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Abstract

Irreflexive frames sometimes play a crucial role in the theory of modal logics, al-
though the class of all such frames that consist of only irreflexive points can not be
determined by any set of modal formulas. For instance, the modal logic determined
by the frame of one irreflexive point is one of the two coatoms of the lattice of all
normal modal logics. Another important result is that every rooted cycle-free frame,
that consists of irreflexive points only, splits the lattice of all normal modal logics.
In this paper, we consider a family of axioms Cycl(n) (for n � 0), which forces

frames to be n-cyclic. Seeking out the distribution of modal logics of irreflexive
frames in the lattice of normal extensions of the modal logic with a cyclic axiom gives
us information about the structure of this lattice.
We mainly discuss the case n = 1 (the structure of the lattice of normal extensions of

K�Cycl(1)) and the case n = 2 (that of normal extensions of K�Cycl(2)). Finally
we discuss the possibility that a similar or a refined argument may bring us informa-
tion on the structure of the lattice of normal extensions of the logic K�Cycl(n) for
every n � 1.
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1 Introduction
In frames for propositional modal logics, each point can be either reflexive

or irreflexive in general. Whereas the class of all reflexive frames can be de-
termined by simple one axiom T, the class of all irreflexive frames cannot be
characterized by any set of formulas in a usual modal language. However, ir-
reflexive frames sometimes play a crucial role in the theory of modal logics.
For instance, the modal logic determined by the frame of one irreflexive point
is one of the two coatoms of the lattice of all normal modal logics [8]. Another
important example is that every rooted cycle-free frame, that consists of ir-
reflexive points only, splits the lattice of all normal modal logics [1].
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On the other hand, on cyclicity of modal algebras, the following result is
established.

Theorem 1.1 ([7]) Let V be a variety of modal algebras whose signature is
finite. The following are equivalent.

(1) V is semisimple.

(2) V is a discriminator variety.

(3) V is weakly-transitive and cyclic.

This theorem tells us that the cyclicity of modal algebras is as significant as
the weak-transitivity of algebras is, although the definition of cyclicity in the
above theorem is slightly di↵erent from ours. There have been accumulated an
enormous amount of works on weakly-transitive modal logics. But as far as we
know, there are very few results on cyclic modal logics.
In this paper, we focus on irreflexive frames that also validate the following

cyclic axioms. We consider a family of axioms Cycl(n) (for n � 0), which
forces frames to be n-cyclic. Seeking out the distribution of modal logics of
irreflexive frames in the lattice of normal extensions of modal logics with a
cyclic axiom gives us information about the structure of this lattice.
We mainly discuss the case n = 1 (the structure of the lattice of normal

extensions of K �Cycl(1)) and the case n = 2 (that of normal extensions of
K � Cycl(2)). Finally we discuss the possibility that a similar or a refined
argument may bring us information on the structure of the lattice of normal
extensions of the logic K�Cycl(n) for every n � 1.

2 Preliminaries
The propositional modal language is defined in a usual way, where a count-

ably infinite set V ar := {p0, p1, . . . , pk, . . .} of variables is used, and a nullary
connective is ? (falsum), unary connectives are ¬ (negation) and 2 (necessity),
and a binary connective is ^ (conjunction). Several others are only abbrevia-
tions as, > := ¬?, '_ := ¬(¬'^¬ ), '!  := ¬'_ , and 3' := ¬2¬'.
The set of all modal formulas is denoted by �, that is also used for the incon-
sistent logic.
A set L ✓ � of formulas is called a normal modal logic, if it contains: (1) all

classical tautologies, and (2) the formula of the form 2(p0 ! p1) ! (2p0 !
2p1), and is closed under the following rules: (3) Modus Ponens (','!  / ),
(4) Uniform Substitution ('/'[pi/ ]), and (5) Necessitation ('/2'). The
smallest normal modal logic on � is denoted by K. We call L simply a logic if
it is a normal modal logic, since we deal with only propositional normal modal
logics.
For a normal modal logic L0 and a set � of formulas, the smallest normal

extension of L0 by �, or the smallest normal modal logic that contains both L0

and �, is denoted by L0 � �. If � is a finite set {'1,'2, . . . ,'n} of formulas,
then the logic L0 � � is simply denoted by L0'1'2 · · ·'n. The class of all
normal extensions of L0, that is, the class {L ✓ � | L0 ✓ L and L is normal}
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is denoted by NExt(L0). This forms a complete lattice, and also satisfies the
(finite) distributive law [2].
Two types of mathematical structure are used to interpret modal formulas

