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Abstract. A probabilistic definition of saliency is given in a form suitable for applications
to image matching. In order to make this definition, the values of the pixels in pairs of
matching regions are modeled using an elliptically symmetric distribution (ESD). The
values of the pixels in background pairs of regions are also modeled using an ESD. If a
region is given in one image, then the conditional probability density function for the pixel
values in a matching region can be calculated. The saliency of the given region is defined
to be the Kullback-Leibler divergence between this conditional pdf and a background
conditional pdf. Experiments carried out using images in the Middlebury stereo database
show that if the salience of a given image region is high, then there are relatively few
background regions that have a better match to the given region than the true matching
region.
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1 Introduction

The matching of regions between two images is an important task in computer vision, with
applications to stereo vision, structure from motion, image registration, object recognition
and content based image retrieval (Brown et al. 2011). A widely used strategy for finding
matching regions is to first establish matches between pairs of salient regions and then
extend the matching to the remaining image regions. Salient regions are also important in
psychophysical studies of visual attention. For example, experiments reported by Itti et
al. (1998) show that viewers often examine the salient regions of an image first. Computer
based experiments using biologically plausible networks show that the use of saliency can
improve recognition rates (Han and Vasconcelos 2010).

There are many different definitions of saliency in the image processing literature.
They can be divided into three types, as follows.

1. Local extrema: an image region is salient if it differs in some marked way from the
regions that surround it (Tuytelaars and Mikolajczyk 2008; Itti et al. 1998).

2. Predefined features: an image region is salient because of the nature of the values
of the pixels within it. For example the region might contain an edge or a corner or
it might be highly textured (Schmid et al. 2000).

3. Application oriented: an image region is salient if it is well suited to a particular
task, for example image matching or image interpretation (Mudge et al. 1987;
Walker et al. 1998; Gao and Vasconcelos 2004).
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The definition of saliency adopted in this paper is of the third type. The application is
the matching of image regions between two images of the same scene. In heuristic terms,
a region in one image is said to be salient if there is a high probability of identifying the
correct matching region in the set of candidate matching regions. It follows from this
definition that the saliency of a region depends on the properties of the image as a whole.
For example, if the image contains very few low contrast regions then a low contrast
region would be salient, because a correct match to a low contrast region could be found
easily. If, as is usually the case, the image contains a large number of low contrast regions,
then a low contrast region would not be salient because there are likely to be many good
candidates for the correct matching region. Methods from probability theory are used to
make this heuristic discussion of saliency quantitative. Once this has been done, it is not
necessary to rely on intuition to decide, for example, whether corners or edges or highly
textured regions are salient. Instead, the saliency of any given region such as a corner or
an edge can be calculated.

The probabilistic methods used to define saliency are briefly described. For further
details, see Sections 2 and 3 below. Let R(1) and R(2) be regions in separate images
and let v(1), v(2) be feature vectors obtained from R(1) and R(2) respectively. Let H
be the hypothesis that R(1) and R(2) are a pair of matching regions and let B be the
hypothesis that R(1) and R(2) are a background pair of regions which do not necessarily
match. Let p(v(2)|v(1), H) be the probability density function (pdf) for v(2) conditional
on v(1) and the hypothesis H. Let p(v(2)|v(1), B) be defined similarly for the hypothesis
B. If R(1) is given, then the matching region can be found with a low probability
of error provided the two conditional pdfs, p(v(2)|v(1), H) and p(v(2)|v(1), B) are very
different from each other. Conversely, if the two pdfs are similar, then it is hard to find
the correct matching region to R(1). The difference between the two pdfs is measured
using the Kullback-Leibler divergence (Cover and Thomas 1991) of p(v(2)|v(1), B) from
p(v(2)|v(1), H) (Cover and Thomas 1991). The value of this divergence is by definition
the saliency of R(1).

Let v be the vector obtained by concatenating v(1) and v(2). In the implementation
of the above definition of saliency, the distributions of v given H and v given B are as-
sumed to be elliptically symmetric (Chmielewski 1981), with probability density functions
p(v|H) and p(v|B) respectively. These two pdfs are estimated using two images for which
the pairs of corresponding regions are known. The advantages of the elliptically sym-
metric distributions (ESDs) are firstly that they depend directly on the most important
statistical properties of v, namely the expected value and the covariance, and secondly,
that they are computationally tractable. In particular, if v(1) is given then the condi-
tional pdfs p(v(2)|v(1), H) and p(v(2)|v(1), B) are also elliptically symmetric, and they
can be calculated numerically from p(v|H) and p(v|B) respectively. The symmetries of
the covariance matrix of v ensure that the calculation of the Kullback-Leibler divergence
of p(v(2)|v(1), B) from p(v(2)|v(1), H) can be reduced to the numerical evaluation of a
two dimensional integral.

In order to obtain the ESDs for v it is necessary to estimate the covariance matrix of
v up to a scale factor. This is done in two stages. In the first stage, a covariance matrix
is obtained for the pixel values in an image region, using a Gaussian model for these
values. The Gaussian model is a two dimensional generalisation of the one dimensional
model described by Clarke (1981). The eigenvectors of the covariance matrix are listed
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in decreasing order of the associated eigenvalues, and the first k1 eigenvectors are used to
project a vector of the pixel values to the vector v(1) in IRk1 . The vector v(2) is obtained
in a similar way. In the second stage, a covariance matrix for v is estimated using the
covariance matrices for v(1), v(2) and a single parameter which measures the extent to
which v(1) and v(2) differ, under the hypothesis that v(1) and v(2) are obtained from a
pair of matching image regions. This latter parameter is estimated empirically using a
set of pairs of correctly matched image regions.

