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Abstract

In intuitionistic justification logic, evidence terms represent intuitionistic proofs, that
is a formula r:A means r is an intuitionistic proof of A. A natural principle in this
context is the internalized disjunction property (IDP), which is: for each term r there
exists a term s such that r:(A or B) implies s:A or s:B.
We introduce a light extension of iJT4, in which IDP is valid. Our proof relies on
a model construction that enforces sharp evidence relations and a tight connection
between syntax and semantics. This makes it possible to switch between proofs and
models, which will be the key to proving IDP.
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1 Introduction

Justification logics feature formulas of the form t : A meaning A is known
for reason t. The evidence term t can stand for a formal proof of A (say in
Peano Arithmetic) [2,21] or t can represent an informal justification to believe
that A [14]. This second reading turned out to be very useful for analyzing a
variety of epistemic situations, see, e.g., [4,5,8,9,11,12,17].

It is a distinguishing feature of justification logics that they internalize their
own notion of proof. If a formula A is provable, then there exists a term t such
that t : A is also provable and, additionally, the term t is a blueprint of the
proof of A.
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In an intuitionistic setting, it is natural to ask whether an internalized
version of the disjunction property holds, i.e., for each term t there exists a
term s such that

t : (A ∨B)→ (s : A ∨ s : B) (IDP)

is valid. In this paper we introduce an intuitionistic justification logic iJT4+

and show that iJT4+ proves (IDP).
Our logic iJT4+ is a light extension of iJT4, which is an intuitionistic version

of the Logic of Proofs. Artemov introduced iJT4 (then called ILP) in one of
the early papers on justification logic [3] with the aim of unifying the semantics
of modalities and λ-calculus. He defined iJT4 by changing the propositional
base of LP to intuitionistic logic while keeping the other axioms of LP. Artemov
then showed that iJT4 can realize a λ-calculus for intuitionistic S4.

Marti and Studer [22] recently developed a possible world semantics for
iJT4. They introduced so-called modular models for iJT4, which feature the
principle justification yields belief [6,19].

Steren and Bonelli [24] provide an alternative term system for iJT4 that
is based on natural deduction and hypothetical reasoning. Their aim is to
reformulate the Logic of Proofs in order to explore applications in programming
languages.

The axiomatization of iJT4 does not yield a proper intuitionistic provabil-
ity semantics, which means to interpret t : A as t encodes a proof of A in
Heyting Arithmetic. Artemov and Iemhoff [7] extended iJT4 by axioms that
introduce novel proof terms to internalize certain admissible rules of intuition-
istic logic. The arithmetical completeness of that system was later established
by Dashkov [13].

The above mentioned intuitionistic justification logics all study explicit ver-
sions of the 2-modality. Kuznets, Marin, and Straßburger [18] provide a treat-
ment of the intuitionistic 3-modality in the style of justification logic. To
do so, they introduce a new type of evidence terms that justifies consistency.
Hence they obtain justification analogues of several constructive modal logics
and establish a realization theorem for them.

The structure of the paper is as follows. In the next section we will intro-
duce the logic iJT4+, which is a light extension of the intuitionistic justification
logic iJT4. Then we present generated models for iJT4+ and establish sound-
ness of iJT4+. In Section 4 we define point-generated models, which are needed
to prove the disjunction property. Section 5 studies atomic models, i.e. mod-
els that are completely defined by the evaluations of atomic propositions and
atomic justifications. The name atomic model goes back to Kashev [16]; Arte-
mov [1] uses sharp model. In Section 6 we define the canonical model and
establish completeness of iJT4+ with respect to atomic models. Finally, in Sec-
tion 7, we prove the internalized disjunction property for iJT4+. In the last
section we discuss future work and give some hints about the realization of
Hirai’s intuitionistic modal logic [15] in iJT4+. The appendix contains proofs
of some technical lemmas.
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2 The Logic iJT4+
CS

We start with a countable set of atomic propositions Prop and a countable
set of term constants Const. We define terms and formulas of our language
simultaneously by the following grammar:

t ::= c | ?n | t+ t | !t | t ·A t
A ::= ⊥ | P | A ∧A | A ∨A | A→ A | t : A

where c ∈ Const, P ∈ Prop, and n ∈ N.
The set of terms is denoted by Tm, the set of formulas by Fm. We will use

P,Q,R for propositions, c, d, e for constants, A,B,C,D for arbitrary formulas,
and t, r, s for terms. As is usual in intuitionistic logic, ¬A is defined as A→ ⊥.

The system iJT4+ has the following axioms for all t, s ∈ Tm and all A,B ∈
Fm

(i) all axioms for intuitionistic propositional logic

(ii) t : A ∧ s : (A→ B)→ (s ·A t) : B (j)

(iii) (s ·A t) : B → t : A ∧ s : (A→ B) (invj)

(iv) t : A ∨ s : A→ (t+ s) : A (+)

(v) (t+ s) : A→ t : A ∨ s : A (inv+)

(vi) t : A→ !t : (t : A) (!)

(vii) ¬(!t : A) if A is not of the form t : B for any formula B ∈ Fm (inv!)

