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Abstract. A conditional probability density function is defined for measurements arising
from a projective transformation of the line. The conditional density is a member of
a parameterised family of densities in which the parameter takes values in the three
dimensional manifold of projective transformations of the line. The Fisher information of
the family defines on the manifold a Riemannian metric known as the Fisher-Rao metric.
The Fisher-Rao metric has an approximation which is accurate if the variance of the
measurement errors is small. It is shown that the manifold of parameter values has a
finite volume under the approximating metric.

These results are the basis of a simple algorithm for detecting those projective transfor-
mations of the line which are compatible with a given set of measurements. The algorithm
searches a finite list of representative parameter values for those values compatible with
the measurements. Experiments with the algorithm suggest that it can detect a projective
transformation of the line even when the correspondences between the components of the
measurements in the domain and the range of the projective transformation are unknown.
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1 Introduction

A projective transformation of the line is a bilinear map from the projective line IP1 to
itself or from IP1 to another copy of IP1. These transformations have a number of appli-
cations in computer vision, especially in stereo vision. If two images of a straight line are
taken from different viewpoints, then the map between corresponding image points is a
projective transformation of the line. If two cameras take images of the same scene from
different viewpoints, then the epipolar lines in the first image comprise a one parameter
family which has the structure of IP1 in that each epipolar line is associated with a point
of IP1. The correspondence between the epipolar lines in the first image and the epipolar
lines in the second image is a projective transformation of the line (Faugeras, 1993; Hart-
ley and Zisserman, 2000). The terminology in this area varies from one publication to
another. Hartley and Zisserman (2000) reserve the term ‘projective transformation’ for
projective transformations of the plane. They use the term ‘homography’ for projective
transformations of the line. Faugeras (1993) uses the term ‘epipolar collineation’ for the
correspondence between epipolar lines.

A projective transformation of the line can be estimated using measurements of points
in the domain and in the range of the transformation. A single measurement is a pair
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of points, (x1, x2), in which x1 is in the domain and x2 is in the range. In the noise free
case the projective transformation maps x1 to x2 exactly, and three measurements are in
general sufficient to determine the projective transformation uniquely.

If the measurements are subject to noise, then there is in general no projective trans-
formation exactly compatible with four or more measurements. The usual procedure in
this case, and the one taken here, is to use a probabilistic description of the measure-
ment errors. If the measurement errors are samples from independent Gaussian random
variables, then a projective transformation θ compatible with the measurements is found
by making a least squares fit to the measurements. The transformation θ is referred to
as an explanation or model for the measurements. Any other projective transformation
sufficiently close to θ is also a suitable model for the measurements.

Two questions arise:

i) How large is the set B(θ) of projective transformations which are sufficiently close
to θ to provide suitable models for the measurements?

ii) Is it possible to find a finite set of models θ(1), . . . , θ(n) such that for any projective
transformation θ there is at least one model θ(i) such that θ(i) is in B(θ)?

The aim of this paper is to answer both questions and to show how the answers lead to
a simple algorithm for detecting projective transformations of the line. Question (i) is
answered in Section 4.2 and question (ii) is answered in Section 5.1.

The following geometric and probabilistic framework is used. The geometrical part
of the framework consists of a parameterisation of the manifold PSL(2, IR) of projective
transformations of the line. The probabilistic part consists of a probability density func-
tion for the errors in the measurement x = (x1, x2) of the points x1, x2 which correspond
under a projective transformation. The whole framework is summarised by the family of
conditional probability density functions, p(x|θ).

Let θ, ψ be points of PSL(2, IR). If θ, ψ are sufficiently close together, then it is unlikely
that a single measurement x will contain enough information to distinguish between θ and
ψ. If p(x|θ) is large, then θ is a likely model for x, but p(x|ψ) is large as well, therefor
ψ is also a likely model for x. The idea of ‘sufficiently close’ is made quantitative using
the Fisher information, J(θ), which defines a Riemannian metric on PSL(2, IR), known in
statistics as the Fisher-Rao metric (Amari, 1985; Fisher, 1922; Kotz and Johnson, 1992;
Rao, 1945). The points θ, ψ are ‘sufficiently close’ if they are close under the Fisher-Rao
metric.

Let B(θ) be the set of points of PGL(2, IR) close to θ under the Fisher-Rao metric.
The point θ is thought of as a single representative model for all of the points in B(θ)
(Myung et al., 2000). It is shown that PGL(2, IR) is covered by the union of a finite
number of sets B(θ(i)), 1 ≤ i ≤ ns. The number ns is a measure of the complexity of the
task of detecting a projective transformation of the line compatible with a given set of
measurements. A projective transformation can be found by checking each θ(i) in turn
for compatibility with the measurements.

If the measurement noise is low, then the Fisher-Rao metric J can be replaced by a
computationally tractable approximation K. The less the measurement noise, the more
accurately K approximates to J . It is shown that PSL(2, IR) has a finite volume under K.
The sets B(θ(i)), 1 ≤ i ≤ ns all have similar volumes under K. The ratio of the volume
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of T to the volume of a set B(θ(i)) is a lower bound for ns. The method used to obtain
K from J is applicable to a wide range of structure detection problems. An application
to line detection is described in Maybank (2004).

A simple algorithm is given for finding the models θ(i) compatible with a given set of
measurements. The algorithm takes as input a set of N measurements and a threshold
r ≤ N . It detects a projective transformation θ(i) of the line if there are r or more
measurements compatible with θ(i). The threshold r is needed to reduce the probability
of a false detection. If the noise level is very small, then ns is large and it is no longer
possible to check each θ(i) in a reasonable time. In such cases the detection algorithm
can be speeded up by using a multiresolution approach.

All of the theoretical results are independent of the choice of parameterisation of
PSL(2, IR). The reason for this independence is the following transformation rule for the
Fisher-Rao metric: if ξ is an alternative parameter for PSL(2, IR) such that the family of
probability density functions ξ 7→ p(x|θ(ξ)) has the Fisher-Rao metric J ′(ξ), then

J ′ij(ξ) =
3∑

k,l=1

∂θk

∂ξi

Jkl(θ)
∂θl

∂ξj

, 1 ≤ i, j ≤ 3. (1)

It follows from Eq. (1) that J(ξ) and J(θ) define the same metric on PSL(2, IR). A
consequence of Eq. (1) is that the parameterisation of PSL(2, IR) can be and is chosen to
simplify the calculation of J(θ) and K(θ).

The geometrical and probabilistic framework is described in Section 2. The approx-
imation to the Fisher information on PSL(2, IR) is obtained in Section 3. The number
of models is estimated in Section 4. An algorithm for detecting the models compatible
with a given set of measurements is described in Section 5. The experimental results are
described in Section 6 and some concluding remarks are made in Section 7.

