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Abstract

According to the classical result by Segerberg and Maksimova, a modal logic con-
taining K4 is locally tabular i↵ it is of finite height. The notion of finite height can
also be defined for logics, in which the master modality is expressible (‘pretransitive’
logics). We observe that every locally tabular logic is a pretransitive logic of finite
height. Then we prove some semantic criteria of local tabularly. By applying them we
extend the Segerberg – Maksimova theorem to a certain larger family of pretransitive
logics.
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1 Introduction
Recall that a propositional logic is called tabular (or finite) if it is characterized
by a finite logical matrix (by a finite Kripke frame in the case of normal modal or
intermediate logics). A weaker property is local tabularity (or local finiteness):
a logic is locally tabular if each of its finite-variable fragments is tabular. Both
these properties have been studied since the 1920s. They also appeared in
universal algebra as properties of varieties [14], and they were investigated
for di↵erent kinds of algebras: lattices, groups, rings, Lie algebras, etc. The
most famous example is the Burnside problem on local tabularity of varieties
of groups with the identity xn = 1, cf. [1].

In this paper we are interested in modal logics, so let us mention the corre-
sponding results in this area. Tabularity for modal and intuitionistic logics has
been studied quite well, cf. [6], chapter 12. As for local tabularity, our knowl-
edge is still very incomplete. The first well-known examples of logics with this
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property are the modal logic S5 and the intermediate logic LC. Beginning
from the 1970s, the studies of local tabularity became more systematic. First
of all, a nice theorem was found by Krister Segerberg [15] and Larisa Mak-
simova [13], characterizing locally tabular extensions of K4 as logics of finite
height (in another terminology, logics of finite depth, or logics of finite slices).

Around the same time an analogue to Segerbergs theorem was established
for intermediate logics: Alexander Kuznetsov [12], and Yuichi Komori [9]
proved local tabularity of intermediate logics of finite height. However, unlike
the modal case, for intermediate logics the converse theorem does not hold,
and LC is the simplest counterexample. Characterization of locally tabular
intermediate logics remains a challenging open problem.

Research of local tabularity for intuitionistic modal logics and the corre-
sponding class of monadic Heyting algebras was started by Guram Bezhan-
ishvili in [2] and continued in his joint work with Revaz Grigolia [4]. These
papers considered extensions of the well-known logic MIPC.

Another interesting result on local tabularity was obtained by Nick Bezhan-
ishvili for bimodal logics [5]: he proved that the logic S52 is pre-locally tabular.
G. Bezhanishvili [3] considered some other bimodal logics, e.g. extensions of
the fusions Grz ⇤ S5 and GL ⇤ S5 with (half)-commutation axioms. In these
cases local tabularity can be reduced to local tabularity of intuitionistic modal
logics studied in [2], [4].

For non-transitive normal extensions of K the first family of locally tabular
logics was probably the logics K+2n? considered in [7] (also, cf. [17], where
local tabularity is extended to (K+2n?)⇥ S5).

Characterization of locally tabular modal logics above K is an open prob-
lem. This paper makes a step towards its solution. The notion of finite height
can also be defined for logics, in which the master modality is expressible (‘pre-
transitive’ logics). We observe that every locally tabular logic is a pretransitive
logic of finite height (Theorem 3.7). Then we prove some semantic criteria
of local tabularity (Theorems 4.3 and 5.2). By applying them we extend the
Segerberg – Maksimova theorem to a certain family of pretransitive logics (The-
orem 6.2).

2 Preliminaries
By a logic we mean a normal propositional monomodal logic, cf. [6]. ML
denotes the set of all modal formulas; they are built from a countable set
PL = {p1, p2, . . .} of proposition letters, the classical connectives !, ?, and
the modal connectives 3, 2.

An n-formula is a formula in proposition letters p1, p2, . . . , pn. MLdn de-
notes the set of all n-formulas. For a set � ✓ML, put �dn = � \ (MLdn).

For a logic L, formulas ',  are called L-equivalent if ('$  ) 2 L.
L is called locally tabular if for any finite n there exist finitely many n-

formulas up to L-equivalence. Equivalently, a logic is locally tabular if the
variety of L-algebras is locally finite, i.e., every finitely generated L-algebra is
finite.
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By a frame we mean a Kripke frame (W,R), W 6= ?, R ✓ W ⇥W . For
a frame F = (W,R), ? 6= V ✓ W , put F�V = (V,R�V ), where R�V =
R \ (V ⇥ V ); F�V is called a generated subframe of F if R(V ) ✓ V .

A model (W,R, ✓) over a frame (W,R) is a tuple (W,R, ✓), where ✓ : PL!
2W is a valuation. An n-weak model is (W,R, ✓), where ✓ : PLdn ! 2W is an
n-valuation; in this case we can only evaluate n-formulas.

ML = (WL, RL, ✓L) denotes the canonical model of L. MLdn =
(WLdn, RLdn, ✓Ldn) denotes the canonical model of Ldn [17]. MLdn is also called
a weak canonical model of L.