semantically: one is modal algebras and the other frames.
Amodal algebra is a structure A := hA,\,[,�,2, 1, 0i, where hA,\,[,�, 1, 0i

is a Boolean algebra and 2 is a unary modal operator (we use the same symbol
as in formulas) that satisfies (a) 21 = 1 and (b) 2(x \ y) = 2x \2y.
To interpret a formula ' in a modal algebra A, we use a valuation v : � ! A

which satisfies the following: (1) v(?) = 0, (2) v(¬') = �v('), (3) v('^ ) =
v(') \ v( ), and v(2') = 2(v(')). A formula ' is valid in an algebra A, if
v(') = 1 holds for any valuation v on A. For any class C of modal algebras,
the set L(C) of formulas that are valid in all members of the class C defines a
normal modal logic.
On the other hand, for every modal logic L, a particular class V = V(L) of

modal algebras corresponds to it. This class V is called an equationally defin-
able class of modal algebras for L, or the variety for L. All subvarieties of V(L)
form a complete lattice, which is dual isomorphic to NExt(L). Therefore, an
investigation of modal logics can also be seen as an investigation of the varieties
of modal algebras which correspond to the modal logics considered.
The smallest variety V that contains a class C of algebras can be generated

by: V = HSP (C), where H, S, P are the following class operators of alge-
bras of a same type. H(C) := {B | B is a homomorphic image of some A 2
C}, S(C) := {B | B is a subalgebra of some A 2 C}, and P (C) :=
{B |B is a direct product of some members {Ai}i2I ✓ C}.
Another way of generating the smallest variety V which contains

a class C of algebras is: V = HPS(Cs.i.), where PS(D) :=
{B |B is a subdirect product of some members {Ai}i2I ✓ D}, and Cs.i. is the
class of all subdirectly irreducible members in C. Here we do not describe the
detail of what the subdirect product is, and what the subdirectly irreducible
(s.i. for short) members are. But by this fact, we see that it is the s.i. members
in C that determine the variety V. All s.i. members in C behave as building
blocks of the variety V, or dually, the corresponding modal logic. The following
algebraic characterization of subdirectly irreducible modal algebras is a key for
our analysis.

Theorem 2.1 ([9]) A non-trivial modal algebra A = hA,\,[,�,2, 1, 0i is sub-
directly irreducible if and only if there exists an element d( 6= 1) 2 A, and for
any element x( 6= 1) 2 A, x \2x \22x \ · · · \2nx  d holds for some n 2 !.

The other type of semantics, a (general) frame is a structure F := hW,R,P i,
where W is a set of points, R a binary relation onW , and P is a subset of P(W )
which contains W and ;, and is closed under \ (the set-theoretic intersection,
� (the set-theoretic complement) and a unary operator 2R, that is defined as:
2R(X) := {y 2 W | 8x 2 W,

�

xRy implies y 2 X
�

} for X 2 P(W ).
In order to interpret a formula in a frame, we use a valuation V : � ! P .

For a frame F := hW,R,P i, a valuation V , and a point a 2 W , we define the
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truth condition of a formula ' at a in a model hF , V i (hF , V i |=a ' in sym-
bol) as usual. In particular, hF , V i |=a 2' if and only if for any b 2 W , aRb
implies hF , V i |=b '. A formula ' is valid in a frame F (F |= ' in symbol), if
hF , V i |=a ' holds for any valuation V on F and for any point a 2 F . For any
class D of frames, the set L(D) of formulas that are valid in all members in D
defines a normal modal logic. On the other hand, for a normal modal logic L,
a frame F is a frame for L (F |= L ) if F |= ' holds for every ' 2 L.
There are some formulas (axioms) in normal modal logics that can character-

ize some classes of frames whose members satisfy a first order condition written
in a language with predicate symbols R and =. We denote F |⌘ ⌅ to mean
that the frame F satisfies a condition ⌅. For example, the famous axioms
T := p ! 3p,B := p ! 23p and D := 3> characterize the classes of frames
with the following conditions respectively.

Fact 2.2 For a frame F = hW,R,P i,
(1) F |= T if and only if F |⌘ 8x(xRx).

(2) F |= B if and only if F |⌘ 8x, y(xRy implies yRx).

(3) F |= D if and only if F |⌘ 8x9y(xRy).

According to the famous Jónsson-Tarski representation [6], for a given frame
F = hW,R,P i, the modal algebra F⇤ which corresponds to the frame F is
constructed as: F⇤ = hP,\,[,�,2R,W, ;i. The algebra F⇤ is indeed a modal
algebra, and there is a following correspondence between these two semantics:
for any formula ' 2 �, F |= ' if and only if F⇤ |= '. Conversely, for a given
modal algebra A, we can construct a frame, which is denoted by A⇤ such that
both A and A⇤ validate the same set of formulas.
We have explained only a minimal set of knowledge and definitions of some

technical terms. We will follow notions and nomenclature of modal logics
from [4] and those of universal algebras from [3].