2 Geometric and Probabilistic Framework

The geometric and probabilistic framework is similar to that described in Maybank (2004).
A different method of defining a Fisher-Rao metric on PSL(2, IR) can be found in Maybank
(2003).

2.1 The Group of Projective Transformations of the Line

Let (u1, u2)
> be coordinates for the real projective line IP1. As usual, at least one of u1,

u2 is required to be non-zero, and (u1, u2)
>, (v1, v2)

> are coordinates for the same point
of IP1 if and only if there exists a number s 6= 0 such that ui = svi for i = 1, 2 (Faugeras,
1993; Semple and Kneebone, 1952). Let H be a 2 × 2 non-singular matrix with real
entries,

H =
(

h11 h12

h21 h22

)
.

The matrix H defines a projective transformation of the line,

(
u1

u2

)
7→ H

(
u1

u2

)
=

(
h11u1 + h12u2

h21u1 + h22u2

)
. (2)
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If s 6= 0, then H and sH define the same projective transformation. The projective
transformations represented by matrices H with det(H) = 1 form a Lie group, PSL(2, IR),
which has dimension 3 as a manifold. From now on only the projective transformations
in PSL(2, IR) are considered.

The singular value decomposition (Golub and Van Loan, 1996) of H is

H =
(

cos(b) − sin(b)
sin(b) cos(b)

)> (
λ 0
0 λ−1

) (
cos(a) − sin(a)
sin(a) cos(a)

)
. (3)

The parameters (a, b− π, λ) and (a− π, b, λ) both yield the matrix −H. The matrices H
and −H give rise to the same projective transformation, thus the ranges of a, b can be
and are restricted to 0 ≤ a, b < π. The parameter λ has the range λ ≥ 1. The parameter
λ is replaced by the parameter φ defined such that

λ2 = cot(φ), 0 < φ ≤ π/4. (4)

The reason for the replacing λ by φ will become apparent in Section 3. It simplifies the
formulae for the entries of the approximation K to the Fisher-Rao metric.

Let Sr be the circle with radius r. The parameter vector for H is θ = (a, b, φ) and the
manifold T of values of θ is chosen such that T = S1/2 × S1/2 × (0, π/4). The manifold T
does not include S1/2 × S1/2 × {π/4}. The reason for omitting S1/2 × S1/2 × {π/4} from
T is that the correspondence between parameter values and elements of PSL(2, IR) ceases
to be one to one when φ = π/4 or equivalently λ = 1. The manifold T is open and dense
in PSL(2, IR),thus T is sufficient for calculating probabilities and estimating parameter
values.

The projective line IP1 is given an angular coordinate x1 ∈ [−π/2, π/2) chosen such
that (u1, u2)

> = (sin(x1), cos(x1))
>. If x1 is the angular coordinate in the domain of the

projective transformation and x2 is the angular coordinate in the range, then Eq. (2)
becomes

x2 = tan−1

(
h11 tan(x1) + h12

h21 tan(x1) + h22

)
, − π/2 ≤ x1, x2 < π/2. (5)

The points x1, x2 are said to correspond under H.

2.2 Measurement space

It follows from the description of the measurements given in Sections 1 and 2.1 that the
measurement space D is D = IP1 × IP1. Each measurement is a point x = (x1, x2) of D,
where x1, x2 are angles such that −π/2 ≤ x1, x2 < π/2. The real projective line IP1 has
the topology of a circle, thus D has the topology of a torus.

Let x = (x1, x2) be a noise free measurement exactly compatible with the projective
transformation θ = (a, b, φ). It follows from Eqs. (3), (4) and (5) that x is on the
submanifold M(θ) of D defined by f(x, θ) = 0 where

f(x, θ) ≡ x2 − b− tan−1(cot(φ) tan(x1 − a)), x ∈ D. (6)

The measurement space D is compact and M(θ) is a closed submanifold of D. Exam-
ples of the manifolds M(θ) for two different values of θ are shown in Fig. 1.
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Figure 1. Manifolds M(θ) for (a) θ = (0, 0, 0.2) - steep curve; and (b) θ = (0, 0, 0.5) -
shallow curve.

The space D usually has a metric, g, which is closely related to its use as a measurement
space. The simplest choice, and the one adopted in this paper, is to choose g to be the
flat metric on D. The flat metric agrees with the Euclidean metric within any sufficiently
small region of D. Under the flat metric, any differences in the values of two measurements
have the same significance over the whole of D. If x, x′ are two measurements which are
close together in D, then x + y, x′ + y are also close together for any choice of y in D.
Under a different metric the distance between x + y and x′ + y might depend on y.

2.3 Probability density function for the measurements

The probability density function p(x|θ) is constructed in two steps. The first step is to
define p(x|x̃) where x̃ is a noise free or true measurement and x is the measurement ob-
tained when x̃ is perturbed by noise. The second step is to combine the p(x|x̃) obtained as
x̃ takes values in M(θ). The construction is described here for projective transformations
of the line but in fact it applies much more widely. The key formulae, Eqs. (13) and (25),
for the approximation K to the Fisher-Rao metric J hold for any family of conditional
densities p(x|θ) depending smoothly on x, θ and for which the M(θ) are submanifolds of
the measurement space.

Each measurement x is the result of a perturbation of an unknown true measurement
x̃. The perturbation is modelled as a diffusion or heat flow (Chavel, 1984) in D and p(x|x̃)
is obtained as a solution to the heat equation. Let s be the time parameter, let the initial
(s = 0) condition be the delta function centred at x̃ and let

(s, x) 7→ ps(x|x̃), s > 0, x ∈ D,

be the resulting solution to the heat equation on D. Let σ2 be an estimate of the variance
of the measurement errors. If 2t = σ2 and if t is small, then pt(x|x̃) is closely approximated
by a Gaussian density with expected value x̃ and variance σ2. For this reason, p(x|x̃) is
defined by p(x|x̃) = pt(x|x̃). If t is large, then pt(x|x̃) is no longer closely approximated
by a Gaussian density, but in this application it is always assumed that t is small.

In order to combine the densities pt(x|x̃), it is necessary to choose a distribution dh for
x̃ on M(θ). If prior information about the distribution of x̃ on M(θ) is available, then dh
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can incorporate this information. In the absence of any prior information, dh is obtained
by normalizing the Riemannian metric induced on M(θ) by g.