(viii) (t : A)→ A truth property (t)

Definition 2.1 A constant specification CS is any subset

CS ⊆ {(c, A) | c ∈ Const and A ∈ Fm is an axiom of iJT4+}.

A constant specification CS is called axiomatically appropriate if for each ax-
iom A of iJT4+, there is a constant c such that (c, A) ∈ CS.

Definition 2.2 [?n-form] For each natural number n ∈ N, we define what it
means for a formula to be of ?n-form as follows:

• for n = 0, A is of ?0-form iff A = ¬(c : B) for some formula B with B /∈ Prop
and (c,B) /∈ CS

• A is of ?(n+1)-form iff A = ¬?n : B for some formula B which is not of
?n-form.

Definition 2.3 For a constant specification CS the deductive system iJT4+
CS

is the Hilbert system given by the axioms (axiom schemes) above and by the
following three rules:

A A→ B
B

(MP)
(c, A) ∈ CS

c : A
(AN)CS

A is of ?n-form
?n : A

(?n)

The system iJT4+
CS defines a family of logics parameterized by the constant

specification CS. Hence we should denote the derivability relation of iJT4+
CS
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by `CS. For simplicity, however, we will only write ` when CS is clear from the
context.

The system iJT4+
CS is tailored towards minimal evidence relations. This

explains why we included inverse axioms (invj) and (inv+) for application and
sum, respectively. In order to formulate (invj) we need a labelled application
operator, which goes back to Renne [23]. These inverse axioms make it possi-
ble to reduce a justification with an application to simpler justifications, see,
e.g., [20].

Our aim is to prove an internalized version of the disjunction property. In
order to achieve this, we have to guarantee that a constant term can only justify
an axiom (as given in the constant specification) or an atomic proposition. This
could be achieved with a rule of the form

(c,B) /∈ CS and B /∈ Prop
¬(c : B)

.

However, since we want to have the Lifting Lemma 2.6, we need terms to
justify derivations with this rule. This is the role of the ?n-terms and explains
the rule (?n), which can be thought of as a form of negative introspection for
the constant specification.

Remark 2.4 Recall that our language does not include justification variables.
The reason is that variables stand for arbitrary terms, which does not fit our
setting. Suppose that we have variables and assume (c, A) ∈ CS. Then

¬(!c : x : A) (1)

is an instance of axiom (inv!) since syntactically the term c is different from the
term x. However, if we substitute c for x in (1), then we obtain ¬(!c : c : A),
which is provable false. So by substitution, we can transform a valid formula
into a provably false formula. To avoid this, we do not include variables in our
language (but we will come back to this issue in the Conclusion).

As usual in justification logic, the Deduction Theorem holds.

Theorem 2.5 (Deduction Theorem) For any set of formulas Γ and for-
mulas A,B we have

Γ, A ` B ⇐⇒ Γ ` A→ B

Since the rule (?n) only introduces formulas of the form t : A, we can prove
the following form of the Lifting Lemma as usual.

Lemma 2.6 Let CS be an axiomatically appropriate constant specification. For
all terms t1, . . . , tn ∈ Tm and all formulas A1, . . . , An, C ∈ Fm, if

t1 : A1, . . . , tn : An ` C,

then there is a term t ∈ Tm such that

t1 : A1, . . . , tn : An ` t : C.
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3 Generated Models

We are now going to introduce a semantics for iJT4+
CS. A frame F = (W,≤) is

a pair consisting of a set W of states and a reflexive and transitive relation ≤
on W . A model for iJT4+

CS is essentially a frame with a suitable minimal basic
modular model assigned to each state. These models are called generated since
minimality is achieved by inductively generating the models [20,25,26].

Definition 3.1 [Basis] Given a frame F = (W,≤), a basis for F is a familiy
of sets B = (Bw)w∈W such that

• Bw ⊆ Tm× Fm for each w ∈W
• w ≤ v =⇒ Bw ⊆ Bv (Monotonicity)

• (!t, A) /∈ Bw if A is not of the form t : B for any formula B ∈ Fm

Bw must be downwards closed, i.e. for each w ∈W :

• (t+ s,A) ∈ Bw =⇒ (t, A) ∈ Bw or (s,A) ∈ Bw
• ((t ·A s), B) ∈ Bw =⇒ (s,A) ∈ Bw and (t, A→ B) ∈ Bw
• (!t, t : A) ∈ Bw =⇒ (t, A) ∈ Bw
Definition 3.2 [Evidence Closure] Let B ⊆ Tm×Fm. For a set X ⊆ Tm×Fm
we define clB(X) by

(i) if (t, A) ∈ B, then (t, A) ∈ clB(X)

(ii) if (s,A) ∈ X and (t, A→ B) ∈ X, then ((t ·A s), B) ∈ clB(X)

(iii) if (s,A) ∈ X, then ((s+ t), A) ∈ clB(X)

(iv) if (t, A) ∈ X, then ((s+ t), A) ∈ clB(X)

(v) if (t, A) ∈ X, then (!t, t : A) ∈ clB(X)

For any B ⊆ Tm× Fm, the operator clB is monotone. Therefore, clB has a
least fixed point, which we denote the evidence relation induced by B.

