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Abstract

In standard epistemic logic, agent names are usually assumed to be common knowl-
edge implicitly. This is unreasonable for various applications. Inspired by term modal
logic and assignment operators in dynamic logic, we introduce a lightweight modal
predicate logic where names can be non-rigid. The language can handle various de
dicto /de re distinctions in a natural way. The main technical result is a complete
axiomatisation of this logic over S5 models.
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1 Introduction

One dark and stormy night, Adam was attacked and killed. His assailant, Bob,
ran away, but was seen by a passer-by, Charles, who witnessed the crime from
start to finish. This led quickly to Bob’s arrest. Local news picked up the
story, and that is how Dave heard it the next day, over breakfast. Now, in
one sense we can say that both Charles and Dave know that Bob killed Adam.
But there is a difference in what they know about just this fact. Although
Charles witnessed the crime, and was able to identify the murderer and victim
to the police, he might have no idea about their names. If asked “Did Bob
kill Adam?” he may not know. Yet this is a question that Dave could easily
answer, despite not knowing who Adam and Bob are—he is very unlikely to be
able to identify them in a line-up.

The distinction between these de re and de dicto readings of “knowing
Bob killed Adam” is hard to make in standard epistemic logic, where it is
implicitly assumed that the names of agents are rigid designators and thus
that it’s common knowledge to whom they refer. But in many cases, the
distinction is central to our understanding. On the internet, for example, users
of websites and other online applications typically have multiple identities, and
may even be anonymous. Names are rarely a matter of common knowledge
and distinctions as to who knows who is whom are of great interest.
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Further complexities arise with higher-order knowledge and belief. In [7],
Grove gives an interesting example of a robot with a mechanical problem calling
out for help (perhaps in a Matrix-like future with robots ruling the world
unaided by humans). To plan further actions, the broken robot, called a, needs
to know if its request has been heard by the maintenance robot, called b. But
how to state exactly what a needs to know? In English we would probably
write it as:

(?) a knows that b knows that a needs help.

A naive formulation in standard (predicate) epistemic logic is KaKbH(a). But
without the assumption that the robots’ names are both commonly known,
there are various ambiguities. For example, if b does not know which robot is
named ‘a’ then neither does b know whom to help nor has a any confidence of
being helped. On the other hand, a may not know that ‘b’ is the name of the
maintenance robot, thus merely knowing b knows a needs help is not enough for
a to be sure it will be helped. The authors of [4] list several possible readings
of (?), which we will elaborate as follows: a, the broken robot, knows that

(i) the robot named ‘b’ knows that the robot named ‘a’ needs help, or

(ii) the robot named ‘b’ knows that it, i.e. the broken robot, needs help, or

(iii) the maintenance robot knows that the robot named ‘a’ needs help, or

(iv) the maintenance robot knows that it, i.e. the broken robot, needs help.

It is impossible to distinguish the above readings in standard epistemic logic.
In the literature [8,7,4,5,11], various approaches are proposed. In [7], Grove
correctly pinpoints the problems of scope and manner of reference in giving
various de re /de dicto readings for higher-order knowledge, and proposes a
new semantics for 2-sorted first-order modal logic that is based on world-agent
pairs, so as to cope with indexicals like “me”. A special predicate symbol ‘In’
is introduced to capture scope explicitly: In(a, b, n) holds at a world w iff b is
someone named n by a in w. In [5,20], an intensional first-order modal logic
uses predicate abstraction to capture different readings. (λx.KbHx)(a) says
that agent b knows de re that a is in need of help, whether or not b knows that
agent is named ‘a’, whereas KbH(a) says that b knows de dicto that someone
called ‘a’ needs help, whether or not b knows who a is. The authors of [4]
propose a very general framework with complex operators based on counterpart
semantics. 1 Without going into details, the formula |t : t1...tn

x1...xn
|ϕ(x1 . . . xn)

means, roughly, that the agent named by term t knows de re that ϕ of the
things denoted by terms t1 . . . tn. Holliday and Perry also bring the alethic
modality into the picture together with the doxastic modality, and highlight
the use of roles to capture subtle readings in [11], where the multi-agent cases
are handled by perspective switching based on a single-agent framework.

1 The counterpart semantics helps to handle the situation in which one agent is mistakenly
considered as two people, as illustrated in [4] by the story of the double agent in Julian
Symon’s novel The Man who killed himself.
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In this paper, we follow the dynamic term modal logic approach proposed
by Kooi [13], based on term modal logic proposed in [6]. Term modal logic uses
terms to index modalities which can also be quantified, so that Kf(a)¬∀xKxϕ
says that a’s father knows that not everyone knows ϕ. The accessibility relation
used in the semantics of Kt, where t is a term, is then relative to the world w at
which this formula is evaluated: it is the one labeled by the agent denoted by
term t in w. Based on this, Kooi [13] borrows dynamic assignment modalities
from (first-order) dynamic logic so as to adjust the denotation of names, now
assumed to be non-rigid in general, in contrast to the usual constants of first-
order modal logic which are assumed rigid.

Full first-order term modal language is clearly undecidable. In [16], it is
shown that even its propositional fragment is undecidable, 2 and the addition of
the program modalities in dynamic logic makes things worse. As Kooi remarks
in [13], the combination of term modal logic and dynamic assignment logic is
not even recursively enumerable. A closely related study is the doctoral thesis
of Thalmann [20], which provides many results including sequent calculi and
tableaux systems for both term modal logic (with quantifiers) and quantifier-
free dynamic assignment logic (with regular program constructions). But the
two logics are studied separately, leaving their combination as future work. 3 It
is shown that the quantifier-free part of dynamic assignment logic is undecidable
with both (Kleene) star operator and (rigid) function symbols but it is decidable
if there is no star operator. 4 A rich treatment of various issues of ‘semantic
competence’ with names that uses term modal logic is given by Rendsvig in
[18].