Let (s, x) 7→ ps(x|θ) be the solution to the heat equation on D for which the initial
condition at s = 0 is dh. The density p(x|θ) is defined by p(x|θ) = pt(x|θ). In effect, the
true measurements x̃ are distributed on M(θ) with a density dh, and pt(x|θ) is a weighted
sum of contributions from all of the pt(x|x̃). Further details are given in Maybank (2004),
and a similar approach is described by Werman and Keren (1999).

The above choices of pt(x|x̃) and dh follow a maximum entropy principle. If t is
small then p(x|x̃) is very similar to the Gaussian density with variance 2t. The Gaussian
density has the maximum entropy for a given variance and a given expected value. In
the case of dh, there is an analogy between dh and the uniform density which has the
maximum entropy among all densities confined to a given subset of D with a finite, non-
zero area. Let x̃ be given a uniform density on D and then let x̃ be conditioned to be
in the open subset U(θ, ξ) of D consisting of those points strictly within a small distance
ξ > 0 of M(θ). The set U(θ, ξ) is closely approximated as a Riemannian manifold by
M(θ)× (−ξ, ξ). The marginal density induced on M(θ) is approximately equal to dh and
the approximation of the marginal density to dh becomes more accurate as ξ → 0.

To simplify the notation, the subscript t is omitted from pt(x|θ) in subsequent sections.

3 Fisher information

The notation ∂θi
is used for the partial derivative with respect to the component θi of θ.

If f is a function of θ, then ∂θi
f = ∂f/∂θi and ∂θf is the vector with components ∂θi

f .
The double derivative of f is ∂2

θi,θj
f . Similar remarks apply to ∂xf .

The Riemannian metric g defines an inner product on the tangent space TxD of D at
x. Let u, v be tangent vectors in TxD. The inner product of u, v under g is written as
gx(u, v). The geodesic distance between points x, y of D is written as dg(x, y). The flat
torus D is geodesically complete, thus dg(x, y) is the length of a shortest geodesic of D
that starts at x and finishes at y (Gallot et al., 1990). The metric g is flat, thus if dg(x, y) is
sufficiently small, then y can be identified with a vector u in TxD, and dg(x, y)2 = gx(u, u).
The tangent space TxD is given Euclidean coordinates and a Euclidean norm u 7→ ‖u‖
such that gx(u, u) = ‖u‖2.

3.1 Asymptotic approximation to the Fisher information

The Fisher information J(θ) at θ in T is the 3× 3 matrix J(θ) defined by

Jij(θ) = −
∫

D

(
∂2

θi,θj
ln p(y|θ)

)
p(y|θ) dy, 1 ≤ i, j ≤ 3, θ ∈ T. (7)

Let w(y, θ) be the function defined by

w(y, θ) = min{dg(x, y) | x ∈ M(θ)}, y ∈ D, θ ∈ T. (8)

The manifold D is compact and M(θ) is a closed submanifold of D, thus there exists a
point x(y) in M(θ) such that w(y, θ) = dg(x(y), y).
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It can be shown that the leading order term in the asymptotic expansion of ln p(y|θ)
as a function of t is given by

ln p(y|θ) ∼ − 1

4t
w(y, θ)2 + O(t0). (9)

The notation O(t0) is used rather than O(1) in order to emphasize the role of t in the
approximation to ln p(y|θ). It follows from Eqs. (7) and (9) that

Jij(θ) =
1

4t

∫

D

(
∂2

θi,θj
w(y, θ)2

)
p(y|θ) dy + O(t0), 1 ≤ i, j ≤ 3, θ ∈ T. (10)

At small values of t, the term p(y|θ) dy in Eq. (10) can be approximated by the
measure dh on M(θ). On carrying out this approximation, Eq. (10) reduces to

Jij(θ) =
1

4t

∫

M(θ)

(
∂2

θi,θj
w(y, θ)2

)
y=x

dh(x) + O(t0). (11)

Let u(y) be the vector in the tangent space TyD identified with the point y − x(y) of D.
It follows that

w(y, θ)2 = gy(u(y), u(y)),

thus

Jij(θ) =
1

4t

∫

M(θ)

(
∂2

θi,θj
gy(u(y), u(y))

)
y=x

dh(x) + O(t0), 1 ≤ i, j ≤ 3, θ ∈ T. (12)

Let K(θ) be the 3× 3 matrix defined by

Kij(θ) =
1

4t

∫

M(θ)

(
∂2

θi,θj
gy(u(y), u(y))

)
y=x

dh(x), 1 ≤ i, j ≤ 3, θ ∈ T. (13)

It follows from Eqs. (12) and (13) that K(θ) is the leading order term in the asymptotic
expansion of J(θ).

In the application of Eq. (13) to projective transformations of the line M(θ) is a
hypersurface (codimension 1 submanifold) of D defined by an equation f(x, θ) = 0 where
f is given by Eq. (6). Let y be a point of D near to M(θ) and let x be the nearest point of
M(θ) to y. Then x = y+u(y) where to a first approximation, u(y) is parallel to ∂yf(y, θ).
It follows that

f(y + u(y), θ) = f(x, θ) = 0. (14)

On taking a Taylor expansion of Eq. (14) about y it follows that

f(y, θ) + u(y).∂yf(y, θ) = O(‖u(y)‖2),

thus

u(y) =
−f(y, θ)∂yf(y, θ)

‖∂yf(y, θ)‖2
+ O(‖u(y)‖2),

and

gy(u(y), u(y)) = ‖u(y)‖2 =
f(y, θ)2

‖∂yf(y, θ)‖2
+ O(‖u(y)‖3), (15)
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It follows from Eqs. (13) and (15) that

Kij(θ) =
1

4t

∫

M(θ)

(
∂2

θi,θj
f(y, θ)2

gy(∂yf(y, θ), ∂yf(y, θ))

)

y=x

dh(x), 1 ≤ i, j ≤ 3, θ ∈ T. (16)

Let N be the number of measurements. The matrix N K(θ) is closely related to the
matrix M̄∞ defined in Section 14.4 of Kanatani (1996). Kanatani identifies the inverse
of M̄∞ as an asymptotic approximation, as N →∞, to the Cramer-Rao lower bound for
the covariance of an unbiased estimate of θ.