Note that if MLdn is finite, its points bijectively correspond to atoms in the
Lindenbaum algebra of Ldn.
Proposition 2.1 A modal logic is locally tabular i↵ all its weak canonical mod-
els are finite.

Proposition 2.2 Every extension of a locally tabular logic is locally tabular.

As usual, a partition A of a non-empty set W is a set of non-empty pairwise
disjoint sets such that W = [A. The corresponding equivalence relation is
denoted by ⇠A, so A = W/⇠A. By a partition of a Kripke model or a frame
we mean a partition of its set of worlds.

For a partition A of W and nonempty V ✓W , put

A�V = {V \X | X 2 A & V \X 6= ?}.

Let M = (W,R, ✓) be a model, � a set of formulas. Put

x ⌘� y i↵ 8' 2 �(M, x ✏ ' () M, y ✏ ').
A partition A of M respects � if ⇠A✓⌘�; A is induced by � if ⇠A =⌘�.

If M is n-weak, the partition of M induced by MLdn is called canonical and
denoted by A(M). For V 2 A(M) put

tn(V ) = {' 2MLdn | M, x ✏ ' for some (for all) x 2 V }.

Proposition 2.3 If M is n-weak and M ✏ Ldn, then tn is an injection A(M)!
WLdn.

Proof. Note that membership in tn(V ) respects all Boolean connectives. Since
M ✏ Ldn, we have tn(V ) 2 WLdn for any V 2 A(M). By definition, if V1 6= V2

for some V1, V2 2 A(M), then tn(V1) 6= tn(V2). 2

Proposition 2.4 If A(M) is finite, then every U 2 A(M) is definable in M,
i.e., M, x ✏ 'U () x 2 U for some n-formula 'U .

Proof. For any distinct U, V 2 A(M), there is an n-formula 'UV such that
'UV 2 tn(U) and 'UV /2 tn(V ); then put

'U =
^

V 6=U

'UV .

2
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Proposition 2.5 Suppose M is n-weak, A(M) is finite and for any n-formula
',

M ✏ ' () ' 2 Ldn.
Then tn : A(M)!WLdn is a bijection.

Proof. Since M ✏ Ldn, tn is an injection (Proposition 2.3). To check the
surjectivity, suppose A(M) = {V0, . . . , Vl}, xi = tn(Vi) and there exists x 2
WLdn such that x 6= xi for each i  l. For each i  l choose a formula 'i

such that 'i 2 x and 'i /2 xi; put ' = ^il'i. Then ' 2 x, so ¬' /2 L,
thus for some w in M we have M, w ✏ '. On the other hand, for each i  l
we have M, w ✏ 'i and 'i /2 tn(Vi). Hence w /2 Vi for each i  l, which is a
contradiction. 2

3 All locally tabular logics are pretransitive logics of
finite height

In this section we formulate a necessary condition for local tabularity.
For a binary relation R on W , R⇤ denotes its transitive reflexive closure:

R⇤ =
S

i�0
Ri, where R0 = Id(W ) = {(x, x) | x 2 W}, Ri+1 = Ri � R. ⇠R

denotes the equivalence relation R⇤ \R⇤�1. A cluster in a frame (W,R) is an
equivalence class modulo ⇠R; for a cluster C, the frame (W,R)�C is also called
a cluster.

For clusters C, D, put C R D i↵ xR⇤y for some x 2 C, y 2 D. The frame
(W/⇠R,R) is a poset; it is called the skeleton of F.

A poset F is of finite height  n (in symbols, ht(F)  n) if every of its
chains contains at most n elements. F is of height n (in symbols, ht(F) = n) if
ht(F)  n and ht(F) 6 n� 1.

More generally, the height of a frame F is the height of its skeleton; it is
also denoted by ht(F). A class F of frames is of (uniformly) finite height if
there exists h 2 N such that for every F 2 F we have ht(F)  h.

For any transitive F, F ✏ Bh () ht(F)  h, where

B1 = p1 ! 23p1, Bi+1 = pi+1 ! 2(3pi+1 _Bi)

(see e.g. [6, Proposition 3.44]). 3

Theorem 3.1 [15,13] A logic L ◆ K4 is locally tabular i↵ it contains Bh for
some h � 0.

Let Rm =
S

0im
Ri. A binary relation R is called m-transitive if Rm =

R⇤, or equivalently, Rm+1 ✓ Rm. R is called pretransitive if it is m-transitive
for some m � 0.

Put

30' = ', 3i+1' = 33i', 3m' =
m
_

i=0

3i', 2m' = ¬3m¬'.

3 Is another terminology, a poset of height n is called a poset of depth (n� 1).



524 Local tabularity without transitivity

Proposition 3.2 R is m-transitive i↵ (W,R) ✏ 3m+1p! 3mp.