In this paper, we take a minimalist approach, introducing only the basic
assignment modalities from dynamic logic combined with a quantifier-free term
modal logic, without function symbols, to obtain a small fragment of the logic
in [13], which we conjecture to be decidable over S5 models (see discussions
at the end of the paper). However, as we will soon see, it is already a very
powerful tool for expressing various de re/de dicto distinctions, as well as a kind
of knowing who, which was discussed by Hintikka [10] at the very inception of
epistemic logic. 5 The language is very simple and intuitive to use as a genuine
multi-agent epistemic logic that does not presuppose common knowledge of
names.

Before the formal details, let us first illustrate the ideas. As in predicate
epistemic logic more generally, the formula KaPb says that a knows de dicto
that b is P , whereas KaPx says that a knows de re of x that it is P . The
formula [x := b]Px says of b that it is P , which is equivalent to Pb, but

2 Only the monodic fragment is decidable [16].
3 Thalmann predicts in his conclusion that “Using the scoping operator instead of the quanti-
fiers in term-modal logic, should lead to many interesting decidable fragments of term-modal
logic.”
4 The later is only stated without a proof.
5 See [22] for a summary of related works on knowing-wh.
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combining operators we get [x := b]KaPx, which says that a knows de re of
b that it is P . More precisely, our semantics is based on first-order Kripke
models with a constant domain of agents (not names) with formulas evaluated
with respect to both a world w and a variable assignment function σ. Formula
[x := t]ϕ is then true iff ϕ is true at w when we change σ so that it assigns
to x the agent named by t in w, and Ktϕ is true iff ϕ is true at all worlds
indistinguishable from w by the agent named t in w. (This is in line with the
innermost-scope semantics of [7].)

Returning to Grove’s poor broken robot a, the various readings of ‘a knows
that b knows that a needs help’ can be expressed as follows:

(i) KaKbH(a), a knows that the robot named ‘b’ knows that the robot named
‘a’ needs help,

(ii) [x := a]KaKbH(x), a knows that the robot named ‘b’ knows it (the broken
robot a) needs help,

(iii) [y := b]KaKyH(a), a knows that it (the maintenance robot b) knows the
robot named ‘a’ needs help,

(iv) [x := a][y := b]KaKyH(x), a knows that it (the maintenance robot b)
knows that it (the broken robot a) needs help.

Moreover, since names are non-rigid, we can express a knowing who b is by
[x := b]Ka(x ≈ b) which says that a identifies the right person with name b on
all relevant possible worlds. This we abbreviate as Kab.

6 Thus we are able to
express the following:

(v) ¬Kaa: a does not know he is called a (c.f., “the most foolish person may
not know that he is the most foolish person” in [13]).

(vi) b ≈ c∧Kab∧¬Kac: a knows who b is but does not know who c is, although
they are just two names of the same person.

(vii) [x := b][y := a](KcM(x, y) ∧ ¬Kc(a ≈ x ∧ y ≈ b)): Charles knows who
killed whom that night but does not know the names of the murderer and
the victim.

(viii) KdM(b, a)∧¬Kda∧¬Kdb: Dave knows that a person named Bob murdered
a person named Adam without knowing who they are.

The innocent look of our logical language belies some technical complex-
ity. The main technical result is a complete axiomatisation of the logic over
epistemic (S5) models (Section 3 and 4), requires much work to handle the
constant domain without Barcan-like formulas. We conclude with discussions
on the issues of decidability of our logic (Section 5).

6 There are a lot of different readings of knowing who. E.g., knowing who went to the party
may be formalized as ∀x(KW (x) ∨ K¬W (x)) under an exhaustive interpretation [21]. See
[1,2] for a very powerful treatment using conceptual covers to give different interpretations.
[17] also contains related discussions.
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2 Preliminaries

In this section we introduce formally the language and semantics of our logic.

Definition 2.1 (Epistemic language with assignments) Given a denu-
merable set of names N, a denumerable set of variables X, and a denumerable
set P of predicate symbols, the language ELAS is defined as:

t ::= x | a

ϕ ::= (t ≈ t) | P t | ¬ϕ | (ϕ ∧ ϕ) | Ktϕ | [x := t]ϕ

where a ∈ N, P ∈ P, and t is a vector of terms of length equal to the arity of
predicate P . We write K̂tϕ as the the abbreviation of ¬Kt¬ϕ and write 〈x := t〉ϕ
as the abbreviation of ¬[x := t]¬ϕ. 7 We call the [x := t]-free fragment EL.

We define the semantics of ELAS over first-order Kripke models.

Definition 2.2 A constant domain Kripke model M for ELAS is a tuple
〈W, I,R, ρ, η〉 where:

• W is a non-empty set of possible worlds.

• I is a non-empty set of agents.

• R : I → 2W×W assign a binary relation R(i) (also written Ri) between
worlds, to each agent i.

• ρ : P ×W →
⋃
n∈ω 2I

n

assigns an n-ary relation ρ(P,w) between agents to
each n-ary predicate P at each world w.

• η : N×W → I assigns an agent η(n,w) to each name n at each world w.

We call M an epistemic model if Ri is an equivalence relation for each i ∈ I.

Note that the interpretations of predicates and names are not required to
be rigid, and there may be worlds in which an agent has no name or multiple
names. To interpret free variables, we need a variable assignment σ : X → I.
Formulas are interpreted on pointed models M, w with variable assignments
σ. Given an assignment σ and a world w ∈ W , let σw(a) = η(a,w) and
σw(x) = σ(x). So although names may not be rigid, variables are.

The truth conditions are given w.r.t. pointed Kripke models with assign-
ments M, w, σ.

Definition 2.3

M, w, σ � t ≈ t′ ⇔ σw(t) = σw(t′)
M, w, σ � P (t1 · · · tn) ⇔ (σw(t1), · · · , σw(tn)) ∈ ρ(P,w)

M, w, σ � ¬ϕ ⇔ M, w, σ 2 ϕ
M, w, σ � (ϕ ∧ ψ) ⇔ M, w, σ � ϕ and M, w, σ � ψ
M, w, σ � Ktϕ ⇔ M, v, σ � ϕ for all v s.t. wRσw(t)v

M, w, σ � [x := t]ϕ ⇔ M, w, σ[x 7→ σw(t)] � ϕ

7 This is for comparison with other modal logics; in fact, the assignment modality is self-dual.
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An ELAS formula is valid (over epistemic models) if it holds on all the (epis-
temic) models with assignments M, s, σ.