3 Irreflexive frames for modal logics with cyclic axioms
3.1 Irreflexive frames of a particular form

Let F = hW,R,P i be a frame. A point a 2 W is irreflexive if aRa does
not hold. We draw an irreflexive point in a frame by a circle (�). A frame
F is irreflexive if every point in F is irreflexive. In this paper, we employ a
family {In}n2! and I1 of irreflexive frames of the following form for n � 0.
In is a finite Kripke frame hW,Ri, where W := {a0, a1, a2, · · · , an} and R :=
{(a0, ak) | 1  k  n}. I1 := hW,Ri, where W is a countably infinite set
{ai | i � 0} and R := {(a0, ai) | i � 1}. Figures of these frames are below. On
the modal logics determined by In’s and I1, the following holds.

Proposition 3.1

(1) L(I0) ) L(I1) ) L(I2) ) · · · ) L(I1).

(2) L(I1) =
\

i2!

L(Ii).
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Proof. (1) For k  `, there is a p-morphism from I` to Ik, and so, L(I`) ✓
L(Ik). By using the axiom altn := 2p0 _2(p0 ! p1)_ · · ·_2((p0 ^ p1 ^ · · ·^
pn�1) ! pn), it is easy to see that Ik |= altk but that Ik+1 6|= altk. Therefore
L(Ik) 6✓ L(Ik+1).
(2) Suppose that ' 62 L(I1). Then there exists a valuation V and a point a in
I1 such that hI1, V i 6|=a '. Since the length of the formula ' is finite, there
is k 2 !, a valuation V 0 on Ik and a point b in Ik such that hIk, V 0i 6|=b '.

Therefore we have L(I1) ◆
\

i2!

L(Ii). 2

I0 I1 I2 I3

· · · · · ·

Ik

· · · · · ·
· · · · · ·

I1

1 2 3 k 1 2 3 k

· · · · · · · · · ·

Fig. 1. Frames Ik

3.2 Cyclic axioms and serial axioms

The cyclic axiom is defined as: Cycl(n) := p ! 2n3p for n � 0. This axiom
characterizes the class of frames with the following property.

Fact 3.2 For a frame F = hW,R,P i and for n � 0, F |= Cycl(n) if and only
if F |⌘ 8x0, x1, x2, . . . , xn 2 W,

�

x0Rx1Rx2R · · ·Rxn implies xnRx0

�

.

For n � 0, a frame F is n-cyclic if F |= Cycl(n) holds. Note that thisCycl(n)
is a generalization of the well known axioms T := Cycl(0) and B := Cycl(1).
On the other hand, the (generalized) serial axiom is defined as: Dn := 2n3>

for n � 0. This axiom is a generalization of the serial axiom D, and it charac-
terizes the following property of frames.

Fact 3.3 For a frame F = hW,R,P i and for n � 0, F |= Dn if and only if
F |⌘ 8x0, x1, . . . , xn 2 W,

�

x0Rx1R · · ·Rxn implies 9y 2 W (xnRy)
�

.

For n � 0, a frame F is n-serial if F |= Dn holds.

3.3 Levels of points in a frame

Let F = hW,R,P i be a frame. Subsets W (k) for k = 0, 1, 2, · · · and W1 of
W is defined as: W (0) := {x 2 W | NOT

�

9y 2 W (xRy)
�

}, W (n+1) := {x 2
W |9y 2 W (n)(xRy)}, and W1 := {x 2 W |NOT

�

9n 2 !, 9y 2 W (0)(xRny)
�

}.
In general, these W (k)’s and W1 are not disjoint. But in a frame for Cycl(0),

Cycl(1), or Cycl(2), they are disjoint. And moreover, in a frame for Cycl(0),
W = W1, in a frame for Cycl(1), W = W (0) [ W1, and in a frame for
Cycl(2), W = W (0)[W (1)[W1. This observation is another key fact for our
analysis. In these frames, a point x 2 W is called a point of level n if and only
if x 2 W (n) for n = 0, 1 and x is called a point of level 1 if and only if x 2 W1.
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4 A splitting of NExt(KCycl(n)) for n � 1

Definition 4.1 [Splitting] Let L = hL,^,_, 0, 1i be a complete lattice and
a 2 L. Then a splits L if there exists b 2 L such that for any x 2 L, either
x  a or b  x, but not both. Such a pair (a, b) is called a splitting pair of the
lattice L. In this case the element b is a splitting of L.
When we think about splittings of a lattice of logics, if a logic L(A) (or L(F))

splits the lattice, then we say that the algebra A (or the frame F) splits it.

a

b

1

0

Fig. 2. A splitting of a complete lattice L

A simple calculation for an n-cyclic s.i. modal algebra proves the fol-
lowing lemma first, which leads us to a splitting of the complete lattice
NExt(KCycl(n)).