3.2 The Fisher-Rao metric as a function of φ

It is shown that J(θ) and K(θ) are independent of the first two components of θ = (a, b, φ).
It is convenient to gather a, b into a vector z = (a, b). The function x 7→ x − z

defines an isometry on D, in that dg(x, y) = dg(x− z, y − z). Let  : (0, π/4) 7→ T be the
embedding (φ) = (0, 0, φ). It follows from (6) that under the isometry x 7→ x − z the
submanifold M(θ) is mapped to M((φ)). The measure dh is induced on M(θ) by g, thus

dh(x, (a, b, φ)) = dh(x− z, (φ)). (17)

Let ks(x, y) be the heat kernel for D (Chavel, 1984). The function (s, x) 7→ ks(x, y) is
the solution to the heat equation on D for which the initial condition at s = 0 is a delta
function at y. The heat kernel ks(x, y) satisfies

ks(x, y) = ks(x + z, y + z), x, y ∈ D, 0 < s. (18)

It follows from the properties of the heat kernel and the definition of ps(x|θ) as a solution
to the heat equation that

p(x|θ) =
∫

y∈D
kt(x, y) dh(y, θ). (19)

It follows from Eqs. (17) and (19) that

p(x|θ) =
∫

y∈D
kt(x− z, y) dh(y, (φ)),

= p(x− z|(φ)). (20)

It follows from Eqs. (7) and (20) that

Jij(θ) = −
∫

D
(∂2

θi,θj
ln p(x|θ))p(x|θ) dx,

= −
∫

D

(
∂2

θi,θj
ln p(x− z|(φ))

)
p(x− z|(φ)) dx,

= −
∫

D

(
∂2

θi,θj
ln p(x|(φ))

)
p(x|(φ)) dx,

= Jij((φ)), 1 ≤ i, j ≤ 3, θ ∈ T.

The result K(θ) = K((φ)) is proved using Eqs. (16), (17) and the identity

f(x, (a, b, φ)) ≡ f(x− z, (φ)), x ∈ D, (a, b, φ) ∈ T,

which follows immediately from the definition Eq. (6) of f .
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3.3 Expression for K(θ)

It is assumed from now on that a = b = 0, or equivalently θ = (φ). It follows from Eq.
(6) that the partial derivatives of f are

(∂θf)a=0,b=0 =

(
tan(φ) sec2(x1)

tan2(x1) + tan2(φ)
,−1,

sec2(φ) tan(x1)

tan2(x1) + tan2(φ)

)
,

(∂xf)a=0,b=0 =

(
− tan(φ) sec2(x1)

tan2(x1) + tan2(φ)
, 1

)
. (21)

Eq. (16) for K(θ) is simplified as follows. Let x = (x1, x2). On the curve f(x, θ) = 0
the differentials dx1, dx2 satisfy

(∂x1f) dx1 + (∂x2f) dx2 = 0. (22)

Let ds be the arc length measure on M(θ) induced by the metric g on D,

ds = (dx2
1 + dx2

2)
1/2. (23)

Let V (θ) be the 1-dimensional volume of M(θ) under ds, ie. V (θ) is the length of M(θ).
The length V (θ) is finite because M(θ) is compact. The measure dh in Eq. (16) is given
by dh = V (θ)−1 ds. It follows from Eqs. (22) and (23) that

ds =


1 +

(
dx2

dx1

)2



1/2

dx1,

= ‖∂xf‖(∂x2f)−1dx1,

= ‖∂xf‖ dx1. (24)

It follows from Eqs. (16), (24) and the choice of dh that

Kij(θ) =
1

2tV (θ)

∫

M(θ)

(∂θi
f)(∂θj

f)

‖∂xf‖ dx1, 1 ≤ i, j ≤ 3, θ ∈ T. (25)

Equations similar in form to Eq. (25) hold for a wide range of detection problems.

3.4 The entries K11(θ), K22(θ) of K(θ)

Simple expressions are obtained for the entries K11(θ), K22(θ) of K. It follows from Eqs.
(21), (24) and (25) that

K11(θ) + K22(θ) =
1

2tV (θ)

∫

M(θ)

(∂af)2 + (∂bf)2

‖∂xf‖2
dx1 =

1

2t
. (26)

It is shown next that K11(θ) = K22(θ). It follows from Eq. (21) that

K22(θ) =
1

t V (θ)

∫ π/2

0

dx1

‖∂xf‖ . (27)
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The entries of K(θ) depend on the function θ 7→ M(θ), but they do not depend on the
choice of f . The function f can be replaced by any other smooth function which has
M(θ) as its zero set and which has a non zero gradient at each point of M(θ). Let f̃ be
the function defined by

f̃(x, θ) = x1 − a− tan−1(tan(φ) tan(x2 − b)).

The function x 7→ f̃(x, θ) is zero on M(θ). It follows that

K11(θ) =
1

t V (θ)

∫ π/2

0

dx2

‖∂xf̃‖
. (28)

A short calculation shows that

(∂xf̃)a=0,b=0 =

(
1,

tan(φ)cosec2(x2)

cot2(x2) + tan2(φ)

)
. (29)

It follows from (21) and (29) that

‖(∂xf̃(x2))a=0,b=0‖ = ‖(∂xf(π/2− x2))a=0,b=0‖, (30)

It follows from Eqs. (27), (28) and (30) that K11(θ) = K22(θ). The values of K11(θ),
K22(θ) are now obtained by applying Eq. (26),

K11(θ) = K22(θ) =
1

4t
. (31)

3.5 The remaining entries of K(θ)

The integrals in Eq. (25), including the integral for V (θ), are evaluated in terms of elliptic
integrals. In order to carry out these evaluations it is convenient to use the substitution
x1 7→ x1(ξ), where ξ is defined by

ξ = tan−1

(
tan(φ) sec2(x1)

tan2(x1) + tan2(φ)

)
, 0 ≤ x1 ≤ π/2, 0 < φ < π/4. (32)

It follows from Eq. (32) that in the range φ ≤ ξ ≤ π/2− φ

tan(x1) =

(
tan(φ)(1− tan(ξ) tan(φ))

tan(ξ)− tan(φ)

)1/2

,

dξ

dx1

= −2 sin(ξ)

(
sin(2ξ)− sin(2φ)

sin(2φ)

)1/2

.

On substituting for x1 in Eq. (21) the following expressions for ∂θf , ∂xf are obtained,

(∂θf)a=0,b=0 =


tan(ξ),−1, sec(2φ) sec(ξ)

(
sin(2ξ)− sin(2φ)

sin(2φ)

)1/2

 ,

(∂xf)a=0,b=0 = (− tan(ξ), 1). (33)
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The following expression for V (θ) is obtained,

V (θ) = 2
∫ x1=π/2

x1=0
ds

= 2
∫ π/2

0
‖∂xf‖ dx1

= 2(sin(2φ))1/2
∫ π/2−φ

φ

dξ

sin(2ξ)(sin(2ξ)− sin(2φ))1/2
. (34)

Let F be the elliptic integral of the first kind, let K be the complete elliptic integral of
the first kind and let Π be the elliptic integral of the third kind (Abramovitz and Stegun,
1965). Let m be defined by

m =
1

2
(1− sin(2φ)) , 0 < φ < π/4, (35)

and note that with m given by Eq. (35), it follows from Abramovitz and Stegun (1965),
Section 17.4.15 that

F
(
π/4− φ|m−1

)
= m1/2K(m),

Π
(
2, π/4− φ|m−1

)
= m1/2Π(2m|m).