Definition 3.3 [Evidence Relation] Let B ⊆ Tm× Fm. Then E(B) is defined
as the least fixed point of clB .

We need the following immediate properties about evidence relations.

Lemma 3.4 (Constants are in the Basis) For all formulas A and con-
stants c we have:

(c, A) ∈ E(Bw) =⇒ (c, A) ∈ Bw.
Lemma 3.5 If A is not of the form t : B, then

(!t, A) /∈ E(Bw).

Definition 3.6 [Generated Models] Let CS be a constant specification. A
generated model is a structure M = (W,≤, V, (Bw)w∈W ), where

(i) (W,≤) is a frame

(ii) (Bw)w∈W is a basis on (W,≤)
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(iii) V : W → P(Prop) such that w ≤ v =⇒ V (w) ⊆ V (v) (Monotonicity)

The model M is called a CS-model if

(i) CS ⊆ Bw for all w ∈W
(ii) (?n, A) ∈ Bw for each formula A that is of ?n-form

(iii) (?n, A) /∈ Bw for each formula A that is not of ?n-form

Definition 3.7 [Truth in Generated Model] Let CS be a constant specification,
M = (W,≤, V, (Bw)w∈W ) a generated model and A ∈ Fm be a formula. We
define the relation (M, w) � A by

(i) (M, w) 2 ⊥
(ii) (M, w) � P iff P ∈ V (w)

(iii) (M, w) � B ∧ C iff (M, w) � B and (M, w) � C

(iv) (M, w) � B ∨ C iff (M, w) � B or (M, w) � C

(v) (M, w) � B → C iff (M, v) � C for all v ≥ w with (M, v) � B

(vi) (M, w) � t : B iff (t, B) ∈ E(Bw)

Definition 3.8 We call a generated model factive iff for each term t ∈ Tm
and each formula A ∈ Fm:

(t, A) ∈ E(Bw) =⇒ (M, w) � A.

It is immediately clear from the truth definition that factive models satisfy
Axiom (t) of iJT4+

CS. Using the fact that in generated models, evidence relations
are constructed as least fixed points, we can show soundness of iJT4+

CS.

Theorem 3.9 (Soundness) The logic iJT4+
CS is sound with respect to factive

generated CS-models, i.e.

` A =⇒ �factive generated CS-models A

4 Point-Generated Models

In this section we introduce point-generated models and show that each model
has an equivalent point-generated model. These models are needed for showing
the disjunction property via glueing.

Definition 4.1 [Point-Generated Model] Let M be a generated model and
w ∈ W . The model generated by w, denoted as Mw = (Ww,≤w, Vw,B(w)) is
defined by

Ww := {v ∈W | v ≥ w}
≤w := ≤ ∩ (Ww ×Ww)

Vw := V �Ww
(= V ∩ (Ww × P(Prop)))

B(w)v := Bv for all v ∈Ww.

A proof of the following lemma can be found in the appendix.
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Lemma 4.2 (Invariance for Point-Generated Models) Let M be a
model, w ∈ W , and Mw the model generated by w. Then we have for each
formula A ∈ Fm and each v ∈Ww:

(M, v) � A ⇐⇒ (Mw, v) � A.

Remark 4.3 (Ww,≤) is a tree with root w.

5 Atomic Generated Models

The idea behind atomic models is that at each state, some new formulas get
justifications, but those either have to be atomic, or have to do with the con-
stant specification. More precisely, a new formula getting a justification has to
be of the form c : P where c is a constant and P is a propositional variable or
the justification and the formula are part of the constant specification or they
are of the form ?n : A, where A is of ?n-form. You may think of c : P as some
bit of atomic evidence justifying some atomic fact, like a simple observation or
a computation establishing some basic numeric fact.

Definition 5.1 [Atomic Model] We call a basis atomic iff for all w ∈W

Bw ⊆ (Const× Prop) ∪ CS ∪ {(?n, A) | A is of ?n-form}

We call a generated model atomic iff its basis is atomic.

Lemma 5.2 Let CS be a constant specification and M a factive CS-model. If
A /∈ Prop, c ∈ Const, and (c, A) /∈ CS, then for all states w of M,

(c, A) /∈ Bw.
Theorem 5.3 (Atomization) Let CS be a constant specification and M a
factive CS-model with basis B. Then there is an equivalent atomic CS-basis B′,
i.e.

E(Bw) = E(B′w) for all w ∈W.

Proof. The corresponding atomic basis is simply defined as the atomic part
of the original basis, i.e.

B′w := {(c, P ) ∈ Const×Prop | (c, P ) ∈ Bw} ∪ CS ∪ {(?n, A) | A is of ?n-form}

Then it follows immediately that

• w ≤ v =⇒ B′w ⊆ B′v (Monotonicity)

• B′ is atomic

• B′w ⊆ Bw and therefore E(B′w) ⊆ E(Bw)

It remains to show that E(Bw) ⊆ E(B′w). We show for each pair (t, A) ∈ E(Bw),
that we have (t, A) ∈ E(B′w) and proceed by induction on the build-up of E(Bw).