We can translate ELAS into the corresponding (2-sorted) first-order lan-
guage with not only the equality symbol but also a ternary relation symbol R
for the accessibility relation, a function symbol fa for each name a, and an
n + 1-ary relation symbol QP for each predicate symbol P . The non-trivial
clauses are for Kt and [x := t]ϕ based on translation for terms:

Trw(x) = x Trw(a) = fa(w)
Trw(t ≈ t′) = Trw(t) ≈ Trw(t′) Trw(P t) = QP (w,Trw(t))
Trw(¬ψ) = ¬Trw(ψ) Trw(ϕ ∧ ψ) = Trw(ϕ) ∧ Trw(ψ).
Trw(Ktψ) = ∀v(R(w, v,Trw(t))→ Trv(ψ))

Trw([x := t]ψ) =

{
∃x(x ≈ Trw(t) ∧ Trw(ψ)) if t 6= x
Trw(ψ) if t = x

Note that when t 6= x we can also (equivalently) define Trw([x := t]ψ) = ∀x(x ≈
Trw(t)→ Trw(ψ)), since there is one and only one value of Trw(t). When x = t,
then [x := x]ψ is equivalent to ψ according to the semantics.

In the light of this translation, we can define the free and bound occurrences
of a variable in an ELAS-formula by viewing [x := t] in [x := t]ϕ as a quantifier
for x binding ϕ. Note that the t in [x := t] is not bound in [x := t]ϕ, even
when t = x. The set of free variables Fv(ϕ) in ϕ is defined as follows (where
Var(t) is the set of variables in the terms t):

Fv(P t) = Var(t)
Fv(¬ϕ) = Fv(ϕ) Fv(ϕ ∧ ψ) = Fv(ϕ) ∪ Fv(ψ)
Fv(Ktϕ) = Var(t) ∪ Fv(ϕ) Fv([x := t]ϕ) = (Fv(ϕ) \ {x}) ∪ Var(t)

We use ϕ[y/x] to denote the result of substituting y for all the free occurrences
of x in ϕ. We say ϕ[y/x] is admissible if all the occurrences of y by replacing
free occurrences of x in ϕ are also free.

We first show that ELAS is indeed more expressive than EL.

Proposition 2.4 The assignment operator [x := t] cannot be eliminated over
(epistemic) models with variable assignments.

Proof. Consider the following two (epistemic) models (reflexive arrows omit-
ted) with a fixed domain I = {i, j}, worlds W = {s1, s2} and a fixed assignment
σ(x) = i for all x ∈ X:

M1:
η(a, s1) = j
ρ(P, s1) = ∅

s1
j

M2:
η(a, s1) = j
ρ(P, s1) = ∅

s1
j

s2
ρ(P, s2) = {i, j}
η(a, s2) = i

s2
ρ(P, s2) = {i}
η(a, s2) = i
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[x := a]K̂aPx can distinguish M1, s1 and M2, s1 given σ. But the only
atomic formulas other than identities are Px, Pa and a ≈ x, which are all false
at s1 and all true at s2 in both models. Also note that Ka and Kx have exactly
the same interpretation on the corresponding worlds in the two models. Based
on these observations, a simple inductive proof on the structure of formulas
would show that EL cannot distinguish the two models given σ. 2

Interested readers may also wonder whether we can eliminate [x := t] in each
ELAS formula to obtain an EL formulas which is equally satisfiable. However,
the naive idea of translating [x := t]ϕ into z ≈ t ∧ ϕ[z/x] with fresh z will not

work in formulas like Ka[x := c]K̂bx 6≈ c since the name c is not rigid.
To better understand the semantics, the reader is invited to examine the

following valid and invalid formulas over epistemic models:

1 valid x ≈ y → Ktx ≈ y, x 6≈ y → Ktx 6≈ y
invalid x ≈ a→ Ktx ≈ a, x 6≈ a→ Ktx 6≈ a, a ≈ b→ Kta ≈ b

2 valid Kxϕ→ KxKxϕ, ¬Kxϕ→ Kx¬Kxϕ, Ktϕ→ ϕ.
invalid Ktϕ→ KtKtϕ, ¬Ktϕ→ Kt¬Ktϕ

3 valid [x := y]ϕ→ ϕ[y/x] (ϕ[y/x] is admissible)
invalid [x := a]KtPx→ KtPa

4 valid x ≈ a→ (Kxϕ→ Kaϕ), a ≈ b→ (Pa→ Pb)
invalid x ≈ a→ (KbPx→ KaPa), a ≈ b→ (KcPa→ KcPb)

5 valid [x := y]Kaϕ→ Ka[x := y]ϕ
invalid [x := b]KaPx→ Ka[x := b]Px

Remark 2.5 Here are some brief explanations:

1: It shows the distinction between (rigid) variables and (non-rigid) names. The
invalid formula shows that although two names co-refer, you may not know
it (recall Frege’s puzzle).

2: Axioms 4 and 5 do not work for names in general, since a may not know
that he is named ‘a’. On the other hand, positive and negative introspection
hold when the index is a variable. The T axiom works in general.

3: It also demonstrates the non-rigidity of names. [x := a]KbPx does not imply
KbPa since b may consider a world possible where Pa does not hold since
a on that world does not refer to the actual person named by a in the real
world.

4: This shows that it is fine to do the first-level substitutions for the equal
names but not in the scope of other modalities.

5: The last pair also demonstrates the distinction between rigid variables and
non-rigid names. In particular, the analog of Barcan formula [x := t]Ksϕ→
Ks[x := t]ϕ is not in general valid, if t is a name.