1.1 Overview

The algorithm for computing the saliencies of image regions is summarised as follows.

1. Obtain training images I(1), I(2) for which the matching pixels are known.

2. Define feature vectors v(1), v(2) for regions R(1), R(2) which are sampled from I(1),
I(2) respectively.

3. Let v = (v(1), v(2)), let H be the hypothesis that v(1), v(2) are obtained from a
pair of matching regions, and assume that p(v|H) is an ESD. The parameters of
p(v|H) are estimated using a large set of matching image regions.

4. Let B be the hypothesis that v(1), v(2) are obtained from a pair of background
image regions, and assume that p(v|B) is an ESD. The parameters of p(v|B) are
estimated using a large set of background image regions.

5. Let R(1) be a given region in I(1) and let v(1) be the feature vector obtained from
R(1). Deduce the pdfs p(v(2)|v(1), H) and p(v(2)|v(1), B).

6. The saliency of R(1) is by definition equal to the Kullback-Leibler divergence of
p(v(2)|v(1), B) from p(v(2)|v(1), H).

The above definition of saliency is appropriate only if the pdfs p(v(2)|v(1), H) and
p(v(2)|v(1), B) contain a significant amount of information about the vector v(2) that
matches v(1). In order to show that these pdfs really do contain a significant amount of
information, an experiment is carried out with stereo matching based on the log likelihood
ratio

ln(p(v(2)|v(1), H)/p(v(2)|v(1), B)). (1)

It is found that the accuracy of stereo matching based on (1) is very similar to the accuracy
obtained using the well known sum of absolute differences (Scharstein and Szeliski 2002) to
compare image regions. The log likelihood ratio (1) is of course more difficult to compute
than the sum of absolute differences, but computation time is not the issue here. The
issue is the amount of information which is contained in the two pdfs in (1).

The Gaussian model for the pixel values in a pair of matching image regions is described
in Section 2. The elliptically symmetric distributions for image regions are described in
Section 3. The experimental investigation of saliency is described in Sections 4 and 5.
Some concluding remarks are made in Section 6. All the experiments were carried out
using Mathematica, version 7.
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1.2 Related work

Salient image regions or image points are often referred to as interest points or as local
features. In some applications interest points are found using one criterion and then
classified as salient or otherwise using a second criterion. For example, see Lowe (1999)
and Schmid et al. (2000). In view of these differences in terminology, it is convenient
in this section to use the terms “salient point” and “interest point” interchangeably. A
comprehensive review of the vast literature on interest point detectors can be found in
Tuytelaars and Mikolajczyk (2008).

1.2.1 Type 1 saliency: local extrema

The use of local extrema to define saliency is widespread. Only a few representative
examples are given here. Tuytelaars and Mikolajczyk (2008) use the term local feature
rather than salient point, and define a local feature as “an image pattern which differs
from its immediate neighborhood”. They note in their conclusion that there is at present
no theory to specify which features should be extracted from an image in any particular
application. Salient points in the form of corners can be extracted from an image using the
local maxima of the Harris-Stephens corner and edge detector (Harris and Stephens 1988).
In Lowe (1999) salient points are found using the local maxima and minima obtained after
filtering the image with a difference of Gaussians. Kadir and Brady (2001) detect salient
points at different scales using the local maxima of a measure of the entropy of the pixel
values in image patches.

1.2.2 Type 2 saliency: predefined features

In Schmid et al. (2000) an interest point is by definition the centre of a region in which
the contour lines defined by the pixel values are curved rather than straight. They note
that corners, the ends of branches and highly textured regions are all examples of interest
points. The definition excludes edge elements, for which the contour lines are straight.
Schmid et al. (2000) survey the literature on interest point detectors prior to 2000. A
general discussion of interest point detection and further references can be found in the
book by Forsyth and Ponce (2003).

Saal et al. (2006) identify salient points using the properties of the structure tensor
obtained from the image gradients in the neighbourhoods of the points. Schmid et al.
(2000) classify an interest point as salient if the values of the pixels in a region centred on
the point have a high information content. The information content is measured using a
Gaussian model for vectors of differential invariants obtained from regions centred on the
interest points. Experiments show that the highest information content is obtained using
the interest points found by an improved version of the Harris-Stephens detector (Harris
and Stephens 1988).

The SIFT features in Lowe (1999) are obtained by filtering an image at multiple scales
using a difference of Gaussians and then identifying maxima and minima in scale space.
The SIFT features are rotation invariant. The SURF features (Bay et al. 2008) are based
on an approximation to the Hessian in an image. The SURF features are located at the
maxima of the determinant of the Hessian in scale space. Pang et al. (2012) implement
and test a fully affine invariant version of SURF.
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1.2.3 Type 3 saliency: application oriented

Mudge et al. (1987) define features using pairs of segments in the boundary of a flat
object. The saliency of a feature is inversely proportional to the number of times that the
feature appears in a training set. The saliencies of the features are used in an algorithm
to detect individual objects in a set of objects thrown together in a bin. Walker et al.
(1998) define salient features as “those which have a low probability of being misclassified
with any other feature”. Each feature has associated with it a pdf for a corresponding
feature. A given feature is salient if a comparison of the associated pdf with the pdfs
associated with the other features shows that the probability of misclassifying the given
feature is low. The pdfs in question are mixtures of Gaussians. Walker et al. (1998) test
their method on images of faces.