Base case. (t, A) ∈ Bw. We continue by induction on t.

• If t = c ∈ Const, then we distinguish the following three cases:
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· A = P ∈ Prop. Then by the definition of B′ we have that (t, A) = (c, P ) ∈
B′w ⊆ E(B′w).
· (c, A) ∈ CS. Then we have (c, A) ∈ B′w ⊆ E(B′w).
· A /∈ Prop and (c, A) /∈ CS. By the previous lemma, this case does not

happen.

• t =?n. Since M is a CS-model, A has to be of ?n-form. It follows by the
definition of B′ that (?n, A) ∈ B′w ⊆ E(B′w).

• t = !s. By Lemma 3.5, A has to be of the form s : B for some formula B.
So we have (!s, s : B) ∈ Bw, and since a basis is downwards closed, it follows
that (s,B) ∈ Bw. It follows by the I.H. that (s,B) ∈ E(B′w) and therefore
(!s, s : B) ∈ E(B′w).

• t = r + s, so (r + s,A) ∈ Bw. Since a basis is downwards closed, it follows
that (r,A) ∈ Bw or (s,A) ∈ Bw. It follows by the I.H. that (r,A) ∈ E(B′w)
or (s,A) ∈ E(B′w), and therefore (r + s,A) ∈ E(B′w).

• t = r ·B s. Again, since a basis is downwards closed, we have (r,B → A) ∈ Bw
and (s,B) ∈ Bw. It follows by the I.H. that (r,B → A) ∈ E(B′w) and
(s,B) ∈ E(B′w) and therefore (r ·B s,A) ∈ E(B′w).

Inductive step.

• t = r+s, and (r,A) ∈ E(Bw) or (s,A) ∈ E(Bw). It follows by the I.H. ( outer
induction on the build-up of E(Bw)) that (r,A) ∈ E(B′w) or (s,A) ∈ E(B′w)
and therefore (r + s,A) ∈ E(B′w).

• t = !s, A = s : B and (s,B) ∈ E(Bw). It follows by the I.H. that (s,B) ∈
E(B′w) and therefore (!s, s : B) ∈ E(B′w).

• t = r ·B s, (r,B → A) ∈ E(Bw) and (s,B) ∈ E(Bw). It follows by the I.H. that
(r,B → A) ∈ E(B′w) and (s,B) ∈ E(B′w) and therefore (r ·B s,A) ∈ E(B′w).

2

Corollary 5.4 For each factive generated model, there is an equivalent atomic
factive generated model.

Definition 5.5 [Subformulas] For a formula A, its set of subformulas subf(A)
is defined inductively as follows:

• subf(⊥) = {⊥}
• subf(P ) = {P} for P ∈ Prop

• subf(A�B) := {A�B} ∪ subf(A) ∪ subf(B) for each � ∈ {∧,∨,→}
• subf(c : A) := {c : A} ∪ subf(A)

• subf(!t : A) := {!t : A} ∪ subf(A)

• subf(?n : A) := {?n : A} ∪ subf(A)

• subf(t+ s : A) := {t+ s : A} ∪ subf(t : A) ∪ subf(s : A)

• subf(t ·B s : A) := {t ·B s : A} ∪ subf(t : (B → A)) ∪ subf(s : B)

Observe how we use the annotation in the application operator to catch the
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subformulas of B. By induction on the structure of formulas, we show that the
set of subformulas of any given formula is finite.

Lemma 5.6 (Set of Subformulas is Finite) For each formula A, its set of
subformulas subf(A) is finite.

The next lemma allows us to connect the truth of a justification formula
at a point of an atomic model with the provability of that formula from the
atomic information of that state. The proof of this lemma is in the appendix.

Lemma 5.7 (Connection Lemma) Let CS be a constant specification, M
an atomic model and w ∈ W . Then we have for all formulas A,B ∈ Fm and
each term t ∈ Tm

(i) (M, w) � t : A =⇒ {c : P ∈ subf(t : A) | w � c : P} ` t : A

(ii) If M is a CS-model, then
{c : P ∈ subf(A) | w � c : P} ∪ {P ∈ subf(A) | w � P} ` B =⇒
(M, w) � B

6 Canonical Model

In this section we perform a canonical model construction to establish com-
pleteness of iJT4+

CS. We only state the lemmas needed to obtain the final
completeness result. The proofs are straightforward and left to the reader.

Definition 6.1 Given a constant specification CS, we call a set of formulas
∆ ⊆ Fm prime iff it satisfies the following conditions:

(i) ∆ has the disjunction property, i.e., B ∨ C ∈ ∆ =⇒ B ∈ ∆ or C ∈ ∆

(ii) ∆ is deductively closed with respect to CS, i.e., for any formula B, if
∆ ` B, then B ∈ ∆

(iii) ∆ is consistent, i.e., ⊥ /∈ ∆.

From now on, we will use Σ,∆,Γ for prime sets of formulas.

We need a prime lemma relative to a fixed constant specification CS, since
our relevant notion of provability involves a constant specification by using the
rule of axiom necessitation and the (?n)-rule.