Lemma 4.2 Let A be a non-trivial, subdirectly irreducible modal algebra for
Cycl(n) (n � 1). Suppose 2n�131 6= 1 in A. Then 2n0 = 1 holds in A.

Proof. Since A is s.i., there is some element d( 6= 1) 2 A and for the element
2n�131, there is a number m 2 ! such that 2n�131\2n31\ · · ·\2m31  d
holds. Due to the n-cyclic axiom, we have that 2n�131  d. Now suppose
that 2n0 6= 1 in A. Then similarly, there is a number ` 2 ! such that 2n0 \
2n+10 \ · · · \ 2`0  d holds. Among the conjuncts in the left hand side, 2n0
is the smallest, and so, we have 2n0  d. By the former, �d  3n�120, and
so, 3 � d  3n20  0 because of (the dual) of n-cyclic axiom. Therefore we
have 3�d = 0. Finally we have �d  2n3�d = 2n0  d, which implies that
d = 1. This is a contradiction. Hence we have 2n0 = 1. 2

Let Chn be the irreflexive frame of n point directed chain (n � 1). That is,
Chn := hW,Ri, where W := {bi | 0  i  n � 1} (All bi’s are distinct.) and
R := {(bi, bi+1) | 0  i  n� 2}. The figure of Chn is below.

b0 b1 b2 b3 · · · · · ·
bn�2 bn�1

Fig. 3. Frames Chn

Theorem 4.3 For any n � 1,
�

KDn�1Cycl(n),L(Chn)
�

is a splitting pair of
the lattice NExt(KCycl(n)).
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Proof. Suppose that KDn�1Cycl(n) 6✓ L for a logic L 2 NExt(KCycl(n)).
Then, there exists an s.i. algebra A for L, such that A 6|= Dn�1(= 2n�13>).
This means that 2n�131 6= 1 in A. Therefore, by the previous lemma, 2n0 = 1
holds in A. Here we claim that in A, 0 < 20 < 220 < · · · < 2n0 = 1.
So, suppose 2k0 = 1 for some k (0  k < n). Then, since 0  31,
we have 1 = 2k0  2k31 = 1, which implies that 2n�131 = 1. This
is a contradiction. Thus 2k0 6= 1 for all k (0  k < n). Suppose that
2k0 = 2k+10 for some k (0  k < n). But this leads to a conclusion that
2k0 = 2k+10 = 2k+20 = · · · = 2n0 = 1, which implies that 2k0 = 1. This is
also a contradiction.
Let A0 be a subalgebra of A generated by the subset B =

{0,20,220, . . . ,2n�10, 1} of A. A map f : B ! Chn
⇤ is defined as fol-

lows: f(0) := ;, f(20) := {bn�1}, f(220) := {bn�1, bn�2}, . . . , f(2k0) :=
{bn�1, bn�2, . . . , bn�k}, . . . , f(2n�10) := {bn�1, bn�2, . . . , b1}, and f(1) :=
{bn�1, bn�2, . . . , b1, b0} = W . Then this f can be extended to a map F :
A0 ! Chn

⇤ as follows: F (x) := f(x) for x 2 B and suppose for any x, y 2 A0,
F (x) and F (y) are already defined. Then we define F (x \ y) := F (x) \ F (y),
F (�x) := �F (x), and F (2x) := 2R(F (x)). Then, it is easy to see that this F is
an embedding, and since the subset f(B) = {f(0), f(20), . . . , f(2n�10), f(1)}
of the universe of Chn

⇤ generates the whole Chn
⇤, and so, F is an isomorphism

from A0 to Chn
⇤. Therefore A0 ⇠= Chn

⇤, which implies that Chn
⇤ 2 S(A). Hence

we have L ✓ L(A) ✓ L(Chn
⇤) = L(Chn). 2

This splitting theorem holds for any n � 1. We take this theorem as a clue
to investigate the structure of the lattice NExt(KCycl(n)). In what follows,
we mainly consider the case n = 1 and the case n = 2.