Gao and Vasconcelos (2004) define an attribute of an object to be salient if it is useful
for object recognition, in that it distinguishes the object from all other objects of interest.
This qualitative definition is made quantitative using the Kullback-Leibler divergence
between a pdf for a feature, conditional on class membership, and a background pdf.

1.2.4 Probabilistic models for feature vectors

Clarke (1981) shows that the discrete cosine transform (DCT) of a one dimensional image,
consisting of a row or column of m pixels, can be obtained from a Gaussian model for
the pixel values. The eigenvectors of the covariance matrix for the vectors of pixel values
form a basis of IRm and DCT base is obtained in the limit as the correlations of the values
of adjacent pixels tends to 1. A detailed proof of this result can be found in Hoggar
(2006). Uenohara and Kanade (1998) derive a similar result for the vectors of pixel values
obtained from sets of rotated images. Hafed and Levine (2001) compare the performance
of two algorithms for face recognition, one based on the Karhunen-Loève transform and
one based on the DCT. They show that both algorithms yield similar results, even though
their Karhunen-Loève transform is adaptive to the data but the DCT is not.

2 Feature Vectors

Let m be a relatively small strictly positive integer and let I be an image. An image
region is, by definition, an m×m square of pixels in I. A probabilistic model for the pixel
values in pairs of matching image regions is obtained in this section. The pixel values in
an m ×m image region R are summarised by a vector in a feature space IRk1 , where k1
is an integer such that 1 ≤ k1 ≤ m2. The pixel values in pairs (R(1), R(2)) of matching
image regions are summarised by a vector in a feature space IR2k1 .

The feature vectors for m × m image regions are described in Section 2.1 and the
feature vectors for pairs of matching regions are described in Section 2.2.

2.1 Feature vector for an image region

Let R be an m×m image region and let Rij for 1 ≤ i, j ≤ m be the pixel values in R. The

pixel values are concatenated to yield a vector in IRm2

. This feature vector is simplified in
the usual way by projecting it to a lower dimensional subspace IRk1 . Suppose that each
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Rij is a zero mean Gaussian random variable. Let ∥.∥ be the Euclidean norm and let τ
be a real number such that 1− τ is small and positive. The covariance of Ri1,j1 and Ri2,j2

is defined by

Cov(Ri1j1 , Ri2j2) = τ ∥(i1,j1)−(i2,j2)∥, 1 ≤ i1, j1, i2, j2 ≤ m. (2)

The choice of τ ensures that nearby pixels have highly correlated values, as is the case in
natural images. Define the m×m matrix Z of Gaussian random variables by

Zij = Rij −m−2
m∑

i1,j1=1

Ri1j1 , 1 ≤ i, j ≤ m, (3)

and let z be the vector in IRm2

obtained by flattening Z. More precisely, the rows of Z
are concatenated and the resulting row vector is transposed to give the column vector
z. Let Λ be the covariance matrix of z. The eigenvectors e1, . . . , em2 of Λ are ordered
such that the corresponding eigenvalues, λi, form a decreasing sequence. It is noted that
λm2 = 0 and that every entry of em2 is equal to m−2. Let k1 be an integer chosen such that
1 ≤ k1 ≤ m2 and let M(k1) be the k1×m2 matrix such that the ith row of M(k1) is e

⊤
i for

1 ≤ i ≤ k1. The values of the pixels in R are summarised by the feature vector M(k1)z.
Clarke (1981) obtains explicit expressions for the eigenvectors in a similar Gaussian model
in which the image consists of a single row of pixels. See also Hoggar (2006).

2.2 Feature vector for pairs of matching image regions

Let R(1) and R(2) be matching m×m image regions, let Z(1), Z(2) be the corresponding
m×m matrices of Gaussian random variables defined as in (3) and let z(i) be the random

vector in IRm2

obtained by flattening the Z(i) for i = 1, 2. Let τ1, τ2 be numbers such
that 0 < τ1, τ2 < 1 and such that 1− τ2 is small. The pixel values in R(1), R(2) are given
by Gaussian random variables with zero mean values and with covariances defined by

Cov(Ri1j1(h), Ri2j2(h)) = τ
∥(i1,j1)−(i2,j2)∥
2 , 1 ≤ i1, j1, i2, j2 ≤ m,h = 1, 2,

Cov(Ri1j1(1), Ri2j2(2)) = τ1τ
∥(i1,j1)−(i2,j2)∥
2 , 1 ≤ i1, j1, i2, j2 ≤ m. (4)

The purpose of τ1 in (4) is to allow a decrease in the covariances between the pixel values
in R(1) and the pixel values in the matching region R(2).

Let z be the vector obtained by concatenating z(1) and z(2), let v(i) = M(k1)z(i) for
i = 1, 2 and let v be the vector obtained by concatenating v(1) and v(2). Let C̃ be the
covariance matrix of z and let C be the covariance matrix of v. It follows that

C =
(
M(k1) 0

0 M(k1)

)
C̃
(
M(k1)

⊤ 0
0 M(k1)

⊤

)
. (5)

The value of τ1 is estimated by comparing C with an empirical covariance matrix obtained
from a training set of matching regions. Further information is given in Section 4.1. The
covariance matrix CB for background pairs of regions is constructed in a similar way to
C, but using instead pairs R(1), R(2) of image regions which do not necessarily match.
The subscript B refers to the background.
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The covariance matrices C, CB have the form

C =
(

A µA
µA A

)
, CB =

(
µB1A µB2A
µB2A µB1A

)
, (6)

where A is a diagonal k1 × k1 matrix and µ, µB1, µB2 are real numbers. When CB is
estimated empirically, µB2 is negligibly small.