'[m] denotes the formula obtained from ' by replacing 3 with 3m and 2

with 2m. In particular,

B[m]
1 = p1 ! 2m3mp1, B[m]

i+1 = pi+1 ! 2m(3mpi+1 _B[m]
i ).

Since in the case of m-transitive relation 3m corresponds to the master
modality, we have

Proposition 3.3 [11] For an m-transitive frame F,

F ✏ B[m]
h () ht(F)  h.

A logic L is called m-transitive if L ` 3m+1p ! 3mp. In this case, it is
easy to see that the formula 3m' is equivalent to every 3n' for n � m. L is
pretransitive if it is m-transitive for some m � 0. Note that every m-transitive
logic is n-transitive for n > m.

Definition 3.4 An m-transitive logic L is of finite height  h if L ` B[m]
h .

If L is pretransitive, there exists the least m such that L is m-transitive;

then put L[h] = L+B[m]
h . Note that L[h] ` B[n]

h for n > m.

Theorem 3.5 [11] Let L be a pretransitive logic. Then

(i) L[1] ◆ L[2] ◆ L[3] ◆ . . . ◆ L.

(ii) If L is consistent, then L[1] (and, consequently, every L[h]) is consistent.

(iii) If L is canonical, then every L[h] is canonical.

Theorem 3.6 For an m-transitive logic L, the set {' | L ` '[m]} is a logic
containing S4.

This is an easy consequence of Lemma 1.3.45 from [8].

Theorem 3.7 Every locally tabular logic is a pretransitive logic of finite height.

Proof. If L is locally tabular, WLd1 is finite. It follows that Rm+1
Ld1 ✓ Rm

Ld1 for

some m. So 3m+1p! 3mp 2 Ld1 ⇢ L, hence, L is m-transitive.
Then [m]L = {' | '[m] 2 L} is a logic containing S4 (Theorem 3.6). It

follows that [m]L is locally tabular. So by Theorem 3.1 [m]L ` Bh for some

h > 0; hence L ` B[m]
h . 2

4 Ripe frames
Now let us show that local tabularity of a Kripke complete logic is equivalent
to a quite simple semantic condition on its frames.

Definition 4.1 Let F = (W,R) be a frame. A partition A of W is R-tuned if
for any U, V 2 A

9u 2 U 9v 2 V uRv ) 8u 2 U 9v 2 V uRv. (1)
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A frame F is called f -partitionable for a function f : N ! N if for any n 2 N,
for any finite partition A of W with |A|  n there is an R-tuned refinement B
such that |B|  f(n).

A class of frames F is called ripe if there exists f : N! N such that every
F 2 F is f -partitionable.

Remark 4.2 If F is f -partitionable, then it is f 0-partitionable for some mono-
tonic f 0: put f 0(n) = max{f(n0) | n0  n}. On the other hand, if f is
monotonic, then F is f -partitionable i↵ for every finite partition A of W there
exists an R-tuned refinement B of A such that |B|  f(|A|).
Theorem 4.3 For a class F of Kripke frames, Log(F) is locally tabular i↵ F
is ripe.

This theorem can be proved by algebraic methods from [14],[3]. Our proof
is based on the subsequent simple propositions and (more technical) Lemma
4.8 giving an upper bound for f .

Proposition 4.4 [16] Let F = (W,R) be a frame, A an R-tuned partition of
F. Then there is a p-morphism from F onto (A, RA), where

URAV () 9u 2 U 9v 2 V uRv.

Proof. The required p-morphism is x 7! V for x 2 V 2 A. 2

Proposition 4.5 Let M = (W,R, ✓) be an n-weak model, A an R-tuned parti-
tion of M. If A respects {p1, . . . , pn} then A refines A(M).

Proof. By induction on the length of an n-formula ', let us show that x ⇠A y
implies M, x ✏ ' () M, y ✏ '. The base and the Boolean cases are trivial.
Suppose M, x ✏ 3', so M, z ✏ ' and xRz for some z. Since x ⇠A y, we have
yRz0 and z0 ⇠A z for some z0. By the induction hypothesis, M, z0 ✏ ', so
M, y ✏ 3'. 2

Proposition 4.6 Let M = (W,R, ✓) be an n-weak model. If A(M) is finite,
then A(M) is R-tuned.

Proof. Suppose U, V 2 A(M), u, u0 2 U , v 2 V , uRv. By Proposition 2.4 we
have M, v0 ✏ 'V () v0 2 V . Then M, u ✏ 3'V , so M, u0 ✏ 3'V , thus u0Rv0

for some v0 2 V . 2

Proposition 4.7 Suppose f : N ! N, M is an n-weak model over an f -
partitionable frame. Then A(M) is finite and |A(M)|  f(2n).

