs; the proof of the lemma can be found in [4] (the logics studied there are
mono-modal, but the same approach applies here).

Lemma 5.6 The following holds for all α ∈ ACT and all s ∈ S of the canon-
ical model:

(a) For all t, RLαst = ⊔ϕ∈L{t(ϕ) | 1 v s([α]ϕ)
}

([4], Proposition 4.1.);

(b) For all ϕ ∈ L, s([α]ϕ) = ⊔u∈S{RLαsu⇒ u(ϕ)
}

([4], Lemma 4.8.).

Lemma 5.7 For all [α]ϕ ∈ Φ and all s, t ∈ S, s([α]ϕ) v Rαst⇒ t(ϕ).

Proof. The claim is proved by induction on the complexity of α. The base
case is established as follows. We know that s([n]ϕ) · (s([n]ϕ)⇒ t(ϕ)) v t(ϕ);
from this s([n]ϕ) ·Rnst v t(ϕ) follows by the definition of Rn.

The cases of choice and composition in the induction step are straightfor-
ward. The case α = β+ is established by showing that, for all π ∈ Π(S), all
s, t, and all ϕ such that [β+]ϕ ∈ Φ, s([β+]ϕ) v Rβsπt⇒ t(ϕ). This claim, call
it (A), follows from the claims (s, t and [β+]ϕ ∈ Φ are fixed)

(B) s([β]ϕ) v Rβst⇒ t(ϕ);

(C) for all σ ∈ Π(S) and all u, s([β+]ϕ) v Rβsσu⇒ u([β+]ϕ).

The proof of (C) is left to the reader; (B) holds by the induction hypothesis.2

Lemma 5.8 For all α and s, t, u, Rαsu(ut) v Rαst.

Proof. We argue by induction on the complexity of α. The base case is estab-
lished as follows. If a v Rnsu(ut), then, by definition, a v ⊔[n]ϕ∈Φ

(
s([n]ϕ)⇒

u(ϕ)
)
(ut). Hence, for all [n]ϕ ∈ Φ, a v

(
s([n]ϕ) ⇒ u(ϕ)

)(
u(ϕ) ⇒ t(ϕ)

)
by the definition of u ∼ t and monotonicity of monoid multiplication (also,
[n]ϕ ∈ Φ implies ϕ ∈ Φ). It follows by the properties of FL-algebras that
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a v
(
s([n]ϕ) ⇒ t(ϕ)

)
. Since [n]ϕ ∈ Φ was arbitrary, we obtain a v Rnst. All

cases of the induction step are easy. 2

Definition 5.9 For all α and s, we define the following formula:

Rαs :=
∨
x∈S

(
Rαsx ·

∧
ϕ∈Φ

(
x(ϕ)↔ ϕ

))
Note that Rαs is well defined even though S is infinite – there are only finitely
many possible values of Rαsx for x ∈ S, as X is finite. Note also that t(Rαs) =⊔
x∈S

(
Rαsx(xt)

)
.

Lemma 5.10 For all s, t and α, t(Rαs) = Rαst.

Proof. First, Rαst v Rαst(tt) by Lemma 5.4(a), and Rαst(tt) v⊔
x∈S

(
Rαsx(xt)

)
= t(Rαs). Second, Rαsx(xt) v Rαst for all x ∈ S by Lemma

5.8. Hence,
⊔
x∈S Rαsx(xt) and so t(Rαs) v Rαst. 2

Lemma 5.11 For all s, t ∈ S and all α ∈ ACT , RLαst v Rαst.

Proof. Induction on the complexity of α. The base case follows from definition.
To establish the induction step, we reason by cases. Note that the induction
hypothesis is equivalent to the claim that, for all α, β and x, 1 v x([α]Rαx)
and 1 v x([β]Rβx) by Lemmas 5.6(b) and 5.10.

If a v RLα∪βst, then a v ⊔ϕ∈L{t(ϕ) | 1 v s([α ∪ β]ϕ)
}

by Lemma 5.6(a).

By the definition of S, this entails a v ⊔{t(ϕ) | 1 v s([α]ϕ) u s([β]ϕ)
}

. By
the induction hypothesis, 1 v s([α]Rαs) and 1 v s([β]Rβs). Hence, 1 v
s([α](Rαs∨Rβs)) and 1 v s([β](Rαs∨Rβs)) by the definition of S. It follows
that a v t(Rαs)tt(Rβs). By Lemma 5.10, a v RαsttRβst and so a v Rα∪βst.

If a v RLαβst, then a v ⊔ϕ∈L{t(ϕ) | 1 v s([αβ]ϕ)
}

by Lemma 5.6(a)

and so a v ⊔ϕ∈L{t(ϕ) | 1 v s([α][β]ϕ)
}

by the definition of S. For all x

and y, RLαsxR
L
βxy v y(Rαβs) by the induction hypothesis, Lemma 5.10 and

the definition of Rαβ . Hence, for all x, RLαsx v x([β]Rαβs) by residuation
and Lemma 5.6(b); from this is follows that 1 v s([α][β]Rαβs) by another
application of residuation and Lemma 5.6(b). Therefore, a v t(Rαβs) and so
a v Rαβst by Lemma 5.10.