3 Probabilistic model for feature vectors

In this section the pdf for an elliptically symmetric distribution (ESD) is defined and it is
shown how the conditional pdfs required by the definition of saliency in Section 1 can be
calculated. Other applications of ESDs to image processing are described by Verdoolaege
and Scheunders (2011) and Kwitt et al. (2009).

3.1 The elliptically symmetric distribution

An elliptically symmetric distribution (ESD) is by definition the affine transform of a
spherically symmetric distribution. A spherically symmetric distribution is one which
is invariant under all orthogonal transformations of the Euclidean space on which it is
defined (Chmielewski 1981). If an ESD has a probability density function then this pdf
is constant on each member of a one parameter family of ellipsoids. From now on, only
ESDs with pdfs are considered. The pdf for an ESD E in IRk is written as p(x|E).

Let a be a vector in IRk, let C be a symmetric, strictly positive k × k matrix and let
f be an appropriate function, f : IR → IR. The pdf p(x|E) for an elliptically symmetric
distribution E is written in the following form,

p(x|E) = det(C)−1/2f
(
−1

2
(x− a)⊤C−1(x− a)

)
, x ∈ IRk. (7)

It is convenient to use the notation E = {a, C, f}. The right hand side of (7) is required
to be integrable over IRk, such that the integral takes the value 1. It can be shown that
if the pdf p(x|E) in (7) has an expected value and a covariance, then the expected value
is a and the covariance is proportional to C.

On applying the transformation y = C−1/2(x− a) to (7), it follows that

p(y|E) = f
(
−∥y∥2/2

)
, y ∈ IRk, (8)

where ∥.∥ is the Euclidean norm in IRk. Let V (k−1) be the volume of the k−1 dimensional
hypersphere in IRk with unit radius. It follows from (8) that

V (k − 1)
∫ ∞

0
f
(
−r2/2

)
rk−1 dr = 1. (9)

3.2 Conditional probability density function

Let 2k1 = k and let x be a vector in IRk such that x = (x(1), x(2)), with x(1), x(2) in IRk1 .
(The condition that the vectors x(1) and x(2) have the same dimension is not essential,
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but it simplifies the notation.) Let p(x|E) be the pdf for x, such that E = {a, C, f}. It
is shown that the conditional distribution p(x(2)|x(1), E) is an ESD.

The expression
(x− a)⊤C−1(x− a)

is quadratic in x(2), thus it can be written in the form

(x(2)− b)⊤Q−1(x(2)− b) + s2 (10)

where b is a vector in IRk1 , Q is a symmetric strictly positive k1×k1 matrix and s is a real
number. The variables b, s in (10) depend on x(1), but this does not cause any difficulty,
because x(1) is fixed in this calculation.

It follows from (10) and the definition of conditional pdfs that

p(x(2)|x(1), E) =

α(det(Q))−1/2f
(
−1

2

(
(x(2)− b)⊤Q−1(x(2)− b) + s2

))
, x(2) ∈ IRk1 . (11)

where α is a scale factor. The right hand side of (11) is reduced to the standard form for
an ESD by first finding a real valued function g such that

g(−r2/2) = f(−(r2 + s2)/2), r ≥ 0, (12)

and then choosing the scale factor α such that

p(x(2)|x(1), E) = α(det(Q))−1/2g
(
−(1/2)(x(2)− b)⊤Q−1(x(2)− b)

)
, x(2) ∈ IRk1

is correctly normalised. The scale factor α is removed from the notation by redefining g.

3.3 Saliency

Let p(v(2)|v(1), H) and p(v(2)|v(1), B) be the conditional pdfs defined as described in
Section 1, and let R(1) be the image region from which v(1) is obtained. As noted
in Section 1, the saliency ζ(v(1), H,B) of R(1) is defined to be the Kullback-Leibler
divergence between p(v(2)|v(1), H) and p(v(2)|v(1), B),

ζ(v(1), H,B) =
∫
IRk1

p(v(2)|v(1), H) ln(p(v(2)|v(1), H)/p(v(2)|v(1), B)) dv(2). (13)

It is shown that the right hand side of (13) can be reduced to a two dimensional integral.
Let the ESDs for p(v(2)|v(1), H) and p(v(2)|v(1), B) be respectively,

E = {a,D, g},
EB = {b,DB, gB}.

The matricesD, DB are equal up to a scale factor, because the respective scaled covariance
matrices C, CB for p(v(1), v(2)|H) and p(v(1), v(2)|B) have the form (6). In addition, D
and DB are diagonal, because of the choice of basis for the feature vectors v(2), however,
this latter fact is not required in the following calculation. Let λ be defined such that

D−1
B = λ2D−1. (14)
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and define the vectors y, u by

y = D−1/2(v(2)− a), (15)

u = −D−1/2(a− b). (16)

It follows from (13), (14), (15) and (16) that

ζ(v(1), H,B) = −k1 ln(λ) +
∫
IRk1

g
(
−∥y∥2/2

)
ln

(
g(−∥y∥2/2)

gB(−λ2∥y − u∥2/2)

)
dy. (17)

Let r = ∥y∥, let û be the unit vector in the direction of u and let ω be a unit vector
perpendicular to u. The range of ω is a sphere in IRk1 of dimension k1 − 2. Coordinates
are chosen in IRk1 such that the variable y in (17) is given by

y = r sin(ϕ)ω + r cos(ϕ)û, 0 ≤ r < ∞, 0 ≤ ϕ ≤ π.

