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Abstract Two curves which are close together in an image
are indistinguishable given a measurement, in that there is
no compelling reason to associate the measurement with one
curve rather than the other. This observation is made quan-
titative using the parametric version of the Fisher-Rao met-
ric. A probability density function for a measurement con-
ditional on a curve is constructed. The distance between two
curves is then defined to be the Fisher-Rao distance between
the two conditional pdfs. A tractable approximation to the
Fisher-Rao metric is obtained for the case in which the mea-
surements are compound in that they consist of a point x
and an angle α which specifies the direction of an edge at
x. If the curves are circles or straight lines, then the approx-
imating metric is generalized to take account of inlying and
outlying measurements. An estimate is made of the num-
ber of measurements required for the accurate location of a
circle in the presence of outliers. A Bayesian algorithm for
circle detection is defined. The prior density for the algo-
rithm is obtained from the Fisher-Rao metric. The algorithm
is tested on images from the CASIA Iris Interval database.

Keywords Bayesian curve detection, CASIA Iris Database,
circle detection, Hough transform, Riemannian metric, step
edges

1 Introduction

Curve detection is an important task in image processing and
computer vision. In many applications of curve detection the
curves belong to a family parameterised by the points of a
manifold, such that each point in the manifold specifies a
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unique curve in the image. A family of this type contains an
infinite number of distinct curves. However, due to the finite
resolution of the image, two distinct curves which are suffi-
ciently close to one another are in practice indistinguishable,
in that there is no compelling reason to choose one curve in
preference to the other. The notion of “sufficiently close” is
made quantitative by defining a particular Riemannian met-
ric on the parameter space for the curves. If the distance be-
tween two curves, as measured by this Riemannian metric,
is less than a given threshold, then the two curves are re-
garded as indistinguishable, in the sense that a measurement
inlying to one curve can equally well be considered as an
inlier to the other curve.

The Riemannian metric on the parameter space is known
as the Fisher-Rao metric. It is defined using the probability
density function (pdf) for a measurement conditional on a
curve in the image. The distance between two curves is de-
fined to be the distance between the two corresponding con-
ditional pdfs, as specified by the Fisher-Rao metric (Amari
1985; Maybank 2004; Rao 1945). The square of this dis-
tance has a probabilistic interpretation: it is twice the aver-
age of the log likelihood ratio for the two curves. The num-
ber of distinguishable curves, given a measurement, is pro-
portional to the volume of the parameter space under the
Fisher-Rao metric. The Fisher-Rao metric defines a proba-
bility density function on the parameter space, in which the
probability of a subset of the parameter space is proportional
to the volume of the subset under the metric. This pdf is a
suitable prior in Bayesian parameter estimation (Balasubra-
manian 1997; Jaynes 2003; Jeffreys 1998).

The contents of this paper are summarised as follows.
i) A parameterised family of image curves is chosen and

two Fisher-Rao metrics are defined on the parameter space.
In the case of the first metric it is assumed that the mea-
surements consist of image points x. In the case of the
second metric it is assumed that the measurements con-
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sist of pairs (x,α), such that x is an image point and α
is the direction of a step edge centred at x. These pairs
are referred to as compound measurements.

ii) The probability density function for a measurement (x,α)
is constructed by assuming in effect that x is uniformly
distributed along the curve and Gaussian distributed nor-
mal to the curve. The component α of the measurement
is assumed to have a von Mises distribution centred at
the direction of the tangent line to the curve at the point
of the curve nearest to x. The two Fisher-Rao metrics
in (i) are approximated under the assumption that the
standard deviation σ of the Gaussian component of x
is small and the von Mises distribution approximates to
a Gaussian distribution with a small standard deviation
τ . The Gaussian densities are maximum entropy choices
given σ , τ (Jaynes 2003). The choice of a uniform den-
sity for x along the curve is appropriate if there is no
prior knowledge of the position of x along the curve. If
the two approximating metrics differ significantly, then
the component α of the measurement contains useful in-
formation which is not already contained in x.

iii) Fisher-Rao metrics are defined for the case in which the
measurement x or (x,α), as appropriate, is an inlier with
probability δ or an outlier with probability 1− δ . It is
shown that these metrics have tractable numerical ap-
proximations for the family of lines in an image and for
the family of circles in an image.

iv) The metrics for circles obtained in (iii) are used to esti-
mate the number of measurements required for the ac-
curate detection of a circle in the presence of outliers.
The inclusion of the component α in the measurement
reduces significantly the required number of measure-
ments if the probability δ of an inlier is small.

v) A Bayesian algorithm for curve detection is defined. The
Fisher-Rao metric in (iii) based on compound measure-
ments (x,α) is used to define a prior probability density
on the parameter space. The advantage of this algorithm
is that it is not necessary to specify in advance which
measurements are inliers and which are outliers. A ver-
sion of this algorithm, adapted to circle detection, was
tested on the CASIA Iris Interval database, with good
results.