The integral in the third line of Eq. (34) is evaluated using Mathematica (Wolfram, 2003),
to yield

V (θ) = 4(sin(2φ)) sec(φ)Π(2, π/4− φ|m−1),

= (8(1− 2m))1/2Π(2m|m). (36)

Similar calculations lead to the following expressions for the remaining entries of K(θ).

K12(θ) = − K(m)

4tΠ(2m|m)
,

K13(θ) =
(
4
√

2 t(sin(2φ))1/2 cos(2φ)Π(2m|m)
)−1

ln

(
cosec(φ) + cot(φ)

sec(φ) + tan(φ)

)
,

K23(θ) = −K13(θ),

K33(θ) = (t sin(4φ) cos(2φ))−1

(
K(m)

Π(2m|m)
− sin(2φ)

)
. (37)

It is noted that
(
1/
√

2, 1/
√

2, 0
)>

is an eigenvector of K(θ) with eigenvalue (4t)−1 +

K12(θ).

4 Volume of the Parameter Manifold

The metric K defines a volume measure τ(θ) dθ on T . This measure is sometimes referred
to as the canonical measure defined by K (Gallot et al., 1990). The volume, V (B, K), of
any measurable subset B of T under the canonical measure is independent of the choice
of parameterisation of T . The expression for the canonical measure is

τ(θ) dθ = | det(K(θ))|1/2 dθ.

The term τ(θ) is the product of a function of φ and the term t−3/2.
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4.1 Calculation of V (T, K)

The volume V (T,K) is found by integrating τ(θ) dθ over T . The integration of τ(θ) over
the components a, b of θ is straightforward because τ(θ) does not depend on a or b. The
integration of τ(θ) = τ((φ)) over φ is more difficult.

It is necessary to prove that the integral of τ((φ)) over φ is defined and finite. The
components of K(θ) are continuous functions of φ for 0 < φ < π/4 and they are bounded
for φ in any closed interval [δ1, π/4−δ2] where δ1, δ2 are small strictly positive constants. It
follows that φ 7→ τ((φ)) is continuous for 0 < φ < π/4 and bounded for φ in [δ1, π/4−δ2].
Thus the integral of τ((φ)) over [δ1, π/4− δ2] exists and is finite.

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

φ

τ((φ))

Figure 2. Graph of φ 7→ τ((φ)) with t = 1.

It remains to check the behaviour of τ((φ)) for φ near to 0 and for φ near to π/4. A
graph of the function φ 7→ τ((φ)) is shown in Fig. 2 with t set equal to the nominal value
t = 1. The graph suggests that τ((φ)) increases without bound as φ → 0 and that τ((φ))
tends to zero as φ → π/4. To check these suggestions, suppose first that φ = π/4 − δ,
where δ is a small strictly positive number. It follows that m ≡ (1/2)(1−sin(2φ)) = O(δ2).
A series expansion of the coefficients of K(θ) yields

K((π/4− δ)) =
1

4t




1 −1 2π−1

−1 1 −2π−1

2π−1 −2π−1 2−1


 + O(δ2),

from which it follows that τ((π/4− δ)) = O(δ).
Suppose, secondly, that φ is near to 0. The expression for Π(2m|m) in Abramovitz

and Stegun (1965), Section 17.7.14 yields

Π(2m|m) =
π

(2(1− 2m))1/2
+ O(φ0),

= π(2 sin(2φ))−1/2(1 + O(φ)) + O(φ0),

=
π

2φ1/2
(1 + O(φ)) + O(φ0), 0 < φ < π/4. (38)
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The leading order term in Eq. (38) is obtained from the term πδ2/2 defined by Abramovitz
and Stegun (1965). On using Mathematica to substitute the right hand side of Eq. (38)
for Π(2m|m) into K(θ) and taking a series expansion of | det(K(θ))|1/2 about φ = 0 the
following approximation to τ((φ)) is obtained,

τ((φ)) =
(K(1/2))1/2

4t3/2φ1/4
+ O

(
(ln φ)2φ1/4

)
.

It follows from the above approximations to τ((φ)) for φ near to 0 and φ near to π/4
and the continuity of τ((φ)) in [δ1, π/4− δ2] that τ((φ)) is bounded above on the open
interval (0, π/4) by an integrable function Cφ−1/4 where C is a sufficiently large positive
constant. The function τ((φ)) is thus integrable over 0 < φ < π/4 and the value of the
integral is finite.

The volume V (T, K) is estimated by numerical integration of τ(θ) dθ over T ,

V (T, K) =
∫

T
τ(θ) da db dφ,

= π2
∫ π/4

0
τ((φ)) dφ,

= 0.349409...t−3/2. (39)

4.2 Number of models

Some variations are possible in the exact number of models, depending on the details of
the definitions employed. In all cases the main idea is to choose enough models in T to
ensure that every θ ∈ T is close enough to at least one model.

Let B(θ) ⊂ T be defined by

B(θ) = {ψ | ψ ∈ T and (ψ − θ)>K(θ)(θ − ψ) ≤ 1}. (40)

The definition of B(θ) in Eq. (40) is closely linked to the Kullback-Leibler distance,
D(θ||ψ), between the probability density functions p(x|θ) and p(x|ψ) (Amari, 1985; Cover
and Thomas, 1991), The distance D(θ||ψ) is defined by

D(θ||ψ) =
∫

D
ln (p(x|θ)/p(x|ψ)) p(x|θ) dx.

A Taylor series expansion of the function ψ 7→ D(θ||ψ) about ψ = θ yields

D(θ||ψ) =
1

2
(ψ − θ)>K(θ)(ψ − θ) + O(‖ψ − θ‖3). (41)

It follows from Eqs. (40) and (41) that

B(θ) ≈ {ψ | ψ ∈ T and D(θ||ψ) ≤ 1/2}.
Thus the average value of the likelihood ratio ln (p(x|θ)/p(x|ψ)) is less than or equal to 1/2
for ψ ∈ B(θ). The set B(θ) consists of those ψ for which p(x|ψ) is difficult to distinguish
from p(x|θ) given a single measurement x. The definition Eq. (40) answers question (i)
in Section 1.
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Let u = K(θ)1/2(θ − ψ). It follows from Eq. (40) and the definition of V (B(θ), K)
that

V (B(θ), K) =
∫

B(θ)
τ(θ) dθ,

≈
∫

u.u≤1
du,

≈ 4π/3.