It follows that
∥y − u∥2 = r2 − 2r∥u∥ cos(ϕ) + ∥u∥2.

Let ξ(∥u∥, r, ϕ) be the function defined by

ξ(∥u∥, r, ϕ) = (r2 − 2r∥u∥ cos(ϕ) + ∥u∥2)1/2.
On transforming to the new coordinate system r, ω, ϕ, and integrating over ω, it follows
from (17) that

ζ(v(1), H,B) = −k1 ln(λ) + V (k1 − 2)ι(∥u∥)
where ι(∥u∥) is the following integral,

ι(∥u∥) =
∫ π

0

∫ ∞

0
g
(
−r2/2

)
ln

(
g(−r2/2)

gB(−λ2ξ(∥u∥, r, ϕ)2/2)

)
rk1−1 sink1−2(ϕ) drdϕ. (18)

The two dimensional integral ι(∥u∥) can be evaluated numerically. One method is to
convert to Cartesian coordinates x1 = r cos(ϕ), x2 = r sin(ϕ), sample the x1, x2 plane
uniformly at the vertices of a square grid, approximate the continuous distributions by dis-
crete distributions and then use the Kullback-Leibler divergence for discrete distributions.
For example, the pdf in the x1, x2 plane corresponding to g is

V (k1 − 2)g
(
−(x2

1 + x2
2)/2

)
xk1−2
2 dx1dx2,

where V (k1 − 2) is the volume of the k1 − 2 dimensional unit sphere.

4 Empirical Distributions for Pairs of Regions

Pairs of images with known ground truth matchings were obtained from the Middlebury
stereo database (Scharstein and Szeliski 2002). The images are known to be corrected for
radial distortion and rectified such that corresponding pixels are of the form

(i, j) ↔ (i, j − d)

where d > 0 is the disparity. As in Section 1, v(1), v(2) are feature vectors obtained from
two image regions, H is the hypothesis that the image regions are a matching pair and B
is the hypothesis that the image regions are from the background. The vector v is given,
as in Section 2.2, by v = (v(1), v(2)). The estimation of the joint pdfs p(v|H) and p(v|B)
is described in Section 4.1. The estimation of the conditional pdfs p(v(2)|v(1), H) and
p(v(2)|v(1)|B) is described in Section 4.2.
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4.1 Estimation of joint densities

The k×k covariance matrix C for v, under the hypothesis H, is defined in (5). It contains
a single adjustable parameter τ1. Let CE be an empirical estimate of C ≡ C(τ1) obtained
from a training set of pairs of matching image regions. The discrepancy between C, CE is
measured using the Kullback-Leibler divergenceD(C∥CE) between Gaussian distributions
with expected value 0 and respective covariance matrices C, CE. It is only necessary to
determine C up to scale, thus let d be the function defined on pairs of covariance matrices
by

d(C,CE) = min
λ>0

D(λC,CE).

The parameter τ1 is estimated by

τ1 = argmin{τ 7→ d(C(τ), CE)}.

The parameter τB1 for the covariance matrix CB for v under the background hypothesis
B is estimated in a similar way, using the empirical covariance CBE. In applications to
stereo matching the background pairs of feature vectors v(1), v(2) are obtained from pairs
R(1), R(2) of image regions centred on corresponding epipolar lines.

The covariance matrices C and CB were estimated using the images view1.png and
view2.png in the directory

http://vision.middlebury.edu/stereo/data/scenes2006/FullSize/Aloe/Illum3/Exp2
in the Middlebury stereo database (Scharstein and Pal 2007). The image view1.png was
reduced to a grey scale image Aloe1 by averaging the R, G, B values at each pixel.
Similarly, view5.png was reduced to a grey scale image Aloe5. The images Aloe1, Aloe5
are of size 1110 × 1282 pixels2. Each image was smoothed with an approximation to a
Gaussian filter using a 3× 3 mask. The images are shown in Fig. 1.

Graphs of the function
k1 7→ d(C(m, k1, τ1), CE) (19)

are shown in Fig. 2a for m = 3, 5, 7, 9. Similarly, graphs of the function

k1 7→ d(CB(m, k1, τB1), CBE) (20)

are shown in Fig 2b, also for m = 3, 5, 7, 9. It can be seen that (19) and (20) are
increasing functions of k1 for fixed m. The graphs for m = 5, 7, 9 are similar and show a
steady increase as k1 increases. The graphs for m = 3 are more erratic. These graphs are
affected by the Gaussian smoothing of the images. For example, if smoothing is carried
out using a mask of size 5 × 5 that approximates to a Gaussian filter mask, then the
graphs for m = 3 and m = 5 become erratic.

Experiments show that the expected values of v under the hypotheses H or B are
negligibly small. For this reason, the expected values are set to zero. Let E = {0, C, f}
specify the ESD p(v|H) and let k = 2k1. The function f is estimated as follows. On
making the substitution y = C−1/2v, the ESD p(v|H) reduces to

p(y|H) = f
(
−∥y∥2/2

)
, y ∈ IRk.