3 Axiomatisation

In this section we give a complete axiomatisation of valid ELAS-formulas over
epistemic models. The axioms and rules can be categorised into several classes:
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• For normal propositional modal logic: TAUT, DISTK, MP, NECK;

• Axiom for epistemic conditions: Tx, 4x, 5x;

• Axioms for equality and first-level substitutability: ID, SUBP, SUBK, SUBAS;

• Axioms capturing rigidity of variables: RIGIDP and RIGIDN;

• Properties of assignment operator: KAS (normality), DETAS (determinacy),
DAS (executability), and EFAS (the effect of the assignment).

• Quantifications: SUB2AS and NECAS, as in the usual first-order setting (view-
ing assignments as quantifiers).

System SELAS
Axioms
TAUT Propositional tautologies
DISTK Kt(ϕ→ ψ)→ (Ktϕ→ Ktψ)
Tx Kxϕ→ ϕ
4x Kxϕ→ KxKxϕ
5x ¬Kxϕ→ Kx¬Kxϕ
ID t ≈ t
SUBP t ≈ t′ → (P t↔ P t′)

(P can be ≈)
SUBK t ≈ t′ → (Ktϕ↔ Kt′ϕ)

SUBAS t ≈ t′ →
([x := t]ϕ↔ [x := t′]ϕ)

RIGIDP x ≈ y → Ktx ≈ y
RIGIDN x 6≈ y → Ktx 6≈ y
KAS [x := t](ϕ→ ψ)→

([x := t]ϕ→ [x := t]ψ)
DETAS 〈x := t〉ϕ→ [x := t]ϕ
DAS 〈x := t〉>
EFAS [x := t]x ≈ t
SUB2AS ϕ[y/x]→ [x := y]ϕ

(ϕ[y/x] is admissible)

Rules:

MP
ϕ,ϕ→ ψ

ψ
NECK

` ϕ
` Ktϕ

NECAS
` ϕ→ ψ

` ϕ→ [x := t]ψ
(x 6∈ Fv(ϕ))

where t ≈ t′ means point-wise equivalence for sequences of terms t and t′ such
that |t| = |t′|. It is straightforward to verify the soundness of the system.

Theorem 3.1 (Soundness) SELAS is sound over epistemic models with as-
signments.

Proposition 3.2 The following are derivable in the above proof system (where
ϕ[y/x] is admissible below in SUBASEQ) :

SYM t ≈ t′ → t′ ≈ t TRANS t ≈ t′ ∧ t′ ≈ t′′ → t ≈ t′′
DBASEQ 〈x := t〉ϕ↔ [x := t]ϕ SUBASEQ ϕ[y/x]↔ [x := y]ϕ
EAS [x := t]ϕ↔ ϕ (x 6∈ Fv(ϕ)) T Ktϕ→ ϕ

CNECAS
` ϕ→ ψ

` [x := t]ϕ→ ψ
(x 6∈ Fv(ψ)) NECAS’

` ϕ
` [x := t]ϕ

EX [x := x]ϕ↔ ϕ

Proof. (Sketch) SYM and TRANS are trivial based on ID and SUBP. DBASEQ is
based on DETAS and DAS. SUBASEQ is due to the contrapositive of SUB2AS and
DBASEQ. CNECAS is due to NECAS and DBASEQ for contrapositive. EAS is based on
NECAS and CNECAS (taking ψ = ϕ). EX is a special case of SUB2AS and NECAS′
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is a special case of NECAS. As a more detailed example, let us look at the proof
(sketch) of T (we omit the rountine steps using the normality of [x := t]):

(1) ` Ktϕ→ (z ≈ t→ Kzϕ) (SUBK, z is fresh)
(2) ` Ktϕ→ [z := t](z ≈ t→ Kzϕ) (NECAS(1))
(3) ` Ktϕ→ [z := t](Kzϕ) (EFAS(2))
(4) ` [z := t](Kzϕ→ ϕ) (NECAS′, Tx)
(5) ` Ktϕ→ [z := t]ϕ (normality of [z:=t] and MP)
(6) ` Ktϕ→ ϕ (EAS, MP)

2

Based on the above result, we can reletter the bound variables in any ELAS
formula like in first-order logic.

Proposition 3.3 (Relettering) Let z be a fresh variable not in ϕ and t, then

[x := t]ϕ↔ [z := t]ϕ[z/x]

.

Proof. Since z is fresh, ϕ[z/x] is admissible. We have the following proof
(sketch):

(1) ` ϕ[z/x]↔ [x := z]ϕ (SUBASEQ)
(2) ` [z := t]ϕ[z/x]↔ [z := t][x := z]ϕ (normality of [z := t])
(3) ` [z := t]ϕ[z/x]↔ [z := t](z ≈ t ∧ [x := z]ϕ) (EFAS)
(4) ` [z := t]ϕ[z/x]↔ [z := t](z ≈ t ∧ [x := t]ϕ) (SUBAS)
(5) ` [z := t]ϕ[z/x]↔ [z := t][x := t]ϕ (EFAS)
(6) ` [z := t]ϕ[z/x]↔ [x := t]ϕ (EAS)

2

4 Completeness

To prove the completeness, besides the treatments of [x := t] and termed
modality Kt, the major difficulty is the lack of the Barcan-like formulas in
ELAS, which are often used to capture the condition of the constant domain.
As in standard first-order logic, we need to provide witnesses for each name,
and the Barcan formula can make sure we can always find one when building a
successor of some maximal consistent set with enough witnesses. On the other
hand, we can build an increasing domain pseudo model without such a formula
using the techniques in [12]. Inspired by the techniques in [3], to obtain a
constant domain model, when building the successors in the increasing domain
pseudo model, we only create a new witness if all the old ones are not available,
and we make sure by formulas in the maximal consistent sets that the new one is
not equal to any old ones (throughout the whole model). In this way, there will
not be any conflicts between the witnesses when we collect all of them together.
We may then create a constant domain by considering the equivalence classes
of all the witnesses occurring in the pseudo model with an increasing domain.

Here is the general proof strategy:
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• Extend the language with countably many new variables.

• Build a pseudo canonical frame using maximal consistent sets for various
sublanguages of the extended language, with witnesses for the names.