Proof. Let A be the partition of M induced by {p1, . . . , pn}. Clearly, |A|  2n.
There exists a refinement B of A such that B is R-tuned (where R is the
accessability relation in M) and |B|  f(2n). By Proposition 4.5, B refines
A(M). 2

Lemma 4.8 Suppose f : N ! N is monotonic, (Fi)i2I is a non-empty family
of f -partitionable frames. Then the disjoint sum

P

i2I
Fi is g-partitionable for

the function g(n) = 2f(n)
2 · nf(n) · f(n)2.
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Proof. Let Fi = (Wi, Ri), i 2 I. Let
P

i2I
Fi = (W,R), i.e.,

W = {(w, i) | i 2 I, w 2Wi}, (w, i)R(v, j) () i = j&wRiv.

Fix n 2 N. Suppose A is a partition of W , |A| = n, A = {A1, . . . , An}.
For V ✓ W , i 2 I, put pri(V ) = {w | (w, i) 2 V }. For i 2 I, put

Ai = {pri(A) | A 2 A, pri(A) 6= ?}; so Ai is a partition of Wi and |Ai|  n.
For every i 2 I there exists an Ri-tuned partition Bi of Wi such that Bi refines
Ai, and |Bi|  f(n).

Consider the signature ⌦n = (S(2), P (1)
1 , . . . , P (1)

n , c), where S(2) is a binary

relation symbol, P (1)
1 , . . . , P (1)

n are unary relation symbols, c is a constant.
For every (w, i) 2W we define an ⌦n-structure S(w, i) as follows.
For i 2 I, let Si be the binary relation on Bi such that

USiV () 9u 2 U 9v 2 V uRiv.

For i 2 I, 1  l  n let

Pil = {B 2 Bi | B ✓ pri(Al)}.

For w 2 Wi, [w]i denotes the element of Bi containing w. For (w, i) 2 W
put

S(w, i) = (Bi;Si, Pi1, . . . , Pin, [w]i).

For (w, i), (u, j) 2 W put (w, i) ⇠ (v, j) i↵ the structures S(w, i) and S(v, j)
are isomorphic. Clearly, ⇠ is an equivalence on W .

We claim that W/⇠ is the required partition of F.
Note that for any (w, i) 2W , for any l,

(w, i) 2 Al () [w]i 2 Pil. (2)

Indeed, (w, i) 2 Al i↵ w 2 pri(Al) i↵ [w]i ✓ pri(Al) (since Bi is a refinement
of Ai) i↵ [w]i 2 Pil.

Let us show that W/⇠ is a refinement of A. Suppose (w, i) ⇠ (v, j) and
(w, i) 2 Al for some l. We have to check that (w, i) ⇠A (v, j), i.e., (v, j) 2 Al.
Since (w, i) 2 Al, by (2) we have [w]i 2 Pil. By the definition of ⇠, there exists
an isomorphism h : S(w, i) ! S(v, j); then h([w]i) 2 Pjl and h([w]i) = [v]j . It
follows that [v]j 2 Pjl. By (2), (v, j) 2 Al.

Let us show that W/⇠ is R-tuned. To this end, suppose (w, i) ⇠ (v, j)
and (w, i)R(w0, i0). So i0 = i and wRiw0. Then we have [w]iSi[w0]i. Now,
there exists an isomorphism h : S(w, i) ! S(v, j). Then h([w]i)Sjh([w0]i) and
h([w]i) = [v]j . So [v]jSjh([w0]i). Since Bj is Rj-tuned, we have vRjv0 for some
v0 2 h([w0]i). Hence (v, j)R(v0, j). h is also an isomorphism between S(w0, i)
and S(v0, j), since [v0]j = h([w0]i). Thus (w0, i) ⇠ (v0, j).

Finally, let us check that |W/⇠|  2f(n)
2 ·nf(n) ·f(n)2. Indeed, up to isomor-

phism, every S(w, i) is a structure with the carrier {1, . . . , k} for some k > 0.
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In this case there are 2k
2

binary relations. An interpretation of P (1)
1 , . . . , P (1)

n

is a sequence of pairwise disjoint sets covering the carrier, so it corresponds to
a function {1, . . . , k} ! {1, . . . , n}; thus there are nk possible interpretations
of these predicates. There are also k interpretations of the constant. Since
|Bi|  f(n) for every i, we have

|W/⇠| 
f(n)
X

k=1

⇣

2k
2 · nk · k

⌘

 f(n) · 2f(n)2 · nf(n) · f(n).

2

Proof of Theorem 4.3 Suppose L = Log(F) is locally tabular. Put f(n) =
|WLdn|. Suppose F = (W,R) 2 F , A = {V1, . . . , Vn} is a finite partition of F.
Put ✓(pi) = Vi, 1  i  n and consider the model M = (F, ✓). The partition
A(M) refines A. Since M ✏ Ldn, by Proposition 2.3 we have |A(M)|  f(n).
By Proposition 4.6, A(M) is R-tuned.