Theorem 6.2 (Prime Lemma) Let CS be a constant specification, B ∈ Fm
be a formula , N ⊆ Fm a set of formulas such that N 0 B. Then there exists
a prime set ∆ ⊆ Fm with N ⊆ ∆ and ∆ 0 B.

Definition 6.3 [Canonical Generated Model] We define the canonical gener-
ated model M = (W,⊆, V, (B∆)∆∈W ) as follows:

(i) W := {∆ ⊆ Fm | ∆ is prime }
(ii) V (∆) := ∆ ∩ Prop

(iii) for every term t ∈ Tm we set (t, A) ∈ B∆ :⇐⇒ t : A ∈ ∆

Lemma 6.4 B∆ is downwards closed.

Lemma 6.5 The canonical generated model is a generated model indeed.
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Since our prime sets are deductively closed, it follows that the canonical
basis is identical to its closure.

Lemma 6.6 We have

B∆ = E(B∆).

Lemma 6.7 (Canonical Evidence) For all terms t ∈ Tm and all prime
sets ∆, we have

t : A ∈ ∆ ⇐⇒ (t, A) ∈ E(B∆).

Lemma 6.8 (Truth Lemma) For each formula A ∈ Fm and each prime set
∆ ⊆ Fm:

(M,∆) � A ⇐⇒ A ∈ ∆.

Lemma 6.9 The canonical model is a CS-model.

Lemma 6.10 The canonical model is a factive generated model, i.e., for all
t ∈ Tm and all A ∈ Fm:

(t, A) ∈ B∆ =⇒ ∆ � A.

Theorem 6.11 (Completeness w.r.t Factive Generated Models) Let
CS be a constant specification. The logic iJT4+

CS is complete with respect to
factive generated CS-models, i.e. for every formula A ∈ Fm we have

�factive generated CS-models A =⇒ ` A.

For each factive generated CS-model, we find an equivalent atomic model
by Corollary 5.4. It follows that there is an atomic model that is equivalent to
the canonical one, and, therefore, we have completeness with respect to atomic
factive generated CS-models.

Corollary 6.12 Let CS be a constant specification. The logic iJT4+
CS is com-

plete with respect to atomic factive generated CS-models, i.e., for every formula
A we have

�atomic factive generated CS-models A =⇒ ` A.

7 Disjunction Properties

Our justification logic has the disjunction property. To prove this, we adapt
the usual glueing technique, see, e.g., [10], to the framework of justification
logic. In order to internalize the disjunction property later, we now have to
consider derivations from a finite set of assumptions of the form c : P .

Theorem 7.1 (Disjunction Property) Let CS be any constant specification
and A,B formulas. Then we have:

c1 : P1, . . . , cn : Pn ` A ∨B
=⇒ c1 : P1, . . . , cn : Pn ` A or c1 : P1, . . . , cn : Pn ` B.
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Proof. We proceed by contraposition. Suppose that

c1 : P1, . . . , cn : Pn 0 A and c1 : P1, . . . , cn : Pn 0 B.

By the Deduction Theorem we obtain

0
n∧

i=1

(ci : Pi)→ A and 0
n∧

i=1

(ci : Pi)→ B.

By completeness for factive generated CS-models, we find that there are factive
generated CS-models

MA = (WA, VA,≤A, (BA,w)w∈WA), MB = (WB , VB ,≤B , (BB,w)w∈WB )

with states wA and wB such that

(MA, wA) 2
n∧

i=1

(ci : Pi)→ A and (MB , wB) 2
n∧

i=1

(ci : Pi)→ B

which means that there are states vA ≥A wA and vB ≥B wB such that

(MA, vA) �
n∧

i=1

ci : Pi and (MA, vA) 2 A

and

(MB , vB) �
n∧

i=1

ci : Pi and (MB , vB) 2 B.

Now we consider the submodels of MA and MB generated by the points vA
and vB , respectively. Call them MA

vA and MB
vB . These models are factive CS-

models; further they are trees with roots vA and vB and agree with the original
models on all their states.

Next we construct a new model M by

W := {(0, 0)} ∪ {(1, a) | a ∈WA
vA} ∪ {(2, b) | b ∈W

B
vB}

(x1, y1) ≤M (x2, y2) :⇐⇒


x1 = 0,

x1 = x2 = 1 and y1 ≤A y2,

x1 = x2 = 2 and y1 ≤B y2.

V (x, y) :=


{P1, . . . , Pn}, if (x, y) = (0, 0),

VA(y), if x = 1,

VB(y), if x = 2.

and its basis is defined by

B(x,y) :=


{(c1, P1), . . . , (cn, Pn)} ∪ CS ∪

{(?n, A) | A is of ?n-form}, if (x, y) = (0, 0),

BA,y, if x = 1,

BB,y, if x = 2.
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Claim: M is a factive generated CS-model. We have to check that our
glueing does not violate the monotonicity conditions on the valuation and on
the basis. We have that

(MA, vA) � ci : Pi and (MB , vB) � ci : Pi for i = 1, . . . , n,

which means

(ci, Pi) ∈ E(BA,vA
) and (ci, Pi) ∈ E(BB,vB ) for i = 1, . . . , n. (2)

It follows by Lemma 3.4 that

{(ci, Pi) | i = 1, . . . , n} ⊆ BA,vA
and {(ci, Pi) | i = 1, . . . , n} ⊆ BB,vB .