• Given a maximal consistent set, cut out its generated subframe from the
pseudo frame, and build a constant-domain canonical model, by taking cer-
tain equivalence classes of variables as the domain.

• Show that the truth lemma holds for the canonical model.

• Take the reflexive symmetric transitive closure of the relations in pseudo
model and show that the truth of the formulas in the original language are
preserved.

• Extend each consistent set of the original model to a maximal consistent set
with witnesses.

We first extend the language ELAS with countably infinitely many new
variables, and call the new language ELAS+ with the variable set X+. We
say a language L is an infinitely proper sublanguage of another language L′ if:

• L and L′ only differ in their sets of variables,

• L ⊆ L′,
• there are infinitely many new variables in L′ that are not in L.

We use maximal consistent sets w.r.t. different infinitely proper sublanguages
of ELAS+ that are extensions of ELAS to build a pseudo canonical frame.

Definition 4.1 (Pseudo canonical frame) The pseudo canonical frame
Fc = 〈W,R〉 is defined as follows:

• W is the set of MCS ∆ w.r.t. some infinitely proper sublanguages L∆ of
ELAS+ such that for each ∆ ∈W :
· ELAS ⊆ L∆,
· For each a ∈ N there is a variable x in L∆ (notation: x ∈ Var(∆)) such

that x ≈ a ∈ ∆ (call it ∃-property)

• For each x ∈ X+, ∆RxΘ iff the following three conditions hold:
(i) x in Var(∆), the set of variables in L∆.
(ii) {ϕ | Kxϕ ∈ ∆} ⊆ Θ.

(iii) if y ∈ Var(Θ) \ Var(∆) then y 6≈ z ∈ Θ for all z ∈ Var(Θ) such that z 6= y.

Observation The last condition for Rx makes sure that every new variable
in the successor is distinguished from any other variables by inequalities. It is
also easy to see that if t ∈ L∆ then there is x ∈ Var(∆) such that x ≈ t ∈ ∆
by ∃-property and ID.

Proposition 4.2 If ∆RxΘ in Fc, then:

• L∆ is a sublanguage of LΘ

• for any y 6= z ∈ Var(ELAS+): y ≈ z ∈ ∆ iff y ≈ z ∈ Θ.

Proof. For the first: For all y ∈ Var(∆), y ≈ y ∈ ∆ therefore Kx(y ≈ y) ∈ ∆
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by RIGIDP, thus y ≈ y ∈ Θ.
For the second:

• Suppose y, z ∈ Var(∆)
· If y ≈ z ∈ ∆, then Kxy ≈ z ∈ ∆ by RIGIDP, thus y ≈ z ∈ Θ.
· If y ≈ z 6∈ ∆ then y 6≈ z ∈ ∆ since ∆ is an L∆-MCS and y, z ∈ Var(∆).

Then Kxy 6≈ z ∈ ∆ by RIGIDN, thus y ≈ z 6∈ Θ.

• Suppose w.o.l.g. y 6∈ Var(∆) thus y ≈ z 6∈ ∆.
· If y 6∈ Var(Θ) or z 6∈ Var(Θ) then then y ≈ z ∈ ∆ iff y ≈ z ∈ Θ trivially

holds.
· If y ∈ Var(Θ) and z ∈ Var(Θ) then y 6≈ z ∈ Θ due to the third condition

of Rx. Therefore y ≈ z 6∈ Θ since Θ is consistent. Thus y ≈ z ∈ ∆ iff
y ≈ z ∈ Θ.

2

The second part of the above proposition makes sure that we do not have
conflicting equalities in different states which are accessible from one to another.

Lemma 4.3 (Existence lemma) If ∆ ∈ W and K̂tϕ ∈ ∆ then there is a
Θ ∈W and an x ∈ Var(L∆) such that ϕ ∈ Θ, x ≈ t ∈ ∆, and ∆RxΘ.

Proof. If K̂tϕ ∈ ∆ then there is x ≈ t ∈ ∆ for some x, due to the fact that
∆ has the ∃-property. Let Θ−− = {ψ | Kxψ ∈ ∆} ∪ {ϕ}. We first show that
Θ−− is consistent by DISTK and NECK (routine). Next we show that it can be
extended to a state in W . We can select an infinitely proper sublanguage L of
ELAS+ such that L∆ is an infinitely proper sublanguage of L. We can list the
new variables in L but not in L∆ by y0, y1, y2, . . . . We also list the names in
N as a0, a1, . . . . In the following, we add the witness to the names by building
Θi as follows:

• Θ0 = Θ−−

• Θk+1 =



Θk if x ≈ ak is in Θk for some x ∈ Var(∆) (1)
Θk ∪ {xi ≈ ak} if (1) does not hold but {x ≈ ak} ∪Θk

is consistent for some x ∈ Var(∆),
and xi is the first such x according to

a fixed enumeration of Var(∆) (2)
Θk ∪ {yj ≈ ak}∪ if neither (1) nor (2) holds and
{yj 6≈ z | z ∈ Var(Θk)} yj is the first in the enumeration

of the new variables not in Θk (3)

We can show that Θk is always consistent. Note that Θ0 is consistent, we just
need to show if Θk is consistent and (1), (2) do not hold, then Θk+1 is consistent
too. Suppose for contradiction that Θk ∪ {yj ≈ ak} ∪ {yj 6≈ z | z ∈ Var(Θk)} is
not consistent then there are fomulas ψ1 . . . ψn ∈ Θk, and zi1 . . . zim ∈ Var(Θk)
such that:

` ψ1 ∧ · · · ∧ ψn ∧ yj ≈ ak →
∨

i∈{i1,...,im}

yj ≈ zi (?)
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First note that since yj is not in Θk, Θk∪{yj ≈ ak} is consistent, for otherwise
there are ψ1 . . . ψn ∈ Θk such that `

∧
i≤n ψi → yj 6≈ ak, then by NECAS, we

have `
∧
i≤n ψi → [yj := ak]yj 6≈ ak thus by EFAS we have `

∧
i≤n ψi → [yj :=

ak](ak ≈ yj ∧ ak 6≈ yj), contradicting to the consistency of Θk (by DETAS). By
(?), Θk ∪ {yj ≈ ak} is consistent with one of yj ≈ zi for some zi in Var(Θk).
Thus Θk ∪ {zi ≈ ak} is also consistent which contradicts the assumption that
condition (2) and (1) do not hold.