Suppose there is f : N! N such that every frame from F is f -partitionable.
Since L = Log(F), then there exists a model M = (G, ⌘) such that G is a
disjoint sum of some frames from F , and M ✏ ' i↵ ' 2 L. By Lemma 4.8, G
is g-partitionable for g(n) = 2f(n)

2 · nf(n) · f(n)2. By Propositions 2.5 and 4.7,
|WLdn|  g(2n) for every n. 2

Since every locally tabular logic is Kripke complete, in view of Theorem 4.3
we readily obtain

Corollary 4.9 The following conditions are equivalent:

• a logic L is locally tabular;

• L is the logic of a ripe class of frames;

• L is Kripke complete and the class of all its frames is ripe.

The following fact from [11] gives many examples of ripe classes: if F is
of uniformly finite height, and there exists a common finite upper bound for
cardinalities of clusters in frames from F , then F is ripe. By Theorem 4.3,
logics of these classes are locally tabular. In the next section we will prove a
stronger result: instead of boundedness of clusters, we only need them to be
ripe.

5 Ripe cluster property

Definition 5.1 For a class F of frames let clF be the class of all clusters
occurring in frames from F .

F has the ripe cluster property if clF is ripe. A logic L has the ripe cluster
property if the class of all its frames has.

Theorem 5.2 A logic Log(F) is locally tabular i↵ F is of uniformly finite
height and has the ripe cluster property.

Before proving this theorem let us discuss some examples.
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Example 5.3 S4 has the ripe cluster property.
Indeed, every cluster in a preorder is a frame with the universal relation

(C,C ⇥ C). Every partition of C is (C ⇥ C)-tuned. So every cluster in a
preorder is f -partitionable, where f is the identity function on N.

Example 5.4 wK4 = K+33p! 3p _ p has the ripe cluster property.
To show this, consider a cluster (C,R) in a wK4-frame. Then R [ R0 =

C ⇥ C. Every partition A of C is R-tuned, due to the following proposition.

Proposition 5.5 If R[R0 = W⇥W , then every partition A of W is R-tuned.

Proof. Let x, y 2 U , z 2 V , xRz for some U, V 2 A. Suppose z 6= y; then
yRz. Suppose z = y; in this case U = V , so x 2 V ; since R is symmetric, we
have yRx. 2

Example 5.6 K+333p! 3p has the ripe cluster property.
Clusters in frames validating 333p! 3p are frames (C,R) such that R⇤

is universal and R3 ✓ R. Let us show that these clusters are f -partitionable
for f(n) = 2n. Suppose A is a finite partition of C. Put x ⇠ y i↵ there
exists l � 0 such that xR2ly. It is not di�cult to see that ⇠ is an equivalence
relation on C and |C/⇠|  2 (more details will be given in Lemma 6.4). Let
B = C/(⇠ \ ⇠A). Then |B|  2|A|. To show that B is R-tuned, suppose
x, y 2 U , z 2 V , xRz for some U, V 2 B. Then yR2lx for some l � 0, so
yR2l+1z. Since R3 ✓ R, we have R2l+1 ✓ R, thus yRz.

Proposition 5.7 If B is R-tuned, then B is Rl-tuned for any l � 0.

Proof. By an easy indiction on l. 2

Lemma 5.8 Suppose F = (W,R) is a frame, {X1, X2} is a partition of W ,
F�X1 is a generated subframe of F, F�X1 is f1-partitionable, F�X2 is f2-
partitionable for some monotonic f1, f2 : N ! N. Then F is g-partitionable
for

g(n) = f2
⇣

n · 2f1(n)
⌘

+ f1(n).

Proof. Let A be a partition of W , |A| = n 2 N. Put Ai = A�Xi, i = 1, 2.
There exists a partition B1 of X1 such that B1 is (R�X1)-tuned, B1 is a

refinement of A1, and |B1|  f1(n). Let ⇠1 = ⇠B1 .
For x 2 X2 put V(x) = {B 2 B1 | 9y 2 B xRy}. For x, y 2 X2 put x ⌘ y

i↵ x and y belong to the same element of A2 and V(x) = V(y). Clearly, ⌘ is
an equivalence on X2. Since V(x) ✓ B1 for every x 2 X2, we have

|X2/⌘|  |A2| · 2|B1|  n · 2f1(n).

Then there exists a partition B2 of X2 such that B2 is (R�X2)-tuned, B2 is a
refinement of X2/⌘, and

|B2|  f2
⇣

n · 2f1(n)
⌘

.

Let ⇠2 = ⇠B2 .
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Let ⇠ be the union of ⇠1 and ⇠2; clearly, ⇠ is an equivalence on W .
We claim that C = W/⇠ is the required partition ofW . By the construction,

C refines A and

|C|  f2
⇣

n · 2f1(n)
⌘

+ f1(n).

Let us check that C is R-tuned. Suppose x ⇠ y and xRx0 for some x, y, x0 2
W .

First assume that x 2 X1. Then x ⇠1 y. Since R \ (X1 ⇥ X2) = ?, we
have x0 2 X1. Since B1 is (R�X1)-tuned, for some y0 2 X1 we have yRy0 and
x0 ⇠1 y0; the latter implies x0 ⇠ y0.