5 The structure of NExt(KCycl(1))
Among all connected frames for Cycl(1), it is only the frame I0 that contains

a point of level 0. By Theorem 4.3, we can see that this frame splits the lattice
NExt(KCycl(1)).

Theorem 5.1
�

KD0Cycl(1),L(I0)
�

is a splitting pair of the lattice
NExt(KCycl(1)). 2

Now a question arises: what sort of modal logics are located under the logic
L(I0) in NExt(KCycl(1))? Since I0 is a frame of only one irreflexive point, it
is impossible that this frame is a p-morphic image of some connected frames.
It is the case that some suitable generated subframes of In for n � 1 or Chk for
k � 1 are isomorphic to I0, but they are not frames for Cycl(1). Our argument
in this section will proceed to give an answer to this question.
First of all, the following equality holds.

Proposition 5.2 KCycl(1) = KD0Cycl(1) \ L(I0).
Proof. It is obvious that KCycl(1) ✓ KD0Cycl(1) \ L(I0). Conversely
suppose ' 62 KCycl(1) for some ' 2 �. Then, there exists a frame
F = hW,R,P i for Cycl(1), a valuation V on F , and a point a 2 W such
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that hF , V i 6|=a '. Now since this F is 1-cyclic, W = W (0) [W1. If F is also
0-serial, then W (0) = ; and it is a frame for Cycl(1) and D0. Thus we have
' 62 KD0Cycl(1). Otherwise, W (0) 6= ;. However, since F is 1-cyclic, any
point in W (0) is isolated from other part of the frame. So, if a 2 W1, then the
subframe F 0 generated by the singleton {a} is both 1-cyclic and 0-serial. With
the valuation V 0 which is a restriction of V to F 0, we have hF 0, V 0i 6|=a '. This
means that ' 62 KD0Cycl(1). If a 2 W (0), then the subframe F 00 generated by
the singleton {a} is just the frame I0. With the valuation V 00 which is a restric-
tion of V to F 00, hF 00, V 00i 6|=a ' holds. This means that ' 62 L(I0). Therefore
we have ' 62 KD0Cycl(1)\L(I0). Hence KCycl(1) ◆ KD0Cycl(1)\L(I0).2
For normal modal logics L1,L2 such that L1 ✓ L2, the interval between these

two logics is denoted by [L1,L2], that is, [L1,L2] := {L 2 NExt(K) | L1 ✓
L ✓ L2}.
Define maps � and ⌧ as follows: � : NExt(KD0Cycl(1)) !

[KCycl(1),L(I0)] is defined as: �(L) := L \ L(I0). ⌧ : [KCycl(1),L(I0)] !
NExt(KD0Cycl(1)) is defined as: ⌧(M) := M�KD0Cycl(1). Then on the
map � we can show the following facts.

Lemma 5.3 � is a lattice-homomorphism.

Proof. For logics L1,L2 2 NExt(KD0Cycl(1)), �(L1 \ L2) = L1 \ L2 \
L(I0) = L1 \ L(I0) \ L2 \ L(I0) = �(L1) \ �(L2). Since the lattice of normal
modal logics is distributive, �(L1 � L2) = (L1 � L2) \ L(I0) = (L1 \ L(I0))�
(L2 \ L(I0)) = �(L1)� �(L2). 2

Lemma 5.4 � is one to one.

Proof. Suppose L1 6✓ L2 for logics L1,L2 2 NExt(KD0Cycl(1)). Then there
exists a formula ' such that ' 2 L1 and ' 62 L2. By the latter, there is a frame
F = hW,R,P i for D0,Cycl(1), a valuation V on F and a point a 2 W such
that hF , V i 6|=a '. Here, because the frame F is 0-serial and 1-cyclic, there
exists a point b 2 W such that aRbRa. Since we have a 6|= ', a 6|= 22' is also
the case. This means that hF , V i 6|=a ' _22', and so, ' _22' 62 L2 \ L(I0).
On the other hand, since 2? ! 22' 2 K ✓ L(I0), 22' 2 L(I0). Therefore,

we have ' _ 22' 2 L1 \ L(I0). Thus, �(L1) = L1 \ L(I0) 6✓ L2 \ L(I0) =
�(L2). 2

Lemma 5.5 � is onto.

Proof. Due to the distributivity, and by Proposition 5.2, for any M 2
[KCycl(1),L(I0)], � � ⌧(M) = (M�KD0Cycl(1)) \ L(I0) = (M \ L(I0))�
(KD0Cycl(1) \ L(I0)) = M�KCycl(1) = M. Hence the map � is onto. 2

So far, we have established the following theorem.