Then we define Θ− to be the union of all Θk. Clearly, Θ− has the ∃-
property. We build the language L′ based on Var(Θ−). Note that L′ is still an
infinitely proper sublanguage of ELAS+.

Finally, we extend Θ− into an MCS w.r.t. L′ and it is not hard to show
∆RxΘ by verifying the third condition: when we introduce a new variable we
always make sure it is differentiated with the previous one in the construction
of Θ. 2

Given a state Γ in Fc, we can define an equivalence relation ∼Γ: x ∼Γ y
iff x ≈ y ∈ Γ or x = y (note that x ≈ x is not in Γ if x 6∈ LΓ). Due to
ID, SYM, TRANS, ∼Γ is indeed an equivalence relation. When Γ is fixed, we write
|x| for the equivalence class of x w.r.t. ∼Γ. By definition, for all x 6∈ Var(Γ),
|x| is a singleton.

Now we are ready to build the canonical model.

Definition 4.4 (Canonical model) Given a Γ in Fc we define the canonical
model MΓ = 〈WΓ, I

c, Rc, ρc, ηc〉 based on the psuedo canonical frame 〈W,R〉
• WΓ is the subset of W generated from Γ w.r.t. the relations Rx.

• Ic = {|x| | x ∈ Var(WΓ)} where Var(WΓ) is the set of all the variables
appearing in WΓ.

• ∆Rc|x|Θ iff ∆RxΘ, for any ∆,Θ ∈WΓ.

• ηc(a,∆) = |x| iff a ≈ x ∈ ∆.

• ρc(P,∆) = {|x| | Px ∈ ∆}.
Here is a handy observation.

Proposition 4.5 If y ∈ Var(∆) \ Var(Γ) then y 6≈ z ∈ ∆ for all z ∈ Var(∆)
such that z 6= y.

Proof. Due to the condition 3 of the relation Rx in Fc and Proposition 4.2,
and the fact that WΓ is generated from Γ. 2

Proposition 4.6 The canonical model is well-defined.

Proof.

• For R|x|: We show that the choice of the representative in |x| does not change
the definition. Suppose x ∼Γ y then either x = y or x ≈ y ∈ Γ. In the first
case, ∆RxΘ iff ∆RyΘ. In the second case, suppose ∆RxΘ. We show that
the three conditions for ∆RyΘ hold. For condition 1, y ∈ Var(∆) since
y ∈ Var(Γ) and ∆ is generated from Γ by R. For condition 2, we just need
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to note that ` y ≈ x → (Kxϕ ↔ Kyϕ) by SUBK. And condition 3 is given
directly by condition 3 for ∆RxΘ.

• For η(a,∆): We first show that the choice of the representative in |x| does
not change the definition by ` x ≈ y → (a ≈ x↔ a ≈ y) (TRANS). Then we
need to show that ηc(a,∆) is unique. Note that due to the ∃-property, there
is always some x such that x ≈ a in ∆. Suppose towards contradiction that
a ≈ x ∈ ∆, a ≈ y ∈ ∆ and x 6∼Γ y then clearly x, y cannot be both in Var(Γ)
for otherwise x 6≈ y ∈ ∆. Suppose w.l.o.g. x is not in Var(Γ) then we should
have x 6≈ y ∈ ∆ due to Proposition 4.5, contradicting the assumption that
∆ is consistent.

2

Proposition 4.7 R|x| is transitive.

Proof. Suppose ∆R|x|Θ and ΘR|x|Λ then in Fc ∆RxΘ and ΘRxΛ (note that
the representative of |x| does not really matter since R|x| is well-defined). We
have to show the three conditions for ∆RxΛ. For condition 1, x ∈ Var(∆) since
∆RxΘ. For condition 2, by Axiom 4x, we have for any ϕ such that Kxϕ ∈ ∆
we have KxKxϕ ∈ ∆ thus Kxϕ ∈ Θ thus ϕ ∈ Λ, by the definition of Rx. For
condition 3, suppose y ∈ Var(Λ) \ Var(∆). Then since ∆ ∈ W , y 6∈ Var(Γ), so
by Proposition 4.5 we are done. 2

Before proving the truth lemma, we have two simple observations:

Proposition 4.8 .

(1) If x ≈ y is in some ∆ ∈WΓ then x ∼Γ y.

(2) If x ∼Γ y then x = y or x ≈ y in all the ∆ ∈WΓ.

Proof. For the first, suppose x ≈ y is in some ∆ ∈ WΓ. We just need to
consider the case when x 6= y for if x = y then x ∼Γ y by definition. By
Proposition 4.5, x and y must be both in Var(Γ), thus by RIGIDN and the fact
that ∆ is connected to Γ, x ≈ y ∈ Γ.

The second is immediate by the definition of ∼Γ: if x ≈ y ∈ Γ then x ≈ y ∈
∆ due to RIGIDP and the fact that all the ∆ ∈WΓ are connected to Γ.

2

Although R|x| is transitive, the model MΓ is not reflexive nor symmetric
in general. For the failure of reflexivity, note that some x may not be in the
language of some state. For the failure of symmetry: We may have ∆R|x|Θ and
L∆ ⊂ LΘ thus it is not the case that ΘR|x|∆ by Proposition 4.2. We will turn
this model into an S5 model later on. Before that we first prove a (conditional)
truth lemma w.r.t.MΓ and the canonical assignment σ∗ such that σ∗(x) = |x|
for all x ∈ Var(WΓ).

Lemma 4.9 (Truth lemma) For any ϕ ∈ ELAS+ and any ∆ ∈ W , if ϕ ∈
L∆ then:

MΓ,∆, σ
∗ � ϕ⇔ ϕ ∈ ∆

Proof. We do induction on the structure of the formulas.
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For the case of t ≈ t′ ∈ L∆, by ∃-property we have some x, y ∈ Var(L∆)
such that t ≈ x ∈ ∆, t′ ≈ y ∈ ∆.