Assume now that x 2 X2 and x0 2 X1. Let B be the element of B1

containing x0. Then B 2 V(x). Since x ⌘ y, V(x) = V(y). So B 2 V(y). It
follows that for some y0 we have yRy0 and y0 2 B; the latter implies x0 ⇠ y0.

Finally, assume that x, x0 2 X2. Since x ⇠2 y and B2 is (R2�X2)-tuned, for
some y0 we have yRy0 and x0 ⇠2 y0; the latter implies x0 ⇠ y0. 2

Lemma 5.9 Suppose f : N! N, (W,R) is an f -partitionable frame, V ⇢W ,
V 6= ?. Then (V,R�V ) is g-partitionable for g(n) = f(n+ 1)� 1.

Proof. Let A be a partition of V , |A|  n 2 N. Put A0 = A[ {W \V }. So A0

is a partition of W and |A0|  n+ 1. There exists an R-tuned refinement B of
A0 such that |B|  f(n + 1). Then C = {B 2 B | B ✓ V } is a partition of V ,
C refines A and is (R�V )-tuned. There exists B0 2 B such that B0 ✓ W \ V .
Then B0 /2 C, so |C| < |B|. 2

Lemma 5.10 For h 2 N, f : N! N, let Fh,f be the class

{F | ht(F)  h and every cluster in F is f -partitionable}

Then Fh,f is ripe.

Proof. By induction on h, let us show that there exists a monotonic gh : N! N
such that every F 2 Fh,f is gh-partitionable.

If F 2 F1,f , then ht(F) = 1, so F is a disjoint sum of clusters. So F is

g1-partitionable for g1(n) = 2f(n)
2 · nf(n) · f(n)2 by Lemma 4.8 (without any

loss of generality, we may assume that f is monotonic).
For the induction step, suppose F = (W,R) 2 Fh+1,f .
If ht(F)  h, then F is gh-partitionable by the induction hypothesis.
Suppose ht(F) = h + 1. Let X1 be the union of all maximal clusters in

F, X2 = W \ X1. Then F�X1 is a disjoint sum of some clusters in F; this
frame is g1-partitionable by Lemma 4.8. The height of the frame F�X2 is h,
so this frame is gh-partitionable by the induction hypothesis. Since F�X1 is
a generated subframe of F, by Lemma 5.8, F is g-partitionable for g(n) =
gh

�

n · 2g1(n)
�

+ g1(n).
Since gh(n)  g(n), if follows that F is g-partitionable. 2

Lemma 5.11 A class F of Kripke frames is ripe i↵ F is of uniformly finite
height and has the ripe cluster property.
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Proof. Suppose F is ripe. Then its logic is locally tabular by Theorem 4.3. It
follows that all frames in F are of height  h for some h 2 N (Theorem 3.7).
Since F is ripe, the class clF is also ripe by Lemma 5.9.

The right-to-left direction: for some f , h, the class F is a subclass of the
class Fh,f described in Lemma 5.10; thus F is a subclass of a ripe class. 2

Proof of Theorem 5.2 Follows from Lemma 5.11 and Theorem 4.3. 2

Corollary 5.12 A logic L is locally tabular i↵ L is a Kripke complete pretran-
sitive logic of finite height with the ripe cluster property.

Theorem 5.13 Suppose L0 is a canonical pretransitive logic with the ripe clus-
ter property. Then for any logic L ◆ L0:

L is locally tabular i↵ L is of finite height.

Proof. If an extension L of L0 is locally tabular, then L is of finite height by
Theorem 3.7.

To show that every extension of L0 of finite height is locally tabular, it is
su�cient to show that L0[h] is locally tabular for every h > 0 (Proposition 2.2).
By Theorem 3.5, L0[h] is canonical, so it is Kripke complete. By Theorem 5.2,
L0[h] is locally tabular. 2

6 Criterion for logics containing 3m+1p! 3p _ p

Proposition 6.1 Let m � 1.

(i) K+3m+1p! 3p _ p is m-transitive.

(ii) 3m+1p ! 3p _ p is a Sahlqvist formula, the logic K + 3m+1p ! 3p _ p
is canonical and Kripke complete, and

(W,R) ✏ 3m+1p! 3p _ p i↵ Rm+1 ✓ R [R0.

(iii) (W,R) is a cluster in a frame validating 3m+1p ! 3p _ p i↵ Rm =
W ⇥W and Rm+1 ✓ R [R0.

Theorem 6.2 Let m � 1, 3m+1p! 3p _ p 2 L. Then L is locally tabular i↵

L ` B[m]
h for some h > 0.

We will prove this theorem later on.
Consider a frame (W,R). For d > 0 put x �d y i↵ wRldy for some l � 0.

Clearly, �d is a preorder.

Proposition 6.3 Let R⇤ = W ⇥W . Then for every k > 0 there exists d such
that 0 < d  k, �d is an equivalence on W , |W/�d|  d, and �d ✓ �k.