The number n(T, K) of models is defined by

n(T, K) = V (T,K)/(4π/3),

= cT t−3/2. (42)

where cT is a numerical constant. A calculation with Mathematica shows that

cT = 0.0294918 . . . .

The number n(T, K) of models is a measure of the complexity of the task of finding
values of θ for which p(x|θ) is compatible with a given measurement x. This task can be
solved simply by searching a set of O(n(T, K)) candidate models.

If t is very small, then n(T, K) may be so large that it is no longer feasible to check
every one of the O(n(T, K)) models. In such cases the following multiresolution method
can be used: let t′ > t be a nominal noise level and let K ′ be the approximation to the
Fisher-Rao metric corresponding to t′. The parameter space T is sampled at O(n(T, K ′))
points θ(i). The points θ(i) with the largest number of inliers are identified and the
subsets B(θ) of T sampled at the higher resolution defined by t. Further details are given
in Section 5.2 below.

5 Detection of projective transformations of the line

Let S = {x(1), . . . , x(N)} be a set of measurements and let r be an integer threshold. The
projective transformation θ of the line is detected if there are r or more measurements
compatible with θ. In applications it is often the case that r < N . The reason is that S
may contain measurements which are due to random noise or which are associated with
different projective transformations or with other image structures. The term ‘compatible’
has the following meaning: a measurement x(i) is compatible with θ if f(x(i), θ(i)) = 0 for
some θ(i) ∈ B(θ). Such measurements are also referred to as inliers. The measurements
not compatible with θ are classified as outliers (Torr and Murray, 1993).

The aim of this section is to describe an algorithm in which the task of detecting a
projective transformation of the line reduces to a search through a finite set of points in
T . This will answer question (ii) in Section 1.

The algorithm, as given below in Sections 5.2-5.4, has some similarity to the Hough
transform (Forsyth and Ponce, 2003; Gonzalez and Woods, 2002) in that T is analogous
to the accumulator space for the Hough transform and B(θ) is analogous to a single
accumulator. The main difference between this algorithm and the Hough transform is the
use of the Fisher-Rao metric on T to provide a statistically sound method for deciding if
two points θ, ψ of T should be counted as a single model.
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5.1 Discrete approximation to the parameter manifold

A simple method is given for sampling T at a finite set of points G. The main condition
on G is that every set B(θ) ⊂ T should contain one or more points of G. Ideally, the
size |G| of G should be of the same order as the number n(T, K) of models. In fact G is
chosen such that |G| is significantly larger than n(T, K), in order to ensure that there is
a high probability that every set B(θ) contains at least one element of G.

The set G is constructed as follows. Small strictly positive numbers ∆a, ∆b, ∆φ are
chosen. The manifold T is divided into cuboids of size ∆a × ∆b × ∆φ in a, b, φ space.
There are approximately π3/(4∆a∆b∆φ) such cuboids. Then points are chosen within
each cuboid. The decision on the number of points to choose in a given cuboid is made
randomly in the following way. First, define α by

α = − ln
(
1− (95/100)1/n(T,K)

)
. (43)

Let c be any one of the cuboids, let θ(c) be the point of T at the centre of c and define
n(c) by

n(c) =
αn(T, K)τ(θ(c))∆a∆b∆φ

V (T, K)
.

A number u(c) is chosen randomly and uniformly in [0, 1]. If u(c) ≤ n(c) − bn(c)c,
then bn(c)c points are chosen randomly and uniformly in c and added to G. If u(c) >
n(c) − bn(c)c, then dn(c)e points are chosen randomly and uniformly in c and added to
G. The set G is the union of points chosen in this way over all the cuboids c. It turns
out that in most cases bn(c)c = 0.

The value Eq. (43) of α is justified as follows. The number of cuboids c in each set
B(θ) is approximately

V (B(θ), K)

τ(θ(c))∆a∆b∆φ

=
V (T, K)

n(T,K)τ(θ(c))∆a∆b∆φ

= αn(c)−1.

The probability that none of the cuboids in B(θ) contains a point of G is approximately

(1− n(c))αn(c)−1 ≈ e−α.

It is assumed, as a first approximation, that the infinite number of sets B(θ), θ ∈ T can
be replaced by a finite set of n(T, K) representatives. The probability that at least one
of the representatives B(θ) contains no point of G is approximately

1− (1− e−α)n(T,K). (44)

The expression Eq. (43) for α is obtained by setting Eq. (44) equal to 5/100.
The advantage of this method of choosing G is that it can be implemented easily. The

density of the points of G in T is approximately proportional to the canonical density
τ(θ) dθ, but with some random variations. The coverage of T by G was tested by selecting
points θ uniformly in [0, π) × [0, π) × (0, π/4), and testing to see if θ ∈ B(θ(i)) for some
θ(i) ∈ G. In a typical test, 50 points were selected. Every point was contained in at least
one of the B(θ(i)) for θ(i) ∈ G.
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The above algorithm for constructing G was implemented in Mathematica, version 5
(Wolfram, 2003), with t = 1/1000 and ∆a = ∆b = ∆φ =

√
t. The following results were

obtained.

bn(c)c = 0, for all c,

α = 9.80821 . . . ,

|G| = 12, 181.

The size of G can be reduced by making better use of the Riemannian geometry of T ,
but this topic is beyond the scope of this paper.

5.2 Multiresolution method

In this subsection and the following subsections the dependence of entities on the noise
level t is included in the notation where appropriate. For example, G(t) is the set G
constructed as in Section 5 and B(t, θ) is the set defined by (40).

If the noise level t is not too small, then it is straightforward to search for a projective
linear transformation of the line which fits a given set of measurements. The parameter
space T is sampled at a finite set G(t) of points and each θ ∈ G(t) is checked to see if it
is supported by a sufficient number of the measurements.

If t is very small, then the size |G(t)| of G(t) is very large and it is no longer possible
to check all the elements of G(t) in a reasonable time. The problem is solved using a
multiresolution approach. Let t2 be a given small value for the noise level t and let t1 > t2
be a value of t for which G(t1) is small enough to allow the checking of all its elements in
a reasonable time. Every measurement which is an inlier for θ at resolution t2 is also an
inlier for θ at the lower resolution (or higher noise level) t1.