Let f̃ be the pdf defined in IR for ∥y∥, and let V (k − 1) be the volume of the unit k − 1
dimensional sphere. It follows that

f̃(r) = f(−r2/2)rk−1V (k − 1), r ≥ 0. (21)
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The pdf f̃ is estimated using the values of ∥C−1/2v∥ obtained from a set of sample values
of v. The function f is then obtained from (21). In order to represent f̃ numerically,
points r1, r2, . . . are chosen in the interval r ≥ 0 such that r1 = 0 and ri < ri+1 for i ≥ 1.
The function f̃ is given on the interval [r1, r2] by

r 7→ ark−1 + brk, r1 ≤ r ≤ r2

where a, b are constants, and it is given on each of the remaining intervals by

r 7→ mir + ci, i ≥ 2.

This numerical representation of f̃ is not required to be continuous. The ESD EB =
{0, CB, fB} for p(v|B) is estimated in a similar way.

(a) (b)

Figure 1: Gray scale images (a) Aloe1; (b) Aloe5.

4.2 Estimation of conditional densities

Let {0, C, f} specify the ESD p(v(1), v(2)|H) and let {a,D, g} specify p(v(2)|v(1), H).
The parameters a, D are obtained as described in Section 3.2. The function g̃ corre-
sponding to g is

g̃(r) =
V (k1 − 1)rk1−1f̃((r2 + s2)1/2)

V (k − 1)(r2 + s2)(k−1)/2
, r ≥ 0. (22)

It is convenient to approximate g̃ by a function of the same form as f̃ in Section 4.1. The
interval r ≥ 0 is divided into subintervals using the same points ri as those used to specify
f̃ . The function g̃ is approximated in [r1, r2) by

r 7→ a1r
k1−1 + b1r

k1 , r1 ≤ r < r2,

where a1, b1 are constants, and it is approximated on the remaining intervals (ri, ri+1),
i ≥ 2 by straight line segments. The parameters of the ESD p(v(2)|v(1), B) are obtained
in a similar way.
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Figure 2: (a) Graphs of d(C(m, k1, τ1), CE) as a function of k1 for m = 3, 5, 7, 9.
The respective end points are (4,0.55), (7,0.65), (8,0.51) and (8, 0.57). (b) Graphs of
d(CB(m, k1, τB1), CBE) as a function of k1 for m = 3, 5, 7, 9. The respective end points
are (4,0.43), (7,0.63), (8,0.56), (8,0.73).

5 Experimental Investigation of Saliency

Graphs of saliency as a function of contrast are shown in Section 5.1 for some simple
computer generated images. Examples of saliency values in the image Aloe1 are shown
in Section 5.2. Section 5.3 investigates a stereo matching criterion based on the pdfs
p(v(2)|v(1), H) and p(v(2)|v(1), B). The aim of this investigation is to show by experi-
ment that these pdfs do indeed contain a large amount of information about the possible
matches of v(2) with v(1). The experiments also show that if an image region has a large
saliency, then the number of candidate false matches is reduced.

All of the experiments in Sections 5.1 to 5.3 are carried out using the pdfs p(v|H),
p(v|B) obtained from the stereo pair of images Aloe1 and Aloe5. In order to demonstrate
the stability of these results, experiments are carried out using additional images from the
Middlebury stereo database. The results of these latter experiments are shown in Section
5.4.

5.1 Saliency of computer generated image regions

The saliencies in this subsection are computed using the pdfs obtained from Aloe1 and
Aloe5. Fig. 3a shows graphs of saliency as a function of grey level contrast for an m×m
image region that has a uniform light 3× 3 square at the centre, against a uniform dark
background. The three graphs are obtained using (m, k1) = (9, 4), (m, k1) = (9, 8) and
(m, k1) = (5, 4). It is apparent that the corresponding graphs in Figs. 3a, 3b and 3c are
similar and that the saliency is not a monotonic function of the contrast. Fig 3b shows
graphs of saliency as a function of grey level contrast for an image consisting of horizontal
edge separating two regions, such that each region has a uniform grey level. Fig 3c shows
graphs of saliency as a function of grey level contrast for an image consisting of an edge
at 45◦, separating two regions, such that each region has a uniform grey level. The values
of m, k1 for the graphs in Figs 3b and 3c are the same as in Fig. 3a. The graphs for the
two types of edges are very similar.

The graphs in Fig. 3 suggest that higher saliencies can be achieved by increasing k1,
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and that increases in m with k1 fixed have less effect.
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Figure 3: Saliencies of computer generated images as functions of grey level contrast.
In each of (a),(b) and (c), (m, k1) = (9, 8), (9, 4), (5, 4) in order from the top down. (a)
Uniform 3× 3 square against a uniform background; (b) horizontal edge; (c) 45◦ edge.

5.2 Saliencies of regions in natural images

Fig. 4a shows an image region Ĩ of size 101× 101, taken from Aloe1. Fig. 4b shows the
corresponding image S̃ of saliencies for m = 5 and k1 = 4. The value S̃ij of the pixel (i, j)
in S̃ is the salience of the m×m region in Aloe1 and centred at the pixel corresponding
to the pixel (i, j) in Ĩ.

Let s1, s2 be thresholds such that 10% of the values S̃ij are at or below s1 and 10%
of the values S̃ij are at or above s2. The pixels in Ĩ associated with saliencies equal
to or greater than s2 are shown in peak white in Fig. 4c. Similarly, the pixels in Ĩ
associated with saliencies equal to or less than s1 are shown in peak white in Fig. 4d.
It is apparent from Fig. 4 that the low contrast regions in Ĩ tend to have low saliencies,
while regions containing well defined edges tend to have higher saliencies. However, there
is no systematic variation of saliency with local contrast. See Walker et al. (1998) for
maps based on an alternative definition of saliency.