For the proof cf. [11]. The idea of is that d is a common divisor of k and
the lengths of all cycles in (W,R).

Lemma 6.4 Let m � 1, R⇤ = W ⇥ W , Rm+1 ✓ R. Then (W,R) is f -
partitionable for f(n) = mn.
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Proof. Consider a finite partitionA ofW . Let �d be the equivalence described
in Proposition 6.3 for k = m. Put B = W/(�d \ ⇠A). Since |W/�d|  d  m,
we have |B|  m|A|.

Suppose x ⇠B y, xRz. We have y �d x, and then y �m x (Proposition
6.3), so for some l we have yRmlx, and thus yRml+1z. Since Rm+1 ✓ R, we
have Rml+1 ✓ R (by an easy induction on l), thus yRz. It follows that B is
R-tuned. 2

Lemma 6.5 Let m � 1, R⇤ = W ⇥ W , and suppose Rm+1 ✓ R [ R0 and
Rm+1 6✓ R. Then:

• there exists a cyclic path x0Rx1R . . . RxmRx0;

• if W 6= {x0, . . . , xm}, then R [R0 = W ⇥W .

Proof. There exist x0, y0 such that x0Rm+1y0 and not x0Ry0. Since Rm+1 ✓
R [ R0, we have x0 = y0. So x0Rm+1x0, i.e., there exists a cyclic path
x0Rx1R . . . RxmRx0. Put U = {x0, x1, . . . , xm}.

If m = 1, then (W,R) is a wK4-cluster, so R [ R0 = C ⇥ C (see Example
5.4).

Suppose m � 2.
Let �!xi and  �xi be the successor and the predecessor of xi in our cycle, i.e.:

�!xi = xi+1 for i < m, �!xm = x0;
 �xi = xi�1 for i > 0,  �x0 = xm.

Suppose z /2 U . Then for 0  i  m

• zRxi implies zR �xi ;

• xiRz implies �!xiRz.

Indeed, xiRm �xi , so zRxi implies zRm+1 �xi ; since z 6= �xi we have zR �xi . Simi-
larly, �!xiRmxi, so xiRz implies �!xiRm+1z; since �!xi 6= z we have �!xiRz. It follows
that

(1) 9x 2 U zRx () 8x 2 U zRx,

(2) 9x 2 U xRz () 8x 2 U xRz.

Let us check that

(3) 8z /2 U 8x 2 U (zRx & xRz).

Indeed, since Rm is universal on W and z /2 U , for some l, 0 < l  m, we
have zRlx0Rm+1�lxm+1�l, so zRm+1xm+1�l, and since z 6= xm+1�l we obtain
zRxm+1�l. By (1), it follows that 8x 2 U zRx.

Similarly, we have xmRlz for some l, 0 < l  m, so xl�1Rm+1z, and since
xl�1 6= z we obtain xl�1Rz. By (2), it follows that 8x 2 U xRz.

Now let us show that

(4) 8y8y0(y 6= y0 ) yRm+1y0).

Consider the following cases.
(a) y, y0 /2 U . By (3) we have yRx0Rm�1xm�1Ry0, so yRm+1y0.
(b) y /2 U , y0 2 U . Then by (3) yR

�!
y0Rmy0, and again yRm+1y0.

(c) y 2 U , y0 /2 U . Then by (3) yRm
 �
y0Ry0, and thus yRm+1y0.
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(d) y, y0 2 U . By (3), for z /2 U we have yRm�1
 � �y RzRy0, so yRm+1y0 again.

If y 6= y0 and yRm+1y0, then we have yRy0. Thus R [R0 = W ⇥W . 2

Lemma 6.6 K + 3m+1p ! 3p _ p has the ripe cluster property for every
m � 1.

Proof. Let(C,R) be a cluster in a frame validating 3m+1p ! 3p _ p, A a
finite partition of C. We have Rm+1 ✓ R [R0.

If Rm+1 ✓ R, then by Lemma 6.4 there exists an R-tuned refinement B of
A such that |B|  m|A|.

Otherwise, by Lemma 6.5, we have two cases: |C|  m + 1, or R [ R0 =
C ⇥ C. In the first case, put B = {{x} | x 2 C}; trivially, B is R-tuned and
|B|  m+ 1. In the second case, A is R-tuned by Proposition 5.5.

It follows that every cluster in any frame validating 3m+1p ! 3p _ p is
f -partitionable for f(n) = max{mn,m+ 1}. 2

Proof of Theorem 6.2 If L is locally tabular, then B[m]
h 2 L for some h > 0

by Theorem 3.7.

Suppose B[m]
h 2 L for some h > 0. L has the ripe cluster property by

Lemma 6.6. Since L is of finite height, by Theorem 5.13, L is locally tabular.2

7 Properties of partitionable frames
Theorem 3.7 implies that every f -partitionable frame is pretransitive. The next
two propositions give more details.