Let θ(i), 1 ≤ i ≤ m be the elements in G(t1) which are detected at resolution t1. Each
subset B(t1, θ(i)), 1 ≤ i ≤ m of T is searched at resolution t2. The search at resolution t2
is simplified by assuming that t1 is small enough to ensure that the variation in K(t2, θ)
as θ ranges over B(t1, θ(i)) is negligible. Let H be the symmetric positive 3 × 3 matrix
defined by H = K(t1, θ(i))

1/2. The function θ 7→ f(θ) ≡ H(θ − θ(i)) maps B(t1, θ(i))
to the ball C(1, 0) in IR3 with radius 1 and centred at the origin 0. The metric pushed
forward from B(t1, θ(i)) to C(1, 0) by f coincides with the Euclidean metric on IR3.

The image of B(t2, θ(i)) under f is the ball C((t2/t1)
1/2, 0). Let ∆ be the length of

the sides of a cube inscribed in C((t2/t1)
1/2, 0). It follows from Pythagoras’ theorem that

∆ = 2(t2/(3t1))
1/2. Let W (i) be the set of of all points in C(1, 0) of the form (i∆, j∆, k∆),

where i, j, k are integers. The set B(t1, θ(i)) is sampled at the set f−1(W (i)) ∩ T . Any
elements of ∪m

i=1f
−1(W (i)) with a sufficient number of inliers are detected at resolution

t2.

5.3 False detection

In some cases a projective transformation of the line is detected even though the measure-
ments do not arise from any such transformation. For example, if the measurements are
sampled randomly and uniformly from D, then there is a small but non-zero probability
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that the measurements will be inliers to a projective transformation of the line. In these
circumstances a false detection is said to occur. The probability of a false detection is re-
duced by using a threshold r(N) which depends on the total number N of measurements.
A projective transformation of the line is detected only if it has r(N) or more inliers.

The best value of r(N) depends on the nature of the measurements. A useful default
is to choose r(N) large enough to ensure that there is only a small probability of a false
detection when the measurements are randomly and uniformly distributed in D. The
threshold r(N) should not be too large, otherwise projective transformations of the line
may not be detected even though they are present.

5.4 Algorithms

In this subsection three algorithms are described: Inliers, CoarseSearch and Refine. Inliers
finds those measurements inlying to a given θ ∈ T . CoarseSearch implements the low
resolution search at noise level t1. Refine implements the high resolution search at a noise
level t2 ¿ t1.

Each measurement x contains two components, x = (x1, x2) where x1 is in the domain
of the projective transformation and x2 is in the range of the projective transformation.
Let S(1) be the set of components in the domain and let S(2) be the set of components
in the range. If an element x1(i) of S(1) is known to correspond to an element x2(j) in
S(2), x1(i) ↔ x2(j), then (x1(i), x2(j)) is an element of the set S of measurements.

The correspondence between S(1) and S(2) is not assumed to be known and it is not
assumed that each point of S(1) corresponds to a point of S(2). It is assumed that the
points of S(1), S(2) are ordered and that the correct correspondences preserve the order.
More formally, if x1(i), x1(j) are in S(1), if x2(k), x2(l) are in S(2), if the correspondences
x1(i) ↔ x1(j), x2(k) ↔ x2(l) are correct and if i ≤ j, then k ≤ l.

The algorithm Inliers requires the distance function x 7→ w(x, θ) defined by Eq. (8)
or at least an approximation to w(x, θ) accurate near to M(θ). It takes as input t, an
element θ of T and the sets S(1), S(2). It returns the set C(θ) of inliers for θ. Each
element of C(θ) is a pair (x1(i), x2(j)), for which the correspondence x1(i) ↔ x2(j)) is
found by the algorithm Inliers.

Algorithm: Inliers

Inputs: t, θ, S(1), S(2);
Outputs: C(θ);

1. σ ← (2t)1/2;

2. C(θ) ← ∅;
3. for(i = 1; i ≤ |S(1)|; i + +)

3.1. jm = argmin{j 7→ w((x1(i), x2(j)), θ) where x2(j) ∈ S(2)};
3.2. if w((x1(i), x2(jm)), θ) ≤ 2σ,

3.2.1. C(θ) ← C(θ) ∪ {(x1(i), x2(jm))};
3.2.2. S(2) ← S(2) \ {x2 | x2 ∈ S(2) and x2 ≤ x2(jm)};
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3.3. endif;

4. endfor;

5. Output C(θ);

6. Halt.

CoarseSearch takes as inputs a value t1 for the noise level, a set G(t1) sampled from
the parameter space T , a set S(1) of measurement components from the domain and a
set S(2) of measurement components from the range. The quantity 2t1 is the variance of
the measurement errors in the domain and the range. CoarseSearch outputs a projective
transformation of the line θ(im) chosen from G(t1) and a set C(θ(im)) ⊂ S(1) × S(2)
consisting of inliers to θ(im). The criterion for choosing θ(im) is that the size |C(θ(im))|
is the largest among the sizes of the different sets of inliers, C(θ′), θ′ ∈ G(t1), examined
by CoarseSearch.

Algorithm: CoarseSearch

Inputs: t1, G(t1), S(1), S(2);
Outputs: θ(im), C(θ(im));

1. im = argmax{i 7→ |Inliers(t, θ(i), S(1), S(2))| where θ(i) ∈ G(t1)};
2. C(θ(im)) = Inliers(t, θ(im), S(1), S(2));

3. Output θ(im), C(im);

4. Halt.

The algorithm Refine takes as input two values t1 > t2 for the noise level, a single
point θ in T and the two sets S(1), S(2) of components of measurements from the range
and the domain of the projective linear transformation. It outputs a point θ(im) sampled
from the region of T near to θ and a set C(θ(im)) of inliers for θ(im). The criterion for
choosing θ(im) is that |C(θ(im))| is the largest among the sizes of the different sets of
inliers examined by Refine.

Algorithm: Refine

Inputs: t1, t2, θ, S(1), S(2);
Outputs: θ(im), C(θ(im));

1. H ← K(t1, θ)
1/2;

2. ∆ ← 2(t1/(3t2))
1/2;

3. W ← {z | z = (i∆, j∆, k∆) where i, j, k are integers and z.z ≤ 1};
4. G(θ, t1, t2) ← θ + H−1(W ) ∩ T ;

5. im = argmax{i 7→ |Inliers(t2, θ(i), S(1), S(2))| where θ(i) ∈ G(θ, t1, t2)};
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6. C(θ(im)) = Inliers(t2, θ(im), S(1), S(2));

7. Output θ(im), C(im);

8. Halt.

6 Experiments

6.1 Images and preprocessing
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Figure 3. Left: domain and right: range of the projective transformation of the line.