The histogram of the saliencies in S̃ is shown in Fig. 5. It is apparent that there is a
relatively large number of regions with a high saliency. In fact half of all the pixels in S̃
have a saliency of 4.94 or greater.

5.3 Stereo matching

A stereo matching criterion is defined using the ESDs p(v(2)|v(1), H) and p(v(2)|v(1), B).
This criterion is compared experimentally with a well known stereo matching criterion
based on the sum of absolute differences (SAD). See Scharstein and Szeliski (2002). The
comparison shows that if the dimension k1 of v(2) is sufficiently large, then the accuracy
of stereo matching using the ESDs is similar to the accuracy of stereo matching using
SAD. This result confirms that the ESDs p(v|H) and p(v|B), from which p(v(2)|v(1), H)
and p(v(2)|v(1), B) are obtained, contain a large amount of useful information about the
m×m image regions.
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(a) (b)

(c) (d)

Figure 4: (a) Image region Ĩ in Aloe1, of size 101× 101; (b) saliencies of regions in Aloe1
with centres corresponding to pixels in Ĩ, for m = 5, k1 = 4; (c) centres of regions with
high salience marked in peak white; (d) centres of regions with low salience marked in
peak white.

5.3.1 Criteria for stereo matching

Let I(1) and I(2) be a stereo pair of images for which the ground truth stereo matches
are known. Let R(1) be an m × m region in I(1) and let l(2) be the epipolar line in
I(2) such that l(2) corresponds to the central pixel of R(1). Let R(2, i) for 1 ≤ i ≤ N
be a list of m×m regions in I(2) such that the central pixel of each region R(2, i) is on
l(2). Each region R(2, i) is a candidate match to R(1). Let z(1) and z(2, i) be the vectors

in IRm2

obtained from R(1) and R(2, i) respectively, as described in Section 2.1, and let
v(1), v(2, i) be the vectors in IRk1 obtained from z(1), z(2, i) respectively, as described in
Section 2.2. Let the integer i∗esd be defined using the log likelihood, as follows,

i∗esd = argmax1≤i≤N i 7→ ln (p(v(2, i)|v(1), H)/p(v(2, i)|v(1), B)) . (23)

The region R(2, i∗esd) is chosen as the matching region to R(1). See Han and Vasconcelos
(2010). The accuracy of the stereo matching is measured by the ratio of the number of
correct matches to the total number of matches obtained using (23), as R(1) varies in
I(1). Let this ratio be resd(m, k1).

Let the integer i∗sad be defined by

i∗sad = argmin1≤i≤N i 7→
m2∑
j=1

|zj(1)− zj(2, i)|, (24)
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Figure 6: Graphs of the functions k1 7→ resd(m, k1) for m = 3, 5, 7, 9.

where |.| is absolute value. The region R(2, i∗sad) is chosen as the matching region to R(1).
Let rsad(m) be the ratio of the number of correct matches to the total number of matches,
as R(1) varies in I(1).

Epipolar lines were chosen from Aloe1 with a space of 50 pixels between consecutive
lines, and pixels were sampled from each line in Aloe1 with a space of 20 pixels between
consecutive pixels. The maximum allowed disparity was 211 pixels. The total number of
pixels chosen from Aloe1 was approximately 1400. The values of resd(m, k1) and rsad(m)
are shown in Table 1. Graphs of the functions k1 7→ resd(m, k1) are shown in Fig. 6.

m k1 = 2 k1 = 3 k1 = 4 k1 = 5 k1 = 6 k1 = 7 k1 = 8 rsad(m)
3 0.32 0.54 0.63 0.69 0.73 0.74 0.74 0.67
5 0.38 0.62 0.71 0.75 0.79 0.80 0.81 0.81
7 0.38 0.62 0.72 0.75 0.79 0.80 0.82 0.83
9 0.38 0.60 0.73 0.76 0.77 0.80 0.80 0.83

Table 1. Values of the functions k1 7→ resd(m, k1) and values of rsad(m) for m = 3, 5, 7, 9.

Fig. 7 shows six scatter plots. The left hand column contains scatter plots for pairs
(s, l) in which s is the saliency of a region in Aloe1, and l is the log likelihood ratio
obtained from the feature vector v(1) of the region and the feature vector v(2) of the true
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matching region in Aloe5,

l = ln(p(v(2)|v(1), H)/p(v(2)|v(1), B)). (25)

The right hand column contains scatter plots for pairs (s, n1/n2), where s is the saliency
of a region in Aloe1, n1 is the number of background regions which are candidate matches
and for which the log likelihood ratio is greater than or equal to the log likelihood ratio
(25) for the true matching region and n2 is the total number of background regions which
are candidate matches. The scatter plots in the first two rows contain 1287 points and
the scatter plots in the last row contain 1296 points. In the first row m = 5, k1 = 4, in
the second row m = 5, k1 = 8 and in the third row m = 7, k1 = 4.

It is apparent from the scatter plots that regions in Aloe1 with large saliencies tend
to have large values for the log likelihood ratio (25). In addition, if a region has a large
saliency then in most cases there is only a small proportion of candidate matching regions
which yield log likelihood ratios larger than or equal to the log likelihood ratio for the
correct matching region.