Proposition 7.1 If F is f -partitionable then F is (f(2)� 1)-transitive.

Proof. Let F = (W,R). Put m = f(2)� 1. Suppose that xRm+1y, so there is
a path x = x0Rx1 . . . Rxm+1 = y.

If xi = xj for some i < j, then xRm+1�(j�i)y, so xRmy.
Suppose all the xi are di↵erent. Consider the two-element partition

{{xm+1},W \ {xm+1}}. There exists its refinement B such that B is R-tuned
and |B|  f(2). Since {xm+1} 2 B, B splits W \ {xm+1} into |B| � 1 parts.
Since |B|�1  f(2)�1 = m, there are at least two ⇠B-equivalent points among
x0, . . . , xm. Suppose xi ⇠B xj for i < j.

By Proposition 5.7, B is Rm+1�j-tuned, and xi ⇠B xj , so there exists y
such that xiRm+1�jy and y ⇠B xm+1. But the element of B containing xm+1

is the singleton {xm+1}, thus y = xm+1, and therefore xRmy. 2

Proposition 7.2 If all clusters in F are f -partitionable and ht(F) = h 2 N,
then F is m-transitive for m = h · f(2)� 1.

Proof. Put m0 = f(2) � 1. By Proposition 7.1, all clusters in F are m0-
transitive. Suppose xR⇤y. Let C and D be the clusters containing x and y,
respectively. In the skeleton of F, consider a maximal chain C = C1 R · · · R

Cl = D from C to D. Then for each i < l we have yiRxi+1 for some yi 2 Ci and
xi+1 2 Ci+1 (indeed, there are no clusters between Ci and Ci+1). Since Ci is
m0-transitive, we have xiRm0yi; we also have yiRxi+1. Then xRl·m0+l�1y.

To finish the proof, note that l  h, so l ·m0 + l � 1  h · f(2)� 1. 2
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For m 2 N, consider the following first-order property Pm:

8x0, . . . , xm+1

0

@x0Rx1 . . . Rxm+1 !
_

i<j

xi = xj _
_

i+1<j

xiRxj

1

A .

Note that this property implies m-transitivity. The next theorem gives another
necessary condition for local tabularity.

Theorem 7.3 If F is a ripe class, then F satisfies Pm for some m.

Thus theorem follows from

Proposition 7.4 If (W,R) is f -partitionable, then Pf(3)�1 holds in (W,R).

Proof. Put m = f(3) � 2. Let X = {x0, . . . , xm+1} and suppose
x0Rx1 . . . Rxm+1.

First, suppose X = W . Then Pf(3)�1 holds in (W,R), since |W |  f(3) in
this case.

Next, suppose X 6= W . By Lemma 5.9, (X,R�X) is g-partitionable for
g(n) = f(n+ 1)� 1. By Proposition 7.1, (X,R�X) is (g(2)� 1)-transitive and
g(2)� 1 = f(3)� 2 = m. Thus for some l  m we have x0Rlxm+1. Thus there
is a path xi0Rxi1R . . . Rxil , i0 = 0, il = m+ 1.

Now suppose that |X| = m + 2 and ik+1  ik + 1 for each k  m. In this
case ik  k for each k  l (by trivial induction on k), so il 6= m+ 1, which is a
contradiction.

It follows that |X| < m+ 2 or ik+1 > ik + 1 for some k  l.
Thus we have Pf(3)�2 in (W,R).
Therefore, Pf(3)�1 holds in (W,R) anyway. 2

8 Conclusion
Let us summarize our main results.

• The necessary syntactic condition for local tabularity: pretransitivity and
finite height.

• Two semantic criteria of local tabularity: (i) a logic is locally tabular i↵ it is
complete with respect to a ripe class of frames; (ii) a logic is locally tabular
i↵ it is complete with respect to a class of frames of uniformly finite height
with the ripe cluster property.

• A syntactic criterion of local tabularity above K+3m+1p! 3p _ p.

A syntactic criterion of local tabularity above K remains an open problem.
The necessary syntactic condition from Theorem 3.7 is not su�cient: for ex-
ample, the logic K2

3 = K +333p ! 33p is 2-transitive, but even K2
3[1] has

Kripke incomplete extensions [10], so it is not locally tabular. However, there
is a hope for a criterion. In fact, every ripe class has the property Pm for some
m (Theorem 7.3). So one may ask if the following holds:

Problem 8.1 Suppose that F is a class of clusters satisfying Pm for some m.
Is F ripe?
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In view of Theorem 7.3, the positive solution of the above problem would
provide us with a syntactic criterion of local tabularity over K.

Another important field is local tabularity of polymodal logics. The notion
of a ripe class and the ripe cluster property can be reformulated in a straight-
forward way, and the analogues of Theorems 3.7, 4.3 and 5.2 can be proved for
logics with finitely many modalities.

The authors would like to thank the anonymous reviewers for their com-
ments.
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