Finally, we discuss the case of α+. Fix s; we write F instead of Rα+s.
Note that Rα+ is a transitive relation extending RLα . Hence, for all t, u ∈ S,
u(F ) · RLαut v t(F ) by Lemma 5.10 and the induction hypothesis applied to
RLα ; we obtain from this u(F ) v u([α]F ) for all u ∈ S by Lemma 5.6(b). Hence,
by definition of S, we have F → [α]F ∈ Thm. Hence, using (R-+), we have
F → [α+]F ∈ Thm and, using (R-mon) and (A-+), we obtain [α]F → [α+]F ∈
Thm. By the induction hypothesis we have RLαst v Rαst v Rα+st for all t and
so 1 v RLαst⇒ t(F ) for all t by Lemma 5.10. This means that 1 v s([α]F ) and
so 1 v s([α+]F ) which means that RLα+st v t(F ) for all t by Lemma 5.6(b).
Hence, RLα+st v Rα+st by Lemma 5.10. 2

Lemma 5.12 For all ϕ ∈ Φ and s ∈ S, s(ϕ) = V (ϕ, s).
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Proof. Induction on the complexity of ϕ. The base case holds by definition and
the cases for non-modal formulas and canonical constants are straightforward.
Finally, s([α]ϕ) v V ([α]ϕ, s) holds thanks to Lemma 5.7 and V ([α]ϕ, s) v
s([α]ϕ) holds thanks to Lemma 5.6(b) and Lemma 5.11. 2

Theorem 5.13 For all finite commutative integral X with canonical con-
stants, ϕ is valid in all X-frames iff ϕ is a theorem of PDL(X).

Proof. Soundness is established by Theorem 5.2. Completeness is established
as usual. If ϕ is not in Thm, then Thm 6`L ϕ since Thm is obviously closed
under `L. By strong completeness of L, there is a non-modal homomorphism
from L to X such that s[Thm] = {1} and s(ϕ) 6= 1. Let Φ be the closure of
{ϕ}; ϕ is not valid in the canonical model modulo Φ by Lemma 5.12. 2

6 On Kleene star and test

Our syntactic presentation of propositional dynamic logic differs from the stan-
dard presentation in two important respects, namely, (i) our action operators
do not include the Kleene star, but rather the Kleene plus operator; (ii) we
do not include the test operator. Kleene star and test are instrumental in the
ability of classical PDL to express standard programming constructs such as
while loops and conditionals (test suffices for the latter). In this section we
discuss these omissions.

Concerning the Kleene star, Proposition 2.13 suggests that, working with
frames based on finite integral FL-algebras, we can define, for all α ∈ ACT
and ϕ ∈ Fm(LX),

[α∗]ϕ := [α+]ϕ ∧ ϕ

as a semantically equivalent surrogate for formulas with the Kleene star. For
instance, [(a∪b)∗; a∗]p is short for [(a∪b)+]([a+]p∧p)∧ ([a+]p∧p). However,
it is clear that not all action expressions in STA can be expressed by action
expressions in ACT . Therefore, for example, [(a∗; b)∗]p is not a well-formed
formula since a∗ 6∈ ACT .

The technical problem that precluded us from working with Kleene star as a
primitive operator is related to Lemma 5.8. Take the reflexive transitive closure
R∗α of Rα, defined as in Proposition 2.8. The issue is that Lemma 5.8 fails if
Kleene star is a primitive operator and we define Rα∗ := R∗α. In particular, if
s = u 6= t, then R∗αsu(ut) v R∗αst boils down to s ∼ t v Rα+st, which does not
hold in all canonical models. (Take the canonical 2-model modulo the closure
Φ of Ψ = {[a]⊥}. As both Ψ∪ {p0} and Ψ∪ {p1} are consistent, there are two
distinct s, t such that s ∼Φ t equals 1, but Ra+st equals 0.)

Concerning test, a natural semantic interpretation of ϕ?, endorsed also in
[18,19], is

Rϕ?(s, t) =

{
V (ϕ, s) if s = t

⊥X otherwise.

However, Lemma 5.8 turns out to be problematic for such a relation as well.
(Take the model from the previous paragraph and let ϕ = [a]⊥; clearly
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Rϕ?ss(st) equals 1, but Rϕ?st equals 0.)
It is clear that a more substantial modification of our completeness argu-

ment is needed to accommodate logics with Kleene star and test. This is an
interesting problem we leave open here.

7 Conclusion

We have studied a general framework for many-valued versions of Proposi-
tional Dynamic Logic where both formulas in states and accessibility relations
between states of a Kripke model are evaluated in a finite FL-algebra. We es-
tablished a general decidability result and we provided a general completeness
argument for PDLs based on commutative integral FL-algebras with canonical
constants. We build on previous work on many-valued modal logic and our
techniques are generalizations of the arguments used in the two-valued case;
however, to the best of our knowledge, the technical results presented here are
the first decidability and completeness results on PDL with many-valued ac-
cessibility relations. As our discussion of the informal interpretations of the
framework suggests, many-valued PDL has links to existing research in de-
scription logics and potential applications in reasoning about weighted labelled
transition systems.

Our paper also suggests a number of topics for future research. We would
like to mention especially the addition of test and further work on the standard
version of PDL with primitive Kleene star in the many-valued setting. Another
topic are generalizations of our results beyond finite (commutative integral) FL-
algebras with canonical constants; in many cases the work here would require
modifications of existing techniques used in completeness arguments for many-
valued modal logics without “structured” modal operators. Finally, informal
interpretations and applications of our framework need to be explored in more
detail.
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