The values of the popular Harris-Stephens corner detector (Harris and Stephens 1988)
are shown in Fig. 8a for the 101 × 101 subimage in Fig. 4a. The values of the corner
detector were computed using the following matrix D,

D =
(

(∂I/∂x)2 (∂I/∂x)(∂I/∂y)
(∂I/∂x)(∂I/∂y) (∂I/∂y)2

)
,

where I is the image and the partial derivatives are evaluated using the pixel values in
5× 5 image patches. The value of the corner detector is calculated using the expression

det(D)− 0.1trace(D)2.

In Fig. 8a, the pixels with values in the top 10% by magnitude are relabeled in order to
reduce the dynamic range of the figure. The histogram of values of the Harris Stephens
corner detector is shown in Fig. 8b. In the construction of the histogram, the top 10%
of values by magnitude were removed. A comparison of Fig. 4b and Fig. 8a shows that
the Harris-Stephens corner detector is very different in behavior from saliency. Most of
the values taken by the corner detector are similar, and a relatively very small number of
values are exceptionally small or exceptionally large. This behavior is confirmed by the
histogram in Fig. 8.b. An overwhelming number of values are small in magnitude and a
few very exceptional values have large magnitudes. In contrast, the values of the saliency
are more closely linked to the local image structure, in that the saliency values in Fig.
4b produce an image in which the details are still largely recognisable. In addition, as
noted above, a significant number of the values of the saliency are relatively large. If all
the values of the Harris Stephens corner detector are included, then the comparison with
saliency is even more extreme.

5.4 Experiments with additional images

These experiments were carried out using the images Bowling2, Rocks1 and Wood1 from
the Middlebury stereo database. All three images are of the joint type FullSize, Illum3
and Exp2. The three images are very different. Bowling2 contains large relatively low
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contrast areas, Rocks1 is strongly textured and Wood1 is textured but not as strongly
as Rocks1. The pdfs p(v|H), p(v|B) were estimated for each stereo pair of images. The
ratios resd(m, 8) and rsad(m) which quantify the performance of stereo matching were
found for m = 3, 5, 7, 9. The definitions of these ratios are given in Section 5.3.1. Finally,
a 101× 101 subimage was chosen from the first image in each stereo pair. The saliencies
were computed for the pixels in these subimages, for m = 5 and k1 = 4.

The values of resd(m, 8) and rsad(m) are shown in Table 2. The 101 × 101 grey scale
subimages and the corresponding histograms of saliencies are shown in Figure 9.

m resd(m, 8) rsad(m) resd(m, 8) rsad(m) resd(m, 8) rsad(m)
3 0.51 0.44 0.74 0.72 0.49 0.43
5 0.63 0.61 0.88 0.88 0.65 0.67
7 0.70 0.73 0.88 0.90 0.73 0.80
9 0.71 0.78 0.88 0.92 0.75 0.86

Table 2. Values of the ratios resd(m, 8) and rsad(m) for m = 3, 5, 7, 9. Columns 1 and 2:
Bowling2, columns 3 and 4: Rocks1, columns 5 and 6: Wood1.

It is apparent from the results for stereo matching in Table 2 that in all three cases
the pdfs p(v|H) and p(v|B) retain all or almost all of the information relevant to stereo
matching. This is in spite of the very different natures of the three images. In particular,
the images for Bowling2 contain large areas of low contrast. As a result stereo matching is
less reliable. Nevertheless, matching based on the pdfs still has an accuracy very similar
to that of matching based on the sum of absolute differences. The histograms of saliency
values for the 101×101 subimages obtained from the main images Rocks1 and Wood1 are
strongly biased towards large values, as is the case for Aloe1. The histogram for Bowling2
is biased towards low values for the saliency, but this is because the 101× 101 subimage
is obtained from one of the low contrast regions in the main image.

6 Conclusion

A new definition of the saliency of image regions has been given. This definition is based
on a probabilistic model for the pixel values in image regions. It is appropriate for the
task of matching regions between images. Experimental results strongly suggest that a
large proportion of image regions have relatively high saliencies. This suggests that in
searching for matching image regions there is little to be gained by focusing on a few
regions with very high saliencies. Very low contrast image regions tend to have low
saliencies, however, experiments with computer generated images containing squares or
edges suggest that there is no simple relation between saliency and local contrast.

The effectiveness of the new definition of saliency was tested using stereo matching.
A stereo matching algorithm based on the probabilistic model for pixel values and a log
likelihood ratio test for finding matching regions achieved a similar performance to a stereo
matching algorithm in which matching regions were found using the sum of the absolute
differences of pixel values. This demonstrates that the pdfs used to define saliency do
contain a large amount of information relevant to image matching. Experiments showed
that a region with a high saliency is more likely to be matched correctly than a region
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with low saliency. This is because there are relatively few background regions with a
better match to the high saliency region than the true matching region.
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Figure 7: First column: scatter plots of the saliency s and the log likelihood ratio obtained
using the true matching region. Second column: scatter plots of s and the proportion
of background regions that yield a log likelihood ratio greater than or equal to the log
likelihood ratio for the true match. First row: m = 5, k1 = 4; second row: m = 5, k1 = 8;
third row: m = 7, k1 = 4.
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Figure 8: (a) Values of the Harris Stephens corner detector for the subimage shown in
Fig. 4a; (b) Histogram of values of the Harris Stephens corner detector.
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Figure 9: (a) Image region Ĩ in Bowling2, of size 101 × 101; (b) saliencies of regions in
Bowling2 with centres corresponding to pixels in Ĩ, for m = 5, k1 = 4; (c), (d) similarly
for Rocks1; (e), (f) similarly for Wood1.
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