Hence B(0,0) ⊆ B(x,y) for each (x, y) ≥M (0, 0), so the monotonicity for the
basis is established.

Also the monotonicity condition for the valuation is satisfied. Indeed, since
MA and MB are factive, (2) implies

(MA, vA) � Pi and (MB , vB) � Pi for i = 1, . . . , n.

Thus we find

V (0, 0) = {P1, . . . , Pn} ⊆ V (x, y) if (0, 0) ≤M (x, y).

Last but not least observe that M is factive since the new state (0, 0) satisfies
factivity by definition.

Now we show that (M, (0, 0)) 2 (
∧n

i=1 ci : Pi)→ (A∨B). By the definition
of the basis of M we immediately have

(M, (0, 0)) �
n∧

i=1

ci : Pi.

By the monotonicity of ≤M we find (M, (0, 0)) 2 A and (M, (0, 0)) 2 B, which
implies (M, (0, 0)) 2 A ∨B. Therefore,

(M, (0, 0)) 2 (

n∧
i=1

ci : Pi)→ (A ∨B).

By soundness we get

0 (

n∧
i=1

ci : Pi)→ (A ∨B)

and finally, by the Deduction Theorem,

c1 : P1, . . . , cn : Pn 0 A ∨B

2

Now we can prove a first version of the internalized disjunction property,
which we call local. It is local in the sense that it is shown semantically for a
given state in the model and the term s depends on that state.
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Lemma 7.2 (Local Internalized Disjunction Property) Let CS be an
axiomatically appropriate constant specification. Let M be an atomic CS-model,
w ∈ W . For each term t ∈ Tm and all formulas A,B, there exists a term
s = st,A,B,w such that

(M, w) � t : (A ∨B)→ (s : A ∨ s : B).

Proof. Assume that (M, w) � t : (A ∨B). By the first part of the Connection
Lemma 5.7 we get

{c : P ∈ subf(t : (A ∨B)) | w � c : P} ` t : (A ∨B).

Using the axiom (t), we obtain

{c : P ∈ subf(t : (A ∨B)) | w � c : P} ` A ∨B.

By Lemma 5.6, the set subf(t : (A ∨ B)) is finite. Hence by the disjunction
property, Theorem 7.1, we get

{c : P ∈ subf(t : (A ∨B)) | w � c : P} ` A or

{c : P ∈ subf(t : (A ∨B)) | w � c : P} ` B.
(3)

Assume that {c : P ∈ subf(t : (A ∨ B)) | w � c : P} ` A, the other case being
similar. We now apply the Lifting Lemma 2.6 to find an s ∈ Tm such that

{c : P ∈ subf(t : (A ∨B)) | w � c : P} ` s : A.

Therefore,

{c : P ∈ subf(t : (A∨B)) | w � c : P )}∪{P ∈ subf(t : (A∨B)) | w � P} ` s : A.

Using the second part of the Connection Lemma 5.7, we get (M, w) � s : A.
Finally, combining the two cases of (3) yields (M, w) � s : A ∨ s : B. 2

The above version of the internalization property is local in the sense that
the term s depends on the world w. In the next lemma, we provide a global
version of the internalized disjunction property, which does not have this de-
pendency. In its proof, we make crucial use of the + operator to collect all
possible justification terms for the disjuncts.

Lemma 7.3 (Global Internalized Disjunction Property) Let CS be an
axiomatically appropriate constant specification. For each term t ∈ Tm and
all formulas A,B ∈ Fm, there exists a term s = st,A,B ∈ Tm such that for each
atomic CS-model M and each w ∈W :

(M, w) � t : (A ∨B)→ (s : A ∨ s : B).

Proof. In the proof of the above lemma, the term s only depends on which
of the (finitely many) ci : Pi ∈ subf(t : (A ∨ B)) do hold at w. Hence there
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are finitely many terms sA,1, . . . , sA,m and sB,1, . . . , sB,m such that for each w
there exists 1 ≤ j ≤ m with

(M, w) � sA,j : A or (M, w) � sB,j : B.

Therefore, for all w we have

(M, w) � sA,1 : A ∨ · · · ∨ sA,m : A or (M, w) � sB,1 : B ∨ · · · ∨ sB,m : B.

Now we let
s := sA,1 + · · ·+ sA,m + sB,1 + · · ·+ sB,m

and obtain that for all w,

(M, w) � s : A ∨ s : B.

2

By completeness for atomic models, we immediately get the following corol-
lary.

Corollary 7.4 (Internalized Disjunction Property) Let CS be an ax-
iomatically appropriate constant specification. For all formulas A,B ∈ Fm
and all t ∈ Tm there exists s = st,A,B ∈ Tm such that

` t : (A ∨B)→ (s : A ∨ s : B).

8 Conclusion and further work

We introduced the intuitionistic justification logic iJT4+, which is a light ex-
tension of iJT4. We defined atomic models and established completeness of
iJT4+ with respect to that class of models. This made it possible to prove the
internalized disjunction property for iJT4+.