Theorem 5.6 [KCycl(1),L(I0)] is isomorphic to NExt(KD0Cycl(1)).

By Lemma 5.5, we see that for any M 2 [KCycl(1),L(I0)], there exists a
logic L 2 NExt(KD0Cycl(1)) such that M = L \ L(I0). This answers our
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question in the front of this section.
NExt(KCycl(1)) looks like a two-story building as drawn below.

L(;) = �

KCycl(1)

L(I0)

KD0Cycl(1)

Fig. 4. The structure of NExt(KCycl(1))

6 The structure of NExt(KCycl(2))
In the case of n = 2, the situation is a little di↵erent. A frame for the axiom

Cycl(2) consists of points of level 0, level 1, and level 1 only. Examples of
connected irreflexive frames for this axiom are the family {Ii}i2! and I1,
whose logics form an infinite descending chain as shown in Proposition 3.1.
First of all, by Theorem 4.3 we can find one splitting pair.

Theorem 6.1
�

KD1Cycl(2),L(I1)
�

is a splitting pair of the lattice
NExt(KCycl(2)).

Note that the frame I0 is a frame forD1 andCycl(2), and so, KD1Cycl(2) ✓
L(I0), whereas all the members in {Ik}k�1 and I1 are not 1-serial, and so,
L(Ik),L(I1) ✓ L(I1). We can find another spitting pair in NExt(KCycl(2)).

Lemma 6.2 Let A be a non-trivial s.i. modal algebra for D1 and Cycl(2).
Suppose 31 6= 1 in A. Then 20 = 1 in A.

Proof. Since A is s.i., there is some element d( 6= 1) 2 A and for the element
31, there is a number m 2 ! such that 31 \ 231 \ 2231 \ · · · \ 2m31  d
holds. Due to the 1-serial axiom and the 2-cyclic axiom, we have that 31  d.
Now suppose that 20 6= 1 in A. Then similarly, there is a number ` 2 ! such
that 20 \ 210 \ · · · \ 2`0  d holds, and so, we have 20  d. By these two
inequalities, �d  �31 = 20  d, which leads to a contradiction. Hence we
have 20 = 1 in A. 2

Theorem 6.3
�

KD0Cycl(2),L(I0)
�

is a splitting pair of the lattice
NExt(KD1Cycl(2)).

Proof. Suppose KD0Cycl(2) 6✓ L for some logic L 2 NExt(KD1Cycl(2)).
Then there exists an s.i. algebra for L,D1 and Cycl(2) such that A 6|= D0.
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This means that 31 6= 1 in A. By the previous lemma, 20 = 1 holds in
A. Consider the subalgebra A0 of A generated by the set of elements {0, 1},
then it is just the modal algebra I0⇤. Therefore we have I0⇤ 2 S(A), and so,
L ✓ L(A) ✓ L(I0⇤) = L(I0). 2

By Theorem 6.1 and Theorem 6.3, the following is proved.

Corollary 6.4
�

KD0Cycl(2),L(I0)
�

is also a splitting pair of the lattice
NExt(KCycl(2)).

Now another question arises: what sort of modal logics are located under the
logic L(I0), or under the logic L(Ik) for k � 1 in NExt(KCycl(2))? Does
there exist any intriguing structure as in NExt(KCycl(1))?
We will compare the top-most part NExt(KD0Cycl(2)) with the bottom

part [KCycl(2),L(I1)] in NExt(KCycl(2)) first.

Proposition 6.5 KCycl(2) = KD0Cycl(2) \ L(I1).

Proof. It is trivial that KCycl(2) ✓ KD0Cycl(2) \ L(I1). Conversely sup-
pose ' 62 KCycl(2) for some ' 2 �. Then, there exists a frame F = hW,R,P i
for Cycl(2), a valuation V on F , and a point a 2 W such that hF , V i 6|=a '.
Now since this F is 2-cyclic, W = W (0)[W (1)[W1 and points in W (0)[W (1)

are isolated from the rest part in F . So, if a 2 W (0), then the subframe
generated by the singleton {a} is just I0. Therefore ' 62 L(I0) ◆ L(I1).
If a 2 W (1), the subframe generated by {a} is Ik for some k 2 ! or I1.
Therefore ' 62 L(I1). If a 2 W1, then the subframe F 0 generated by
{a} contains no element in W (0) [ W (1), which means that the frame F 0 is
also a frame for D0. Therefore ' 62 KD0Cycl(2). Hence we proved that
KCycl(2) ◆ KD0Cycl(2) \ L(I1). 2

Similarly in the case n = 1, we define maps �1 and ⌧1 as follows:
�1 : NExt(KD0Cycl(2)) ! [KCycl(2),L(I1)] is defined as: �1(L) :=
L \ L(I1). ⌧1 : [KCycl(2),L(I1)] ! NExt(KD0Cycl(2)) is defined as:
⌧1(M) := M�KD0Cycl(1). Then on the map �1 we can show the following
facts also in this case.