• Suppose t ≈ t′ ∈ ∆. Since t ≈ x ∈ ∆, t′ ≈ y ∈ ∆, by TRANS, x ≈ y ∈ ∆.
Now by Proposition 4.8, x ∼Γ y. Thus σ∗(t,∆) = |x| = |y| = σ∗(t′,∆), then
MΓ,∆, σ

∗ � t ≈ t′.
• If MΓ,∆, σ

∗ � t ≈ t′ then σ∗(t,∆) = σ∗(t′,∆). If t and t′ are variables x, y,
then |x| = |y| i.e., x ∼Γ y. By Proposition 4.8, either x = y or x ≈ y ∈ ∆.
Actually, even if x = y, since x is in Var(∆), x ≈ x ∈ ∆ by ID. If t and t′ are
both in N, then by the definition of ηc, there are t ≈ x and t ≈ y in ∆ and
y ∈ |x|, which means x ∼Γ y. By Proposition 4.8 and ID again, x ≈ y ∈ ∆
therefore t ≈ t′ ∈ ∆. Finally, w.l.o.g. if t ∈ Var(∆) and t′ ∈ N, then by
definition of η, t′ ≈ x ∈ ∆ for some x and t ∼Γ x. Again, since x, t ∈ Var(∆),
x ≈ t ∈ ∆ therefore t ≈ t′ ∈ ∆.

For the case of P t ∈ L∆.

• If P t ∈ ∆, then by ∃-property, there are x in Var(∆) such that x ≈ t ∈ ∆.
Then by SUBP we have Px ∈ ∆. Thus by the definition of ρc, |x| ∈ ρc(P,∆).
By the definitions of σ∗ and ηc, σ∗(t,∆) = |x|. Therefore MΓ,∆, σ

∗ � P t.

• If MΓ,∆, σ
∗ � P t, then the vector σ∗(t,∆) ∈ ρc(P,∆). It means that

σ∗(t,∆)=|x| (coordinate-wise) for some Px ∈ ∆ such that t ≈ y ∈ ∆ for
some y such that x ∼Γ y. Note that since Px ∈ ∆, x ∈ Var(∆). It is
not hard to show that x ≈ y ∈ ∆ by Proposition 4.8. Now based on SUBP,
P t ∈ ∆.

The boolean cases are routine.
For the case of Ktψ ∈ L∆:

• Suppose Ktψ 6∈ ∆, then K̂t¬ψ ∈ ∆. By Lemma 4.3 there is some variable
x and Θ ∈ WΓ such that ∆R|x|Θ, x ≈ t ∈ ∆ and ¬ψ ∈ Θ. Therefore,
by the induction hypothesis, MΓ,Θ, σ

∗ 2 ψ and so MΓ,∆, σ
∗ 2 Kxψ. If

t is a variable then x ∼Γ t by Proposition 4.8, thus σ∗(∆, t) = |x|. If t is
a name then by definition ηc(∆, t) = |x|. Therefore in either case we have
MΓ,∆, σ

∗ 2 Ktψ.

• Suppose Ktψ ∈ ∆, then by ∃-property, there is an x ∈ Var(∆) such that
x ≈ t ∈ ∆, thus Kxψ ∈ ∆ by SUBK and σ∗(t,∆) = |x|. By induction
hypothesis, MΓ,∆, σ

∗ � x ≈ t. Now consider any R|x|-successor Θ of ∆, it
is clear that ψ ∈ Θ by definition of R|x|. Now by induction hypothesis again,
MΓ,Θ, σ

∗ � ψ. Therefore, MΓ,∆, σ
∗ � Ktψ.

For the case of [x := t]ψ ∈ L∆:

• Suppose MΓ,∆, σ
∗ � [x := t]ψ.

· If t ∈ N, by ∃-property, we have y ≈ t ∈ ∆ for some y ∈ Var(∆).
By induction hypothesis, MΓ,∆, σ

∗ � y ≈ t. Therefore σ∗(∆, t) = |y|
thus MΓ,∆, σ

∗[x 7→ |y|] � ψ. Now if ψ[y/x] is admissible then we have
MΓ,∆, σ

∗ � ψ[y/x]. By IH, ψ[y/x] ∈ ∆. Thus [x := y]ψ ∈ ∆ by SUB2AS.
Since t ≈ y ∈ ∆, thus [x := t]ψ ∈ ∆ by SUBAS. Note that if ψ[y/x] is not
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admissible, then we can reletter ψ to have an equivalent formula ψ′ ∈ L(∆)
such that ψ′[y/x] is admissible. Then the above proof still works to show
that [x := t]ψ′ ∈ ∆. Since relettering can be done in the proof system by
Proposition 3.3, we have [x := t]ψ ∈ ∆.
· If t is a variable y, then MΓ,∆, σ

∗[x 7→ |y|] � ψ. From here a similar (but
easier) proof like the above suffices.

• Supposing [x := t]ψ ∈ ∆, by the ∃-property of ∆, we have some y ∈ Var(∆)
such that t ≈ y ∈ ∆. Like the proof above we can assume w.l.o.g. that ψ[y/
x] is admissible, for otherwise we can reletter ψ first. Thus [x := y]ψ ∈ ∆ by
SUBAS. Then by SUBASEQ, ψ[y/x] ∈ ∆. By IH, MΓ,∆, σ

∗ � ψ[y/x] ∧ t ≈ y.
By the semantics and the assumption that ψ[y/x] admissible, MΓ,∆, σ

∗ �
[x := t]ψ.