Hirai [15] introduced an intuitionistic modal logic based on S4 with the
additional axiom

2(A ∨B)→ (2A ∨2B),

which is the modal version of the internalized disjunction property. So it is a
natural question whether we can realize his logic into iJT4+, i.e., given a modal
formula A provable in Hirai’s logic, is there a realization Ar provable in iJT4+

where Ar is A with 2-operators replaced by suitable terms.
It turns out that such a realization is possible but it requires a heavy tech-

nical apparatus. First of all, we need a cut-free sequent system for Hirai’s logic.
Then we can perform Artemov’s syntactic realization procedure to obtain the
realization Ar. To do so, we need justification variables to realize 2-operators
occurring in negative positions. However, this is problematic as we have ob-
served in Remark 2.4. The solution is to add variables to the language but
to keep the formulation for the axioms, i.e., axioms are stated only for vari-
able free terms. Instead we define provability of a formula with variables as
provability of all its (variable-free) substitution instances, i.e.,

` A[x1, . . . , xn] :⇐⇒ ` A[t1, . . . , tn] for all variable-free terms t1, . . . , tn.

The realization result will be published in full detail somewhere else.
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Appendix

A Proof of Lemma 4.2

Lemma 4.2 (Invariance for Point-Generated Models) Let M be a model,
w ∈ W , and Mw the model generated by w. Then we have for each formula
A ∈ Fm and each v ∈Ww:

(M, v) � A ⇐⇒ (Mw, v) � A.

Proof. By induction on A.

(i) A = ⊥. Follows immediately.

(ii) A = P ∈ Prop. Then the claim follows immediately by the definition of
V (w).

(iii) A = B ∧C or A = B ∨C. Then the claim follows immediately by the I.H.

(iv) A = B → C. For the direction from left to right, assume that (M, v) �
B → C. We have to show that (Mw, v) � B → C, so let u ≥w v with
(Mw, u) � B. We have that u ∈Ww, so it follows by the I.H. that (M, u) �
B, so (M, u) � C. Applying the I.H. again, we get that (Mw, u) � C. Since
u was arbitrary, it follows that (Mw, v) � B → C.

For the direction from right to left, assume that (Mw, v) � B → C.
We have to show that (M, v) � B → C, so let u ≥ v with (M, u) � B.
Since u ≥ v ≥ w, it follows by the transitivity of ≤ that u ≥ w, so by
definition we have that u ∈ Ww. It follows by the I.H. that (Mw, u) � B.
It also follows that u ≥w v, and therefore (Mw, u) � C. Applying the
I.H. again, we obtain (M, u) � C. Since u was arbitrary, it follows that
(M, v) � B → C.

(v) A = t : B. We just observe that since B(w)v = Bv for all v ∈Ww, we have
E(B(w)v) = E(Bv) for all v ∈Ww. Then the claim follows immediately by
the definition of truth in a model.

2

B Proof of Lemma 5.2

Lemma 5.2 Let CS be a constant specification and M a factive CS-model. If
A /∈ Prop, c ∈ Const, and (c, A) /∈ CS, then for all states w of M,

(c, A) /∈ Bw.

Proof. If A /∈ Prop, c ∈ Const, and (c, A) /∈ CS, then by definition, ¬(c : A) is
of ?0-form. By the definition of CS-model, we have that

(?0,¬c : A) ∈ Bw ⊆ E(Bw).

Since the model is factive, it follows that (M, w) � ¬c : A. Thus (M, w) 6� c : A,
which finally is

(c, A) /∈ Bw.
2



526 The Internalized Disjunction Property for Intuitionistic Justification Logic

C Proof of Lemma 5.7

Lemma 5.7 (Connection Lemma) Let CS be a constant specification, M
an atomic model and w ∈ W . Then we have for all formulas A,B ∈ Fm and
each term t ∈ Tm

(i) (M, w) � t : A =⇒ {c : P ∈ subf(t : A) | w � c : P} ` t : A

(ii) If M is a CS-model, then
{c : P ∈ subf(A) | w � c : P} ∪ {P ∈ subf(A) | w � P} ` B =⇒
(M, w) � B

Proof. First statement. By the truth definition,

(M, w) � t : A ⇐⇒ (t, A) ∈ E(Bw)

so we proceed by induction on E(Bw).

Base case. (t, A) ∈ Bw. Since B is atomic, there are three subcases.

(i) (t, A) is of the form (c, P ). Then the claim follows immediately.

(ii) (t, A) is of the form (c, A) ∈ CS. Again, the claim follows immediately.

(iii) (t, A) = (?n, A) and A is of ?n-form. Again, the claim follows immediately.

Inductive step.

• t = r + s, and
(r,A) ∈ E(Bw) or (s,A) ∈ E(Bw)

It follows by the I.H. that

{c : P ∈ subf(r : A) | w � c : P} ` r : A

or
{c : P ∈ subf(s : A) | w � c : P} ` s : A

it follows that

{c : P ∈ subf(r + s : A) | w � c : P} ` r : A

or
{c : P ∈ subf(r + s : A) | w � c : P} ` s : A

it follows by propositional reasoning that

{c : P ∈ subf(r + s : A) | w � c : P} ` r : A ∨ s : A

and by the axiom (+) and some more propositional reasoning we get

{c : P ∈ subf(r + s : A) | w � c : P} ` (r + s) : A.