Lemma 6.6

(1) �1 is a lattice-homomorphism.

(2) �1 is onto.

(3) �1 is one to one.

Proof. The fact (1) can be obtained immediately by an easy calculation. To
show the fact (2), we use Proposition 6.5. To show the fact (3), suppose L1 6✓ L2

for logics L1,L2 2 NExt(KD0Cycl(2)). Then there exists a formula ' such
that ' 2 L1 and ' 62 L2. By the latter, there is a frame F = hW,R,P i for
D0,Cycl(2), a valuation V on F and a point a 2 W such that hF , V i 6|=a '.
Now the frame F is 0-serial and 2-cyclic, a 2 W = W1 and there exist points
b, c 2 W such that aRbRcRa. Since we have a 6|= ', a 6|= 23' is also the case.
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This means that hF , V i 6|=a ' _23', and so, ' _23' 62 L2 \ L(I1).
On the other hand, since 22? ! 23' 2 K ✓ L(I1), 23' 2 L(I1).

Therefore, we have ' _ 23' 2 L1 \ L(I1). Thus, �1(L1) = L1 \ L(I1) 6✓
L2 \ L(I1) = �1(L2). 2

This lemma states that the map �1 is an isomorphism. So far, we have shown
the following.

Theorem 6.7 [KCycl(2),L(I1)] is isomorphic to NExt(KD0Cycl(2)).

Next, we will compare the top-most part NExt(KD0Cycl(2)) with an inter-
val [KD0Cycl(2) \ L(Ik),L(Ik)] for k � 0 in the lattice NExt(KCycl(2)).
As in the above analysis, we define maps �k and ⌧k as follows: �k :

NExt(KD0Cycl(2)) ! [KD0Cycl(2) \ L(Ik),L(Ik)] is defined as: �k(L) :=
L \ L(Ik). ⌧k : [KD0Cycl(2) \ L(Ik),L(Ik)] ! NExt(KD0Cycl(2)) is de-
fined as: ⌧k(M) := M�KD0Cycl(2). Then on the map �k we can also show
the following facts in this case.

Lemma 6.8

(1) �k is a lattice-homomorphism.

(2) �k is onto.

(3) �k is one to one.

Proof. Proofs of the fact (1) and the fact (2) are just similar for the proofs
of Lemma 6.6 To show the fact (3), suppose L1 6✓ L2 for logics L1,L2 2
NExt(KD0Cycl(2)). Then there exists a formula ' such that ' 2 L1 and
' 62 L2. By the latter, there is a frame F = hW,R,P i for D0,Cycl(2), a
valuation V on F and a point a 2 W such that hF , V i 6|=a '. Now we see that
a 2 W = W1 and there exist points b, c 2 W such that aRbRcRa. Since we
have a 6|= ', a 6|= 23' is also the case. This means that hF , V i 6|=a ' _ 23',
and so, ' _23' 62 L2 \ L(Ik).
On the other hand, for the case k = 0, 2? ! 23' 2 K ✓ L(I0) and for the

case k � 1, 22? ! 23' 2 K ✓ L(Ik). Therefore for any k � 0, 23' 2 L(Ik).
Thus we have '_23' 2 L1\L(Ik). Hence, �k(L1) = L1\L(Ik) 6✓ L2\L(Ik) =
�k(L2). 2

We have just established the following theorem.

Theorem 6.9 For any k � 0, [KD0Cycl(2) \ L(Ik),L(Ik)] is isomorphic to
NExt(KD0Cycl(2)).

Finally we show that there are countably infinite splitting pairs in the lattice
NExt(KCycl(2)) by using these isomorphisms �k’s. The following fact must
be checked.

Proposition 6.10 KD1Cycl(2) = KD0Cycl(2) \ L(I0).
Proof. It is trivial that KD1Cycl(2) ✓ KD0Cycl(2) \ L(I0). Conversely
suppose ' 62 KD1Cycl(2) for some ' 2 �. Then, there exists a frame F =
hw,R, P i for D1,Cycl(2), a valuation V on F , and a point a 2 W such that
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hF , V i 6|=a '. Now since this F is 1-serial and 2-cyclic, W = W (0) [W1 and
points in W (0) are isolated from the rest part in F . So, if a 2 W (0), then the
subframe generated by the singleton {a} is just I0. Therefore ' 62 L(I0). If
a 2 W1, then the subframe F 0 generated by {a} contains no element in W (0)

at all, which means that F 0 is also a frame for D0. Therefore ' 62 KD0Cycl(2).
Hence we proved that KD1Cycl(2) ◆ KD0Cycl(2) \ L(I0). 2

Theorem 6.11 For any k � 1, the pair
�

KD0Cycl(2) \ L(Ik�1),L(Ik)
�

is a
splitting pair in NExt(KCycl(2)).