2

Now we will transform the canonical model into a proper S5 model by
taking the reflexive, symmetric and transitive closure of each R|x| inMΓ. Note
that although MΓ is a transitive model, the symmetric closure will break the
transitivity. Actually, it can be done in one go by taking the reflexive transitive
closure via undirected paths. More precisely, let NΓ be the model likeMΓ but
with the revised relation R∗|x| for each x ∈ Var(WΓ), defined as:

∆R∗|x|Θ ⇔ either ∆ = Θ or there are some ∆1 . . .∆n for some n ≥ 0

such that ∆kR|x|∆k+1 or ∆k+1R|x|∆k

for each 0 ≤ k ≤ n where ∆0 = ∆ and ∆n+1 = Θ.
We will show that it preserves the truth value of ELAS formulas.

Lemma 4.10 (Preservation lemma) For all ϕ ∈ ELAS :

NΓ,∆, σ
∗ � ϕ⇔ ϕ ∈ ∆

Proof. Since we only altered the relations, We just need to check Ktψ ∈
ELAS. Note that then Ktψ is in all the local language L∆.

• If NΓ,∆, σ∗ � Ktψ then since the closure only adds relations then we know
MΓ,∆, σ

∗ � Ktψ by induction hypothesis and Lemma 4.9. Now by Lemma
4.9 again Ktψ ∈ ∆.

• Suppose Ktψ ∈ ∆. Since ∆ has ∃-property, there is some x ∈ Var(∆) such
that x ≈ t ∈ ∆ thus Kxψ ∈ ∆. Now consider an arbitrary R∗|x|-successor Θ

in NΓ. If ∆ = Θ then by KT it is trivial to show that ψ ∈ ∆. Now by the
definition of R∗|x|, suppose there are some ∆1 . . .∆n such that ∆kR|x|∆k+1

or ∆k+1R|x|∆k for each 0 ≤ k ≤ n where ∆ = ∆0 and Θ = ∆n+1. Now
we do induction on n to show that Kxψ ∈ ∆k for all those k ≤ n+ 1. Note
that if the claim is correct then by KT we have ψ ∈ ∆k+1 thus by IH we have
NΓ,∆, σ∗ � Ktψ.
· n = 0 : Then there are two cases:

∆R|x|Θ in MΓ: by 4x, KxKxψ ∈ ∆ and then Kxψ ∈ Θ by the definition
of R|x|.
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ΘR|x|∆ inMΓ: First note that there is some y ∈ |x| such that y ∈ Var(Θ)
by the definition of R|x|. If y 6= x then by Proposition 4.8, we have y ≈
x ∈ Θ, therefore x ∈ Var(Θ). Towards contradiction suppose ¬Kxψ ∈ Θ.
By 5x, Kx¬Kxψ ∈ Θ. By definition of R|x|, ¬Kxψ ∈ ∆. Contradiction.

· n = k + 1 : Supposing that the claim holds for n = k, i.e., Kxψ ∈ ∆k.
There are again two cases: ∆kR|x|∆k+1 or ∆k+1R|x|∆k and they can be
proved as above.

In sum, NΓ,Θ, σ∗ � ψ for any Θ such that ∆R|x|Θ. Therefore, NΓ,∆, σ∗ �
Ktψ.

2

It can be easily checked that:

Lemma 4.11 NΓ is an epistemic model, i.e., all the R|x| are equivalence re-
lations.

The following is straightforward by using some new variables but leaving
infinitely many new variables still unused.

Lemma 4.12 Each SELAS-consistent set Γ−− can be extended to a consistent
set Γ− w.r.t. some infinitely proper sublanguage L of ELAS+ such that for
each a ∈ N there is an x ∈ Var(L) such that x ≈ a ∈ Γ−. Finally we can
extend it to an MCS Γ w.r.t. L.

Theorem 4.13 SELAS is sound and strongly complete over epistemic Kripke
models with assignments.

Proof. Soundness is from Theorem 3.1. Then given a consistent set Γ−, using
the above proposition we have a Γ. By the Truth Lemma 4.9 we have a model
satisfying Γ and hence Γ−. 2

From the above proof, it is not hard to see that we can obtain the com-
pleteness of SELAS without Tx, 4x, 5x over arbitrary models by some minor
modifications of the proof.

5 Discussions and future work

In this paper, we proposed a lightweight epistemic language with assignment
operators from dynamic logic, which can express various de re/de dicto readings
of knowledge statements when the references of the names are not commonly
known. We gave a complete axiomatisation of the logic over epistemic models
with constant domain of agents.

The complexity of the epistemic logic SELAS is currently unknown to us
though we conjecture it is decidable due to the very limited use of quantifiers.
Under the translation in Section 2, the name-free fragment can be viewed as a
guarded fragment of first-order logic with transtive guards [19], which implies
decidability. However, the non-rigid names translate into function symbols in
first-order language, which may cause troubles since the guarded fragment with
function symbols in general yields an undecidable logic [9]. We are not that far
from the decidability boundary, if not on the wrong side.
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To actually design a tableaux method in pursuing the decidability of our
logic, we have to handle the difficulties from various sources:

• S5 frame conditions

• equalities

• constant domain

• non-rigid names

• termed modalities

• assignment operators

Some of the issues are already complicated on their own based on the knowledge
of existing work. The biggest hurdle for the termination in a tableau method
for S5-based logic like the ones proposed in [5,14], is to ensure loops in finite
steps. This requires us in our setting to show that given a satisfiable formula,
we can bound the number of necessary elements in the domain (for non-rigid
names) and the number of subformulas we may encounter when building the
tableau. The S5 condition and the assignment operator may ask us to always
introduce new elements in the domain when creating new successors, while the
new elements can essentially create new subformulas, if we add new symbols
for them in the tableaux. On the other hand, without the transitivity and
symmetry conditions, it is possible to bound the number of new elements in
the domain to obtain decidability via some finite model property. We leave
the details to a future occasion as well as the exploration of other ideas for
decidability such as filtering the canonical model.

Below we list a few other further directions:

• Model theoretical issues of ELAS.

• Extension with function symbols.

• Extension with a (termed) common knowledge operator.

• Extension with limited quantifications over agents as in [15].

• Extension to varying domain models, where the existence of all the agents is
not commonly known.

Finally, as a general direction, it would be interesting to consider what happens
if we replace the standard epistemic logic with our ELAS in various existing
logical framework extending the standard one.
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