• t = s ·B r, and

(s,B → A) ∈ E(Bw) and (r,B) ∈ E(Bw)
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It follows by the I.H. that

{c : P ∈ subf(s : (B → A)) | w � c : P} ` s : (B → A)

and

{c : P ∈ subf(r : B) | w � c : P} ` r : B

and therefore by the axiom (j)

{c : P ∈ subf(s : (B → A)) ∪ subf(r : B) | w � c : P}
` (s ·B r) : A

and since

{c : P ∈ subf(s : (B → A)) ∪ subf(r : B)} = {c : P ∈ subf((s ·B r) : A)}

we have that

{c : P ∈ subf(s ·B r : A) | w � c : P} ` (s ·B r) : A.

• t = !s, A = s : B, and

(s,B) ∈ E(Bw).

Then it follows by the I.H. that

{c : P ∈ subf(s : B) | w � c : P} ` s : B

so it follows by the axiom (!) that

{c : P ∈ subf(s : B) | w � c : P} ` !s : (s : B)

i.e.

{c : P ∈ subf(s : B) | w � c : P} ` t : A.

Second Statement. We proceed by induction on the derivation of B.

• B is an axiom. Then the claim follows by soundness.

• B ∈ {c : P ∈ subf(A) | w � c : P} ∪ {P ∈ subf(A) | w � P}. Then the claim
follows immediately.

• B is of the form c : D with (c,D) ∈ CS and was derived by (AN)CS. Since M
is a CS-model, we have by definition that CS ⊆ Bw ⊆ E(Bw), and therefore
(M, w) � c : D.

• B was derived by the rule (?n). Then B =?n : C for some formula C of
?n-form. Again, since M is a CS-model, we have that (?n, C) ∈ Bw ⊆ E(Bw)
and therefore (M, w) �?n : C.
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• B was derived by (MP). Then there is a formula C such that

{c : P ∈ subf(A) | w � c : P} ∪ {P ∈ subf(A) | w � P} ` C

and

{c : P ∈ subf(A) | w � c : P} ∪ {P ∈ subf(A) | w � P} ` C → B

Then it follows by the I.H. (since these derivations are shorter) that

(M, w) � C → B and (M, w) � C, so (M, w) � B.
2

References

[1] Artemov, S., Justification awareness models, in: S. Artemov and A. Nerode, editors,
Logical Foundations of Computer Science (2018), pp. 22–36.

[2] Artemov, S. N., Explicit provability and constructive semantics, BSL 7 (2001), pp. 1–36.

[3] Artemov, S. N., Unified semantics for modality and λ-terms via proof polynomials, in:
K. Vermeulen and A. Copestake, editors, Algebras, Diagrams and Decisions in Language,
Logic and Computation, CSLI Lecture Notes 144, CSLI Publications, Stanford, 2002 pp.
89–118.

[4] Artemov, S. N., Justified common knowledge, TCS 357 (2006), pp. 4–22.

[5] Artemov, S. N., The logic of justification, RSL 1 (2008), pp. 477–513.

[6] Artemov, S. N., The ontology of justifications in the logical setting, Technical Report
TR–2011008, CUNY Ph.D. Program in Computer Science (2011).

[7] Artemov, S. N. and R. Iemhoff, The basic intuitionistic logic of proofs, JSL 72 (2007),
pp. 439–451.

[8] Artemov, S. N. and E. Nogina, Introducing justification into epistemic logic, Journal of
Logic and Computation 15 (2005), pp. 1059–1073.

[9] Baltag, A., B. Renne and S. Smets, The logic of justified belief, explicit knowledge, and
conclusive evidence, APAL 165 (2014), pp. 49–81, published online in August 2013.

[10] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge Tracts in
Theoretical Computer Science 53, Cambridge University Press, 2002.

[11] Bucheli, S., R. Kuznets and T. Studer, Justifications for common knowledge, Applied
Non-Classical Logics 21 (2011), pp. 35–60.

[12] Bucheli, S., R. Kuznets and T. Studer, Realizing public announcements by justifications,
Journal of Computer and System Sciences 80 (2014), pp. 1046–1066.

[13] Dashkov, E., Arithmetical completeness of the intuitionistic logic of proofs, Journal of
Logic and Computation 21 (2011), pp. 665–682, published online August 2009.

[14] Fitting, M., The logic of proofs, semantically, APAL 132 (2005), pp. 1–25.

[15] Hirai, Y., An intuitionistic epistemic logic for sequential consistency on shared memory,
in: Proceedings of the 16th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, LPAR’10 (2010), pp. 272–289.
URL http://dl.acm.org/citation.cfm?id=1939141.1939157

[16] Kashev, A., “Justification with Nominals,” Ph.D. thesis, University of Bern (2016).
URL http://www.iam.unibe.ch/ltgpub/2016/kas16.pdf
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