Proof. By Theorem 6.9 and Proposition 6.10, the interval [KD0Cycl(2) \
L(I0),�] is isomorphic to [KD0Cycl(2) \ L(Ik),L(Ik�1)]. By Theo-
rem 6.3,

�

KD0Cycl(2),L(I0)
�

is a splitting pair in NExt(KD1Cycl(2)) =
[KD0Cycl(2) \ L(I0),�]. By the above isomorphisms, KD0Cycl(2) is
mapped to KD0Cycl(2) \ L(Ik�1), and L(I0) to L(Ik). Therefore, the
pair

�

KD0Cycl(2) \ L(Ik�1),L(Ik)
�

is a splitting pair in the interval
[KD0Cycl(2) \ L(Ik),L(Ik�1)]. Hence this pair is also a splitting pair in
NExt(KCycl(2)). 2

Corollary 6.12 There exist at least countably infinite splitting pairs in
NExt(KCycl(2)).

In this case, NExt(KCycl(2)) looks like a !-story building as drawn below.

L(;) = �

L(I0)

L(Ik)

L(Ik+1)

L(I1)

KD0Cycl(2)

L(I1)KD1Cycl(2)
= KD0Cycl(2) \ L(I0)

KD0Cycl(2) \ L(I1)

KD0Cycl(2) \ L(Ik�1)

KD0Cycl(2) \ L(Ik)

KD0Cycl(2) \ L(Ik+1)

KCycl(2) = KD0Cycl(2) \ L(I1)

L(Ik�1)

Fig. 5. The structure of NExt(KCycl(2))
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7 Outlook
For n � 1, let Irrn be the class of normal modal logics above KCycl(n) that

are determined by a class of irreflexive frames. That is, Irrn := {L(C) 2
NExt(KCycl(n)) | C is a class of some irreflexive frames}. Then this Irrn
forms at least a meet-semilattice. In particular, Irr1 forms a two element
chain (� = L(;) and L(I0)), and Irr2 forms an infinite descending chain
(�,L(I0),L(I1),L(I2), · · · ,L(Ik), · · · ,L(I1)). In this terminology, the results
presented in this paper are summed up in the following way. In both cases there
exists a essential lattice structure Bn at the top of the lattice NExt(KCycl(n))
and the whole lattice can be expressed in:

KCycl(n) ⇠= Bn ⇥ Irrn

for n = 1, 2. Does this beautiful expression also hold for the cases n � 3? If
it is solved in the a�rmative, then each lattice NExt(KCycl(n)) has its own
essential part Bn (it may be at around the top-most region) for any n � 1, and
so, the investigation of such lattice of logics can be concentrated only in this
Bn.
In this paper, we discover a splitting pair in NExt(KCycl(1)), and countably

infinite splitting pairs in NExt(KCycl(2)). Is there any other splitting pair
in NExt(KCycl(1)) or in NExt(KCycl(2))?
In [5], K. Fine introduced a notion of the degree of Kripke incompleteness

of a modal logic as follows: For modal logics L1,L2 2 NExt(L0), L1 and
L2 are Kripke equivalent (L1 ⌘K L2 in symbol), if for any Kripke frame F ,
F |= L1 if and only if F |= L2. The degree of Kripke incompleteness of L
over L0 (�L0(L)) is defined as: card{M 2 NExt(L0) | L ⌘K M}. L is called
intrinsically complete over L0 if �L0(L) = 1.
On the maps appeared in this paper, �’s (�, �k’s, and �1) preserve the

Kripke completeness and the finite model property. For example, �k maps L
to L\L(Ik). Since the frame Ik is a finite Kripke frame, if L is Kripke complete
(and also has the f.m.p), then so is L\L(Ik). ( and also with f.m.p). Although
I1 is not a finite Kripke frame, it can be said that the logic L(I1) has the
finite model property. Thus the same argument goes through in the case of
�1. Then, to the converse, is it the case that ⌧ ’s (⌧ , ⌧k’s and ⌧1 ) preserve
the intrinsically completeness?
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