The algorithms described in Section 5.4 were applied to the measurements obtained
from the regions covered by the two white lines in the images shown in Fig. 3. The original
colour images were taken from the PETS’2001 data base (Ferryman, 2001) and converted
to grey scale using the Microsoft Photo Editor. The left hand image was obtained from
number 0017, Camera 1. The right hand image was obtained from number 0017, Camera
2. The start point and the end point of the white line in each image were chosen by hand.

Each 2D grey level image was smoothed using the n × n mask u ⊗ u where ui =
2−n+1(n−1

i ), 0 ≤ i ≤ n − 1. The mask is a discrete approximation to the 2D Gaussian
density with covariance ((n − 1)/4)I where I is the 2 × 2 identity matrix. In these
experiments n = 7. The Sobel edge operator was applied and the gradient magnitudes
calculated at each pixel. Let p(1), q(1) be the start and end points of the line in the first
image, and let v be a unit vector in the direction p(1) to q(1). The Sobel magnitudes
were read into an array X(1) defined such that the ith entry Xi(1) is equal to the Sobel
magnitude at the pixel Round[p(1)+ iv], 0 ≤ i ≤ ‖q(1)−p(1)‖. The measurements in the
first image were the local maxima of X(1). An integer i specifies the location of a local
maximum in X(1) if Xi(1) > Xi−1(1) and Xi(1) > Xi+1(1). The Sobel magnitudes X(2)
for the line in the second image were obtained in a similar way. The measurements are
shown in the two images as small white dots which merge together to give the appearance
of lines. The two arrays X(1), X(2) of Sobel magnitudes are shown as graphs in Fig. 4.
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Figure 4. Sobel magnitudes from left: the domain, i 7→ Xi(1) and right: the range,
i 7→ Xi(2).

In order to apply the algorithms in Section 5.4, the measurements on each line were
mapped to the arc of a circle. Let L(1), L(2) be the lengths of the two lines. The mappings
were

Xi(1) 7→ xi(1) ≡ tan−1(2(X1(i)/L(1))− 1),

Xi(2) 7→ xi(2) ≡ tan−1(2(Xi(2)/L(2))− 1).

It follows that −π/4 ≤ xi(1), xi(2) ≤ π/4.
With the chosen value n = 7, the Gaussian smoothing of each line has variance

(n − 1)/4 = 3/2. The standard deviations of the noise of the measurements xi(1), xi(2)
on the unit circle were estimated at (3/2)1/2π/(2 min{L(1), L(2)}). The resulting value
for t2 is

t2 =
3π2

16 min{L(1), L(2)}2

In the experiments, L(1) = 251.8, L(2) = 233.0 and t2 = 3.41 × 10−5. The value of t1
was set at t1 = 10−3. The number of elements in G(t1) was 12,236. If one of S(1), S(2)
has more elements than the other, then the elements with the lowest Sobel magnitudes
are discarded, until S(1), S(2) have the same number of elements. In this experiment,
|S(1)| = |S(2)| = 45.

6.2 Results

After applying the algorithms CoarseSearch and Refine to S(1), S(2), 39 inliers were
found and the projective transformation i 7→ k(i) from X(1) to X(2) was estimated to be

k(i) =
−10.7531 + 0.998851 i

0.919794 + 0.000628765 i
. (45)

The projective transformation in Eq. (45) is nearly affine because the coefficient of i
in the denominator is very small. The effect of the transformation i 7→ k(i) on the
Sobel magnitudes in the array X(1) is shown in Fig. 5. The left hand graph in Fig.
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Figure 5. Left: Superposition of Sobel magnitudes i 7→ Xi(1) and i 7→ Xi(2). Right:
Superposition of Sobel magnitudes from the range, i 7→ X2(i) and Sobel magnitudes
mapped from the domain to the range, i 7→ Xk−1(i)(1) where k is given by Eq. (45).

5 shows the Sobel magnitudes from the range superposed onto the Sobel magnitudes
from the domain. The right hand graph in Fig. 5 shows the Sobel magnitudes from the
range superposed on the Sobel magnitudes mapped from the domain to the range by the
projective transformation in Eq. (45). The application of Eq. (45) improves the matching
between the peaks in the two sets of Sobel magnitudes.
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Figure 6. The irregular line joins the points (k(i), j(i)) where k(i) is a predicted range
measurement and j(i) is the corresponding actual range measurement. The straight line

is the diagonal, k(i) = j(i).

The accuracy of the projective transformation i 7→ k(i) is illustrated in Fig. 6. Let
(i1, j(i1)), . . . , (im, j(im)) be the sequence of points obtained as i ranges over those values
for which Xi(1) corresponds to Xj(i)(2). The irregular line in Fig. 6 is obtained by joining
(k(il), j(il)) and (k(il+1), j(il+1)) for 1 ≤ l < m. The straight line is the diagonal. As
expected, the irregular line is close to the diagonal.
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6.3 Threshold

A check with random sets of measurements shows that the identification of 39 inliers
in a set of 45 measurements is enough to ensure that there is a very low probability
of a false detection. The algorithms CoarseSearch and Refine were applied to sets of N
measurements sampled randomly and uniformly from D for N = 30, 35, 40, 45, 50, 55. The
remaining parameter values for the algorithms were the same as in Section 5.2. Table 1
shows for each value of N , the average of the maximum number of inliers over 5 trials.

Table 1. Number of inliers averaged over five trials for each value of N .

N 30 35 40 45 50 55
inliers 19.2 22.6 27 30.4 35 37.6

7 Conclusion

An approximation K is obtained to the Fisher-Rao metric for projective transformations
of the line. The approximation is accurate if the perturbations of the measurements due
to noise are small. It is shown that under the metric K the parameter manifold PSL(2, IR)
for projective transformations of the line has a finite volume. As a result the problem of
finding the elements of PSL(2, IR) compatible with a given set of measurements reduces
to the simple problem of checking the number of inliers associated with each element in
a finite set of examples chosen from PSL(2, IR). The number of examples becomes very
large if the noise level is small but this difficulty can be overcome by using a multires-
olution approach. Algorithms for detecting elements of PSL(2, IR) were implemented in
Mathematica, and tested on natural imagery.

The experiments showed that elements of PSL(2, IR) can be detected even when the
correspondences between the measurement components in the domain and the range of the
projective linear transformation are unknown. The only requirement is that the ordering
of the measurements in the domain is preserved under the transformation to the range.

There are many research directions arising from this work. Two of the main ones are:

i) To which other image structures can these methods be applied?

ii) What is the best way of sampling the parameter space?

The detection of lines is described in Maybank (2004). The sampling of the parameter
space can be made more efficient, in that the number of sample points can be reduced,
by making better use of the structure of the sample space as a Riemannian manifold.
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