The new results are

• the definition of Fisher-Rao metrics firstly for compound
measurements and secondly for compound measurements
in the presence of outliers;

• an approximation to the Fisher-Rao metric for compound
measurements when the noise level is low;

• numerically tractable approximations to the Fisher-Rao
metrics for circles and straight lines in the presence of
outlying measurements;

• a method for estimating the number of measurements
necessary for the accurate detection of a circle in the
presence of outlying measurements;

• a Bayesian algorithm for curve detection, in which it is
not necessary to know a priori which measurements are
inliers and which are outliers.

Related work is described in Sect. 2. A model for step
edges and a probability density function for edge directions
are defined in Sect. 3. The approximations to the Fisher-Rao
metrics are obtained in Sect. 4. The approximating metric in
the presence of outliers is obtained in Sect. 5.1 for circles.
The number of measurements required for the accurate de-
tection of a circle is estimated in Sect. 5.2. The approximat-
ing metric in the presence of outliers is obtained in Sect. 5.3
for straight lines. The Bayesian algorithm for curve detec-
tion is described in Sect. 6.1, and experimental results are
reported in Sect. 6.2. A comparison with two Hough based
algorithms for circle detection is made in Sect. 6.3. Some
concluding remarks are made in Sect. 7.

2 Related Work

Three areas of related work are described, namely the Fisher-
Rao metric (Sect. 2.1), metrics on parameter spaces for curves
(Sect. 2.2) and methods for curve detection (Sect. 2.3).

2.1 Fisher-Rao metric

The Fisher-Rao metric is described by Amari (1985) and
Rao (1945). Amari notes that it is the only known metric
for conditional pdfs which is invariant under reparameteri-
sations of the data and of the conditioning parameters. Cover
and Thomas (1991) describe the one dimensional version of
the Fisher-Rao metric which is referred to as the Fisher in-
formation. Fisher-Rao metrics on the space of lines in the
plane and the space of ellipses in the plane are described in
Maybank (2004) and Maybank (2007) respectively. In both
cases the measurements are points in the image. It is shown
that the Fisher-Rao metrics for lines and ellipses can be ap-
proximated by simpler closed form metrics provided the er-
rors in the measurements are small compared with the scale
of the curves. An approximation to the Fisher-Rao metric
for projections of lines into a paracatadioptric image is ob-
tained by Maybank et al. (2012). A general approximation
to the Fisher-Rao metric is obtained by Kanatani (1996).

Srivastava et al. (2007) describe several applications of
the Fisher-Rao metric to computer vision, including the com-
parison of pdfs for the values obtained by filtering images,
the classification of planar shapes and the measurement of
distances between time warping functions used for activity
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analysis. The Fisher-Rao metric is preferred over compet-
ing metrics because the values of distances and volumes ob-
tained using the metric do not depend on the choice of pa-
rameterization of the space on which the metric is defined.
Peter and Rangarajan (2009) define a Fisher-Rao metric for
planar shapes that are specified by a finite number of land-
mark points, however in their experiments they replace the
Fisher-Rao metric by a new metric which has a closed form
definition. The deformations of shapes are investigated us-
ing the new metric. Ceolin and Hancock (2010) use a Fisher-
Rao metric to measure distances between 3D scans of face
images. The resulting edge weighted graph is simplified by
projecting it into a low dimensional space. The projected
graph is used to classify facial expressions. Ceolin and Han-
cock (2012) use a similar method to classify faces according
to gender.

2.2 Metrics on parameter spaces for curves

The space of all curves obtained by mapping the unit cir-
cle homeomorphically to the plane is infinite dimensional.
Many metrics for this space have been suggested, with ap-
plications to shape description, tracking and interpolating
between two given shapes. Sundaramoorthi et al. (2011) de-
scribe a metric in which the effects of centroid translations,
scale changes and deformations are orthogonal to each other.
They apply the metric to the tracking of the contours in im-
ages of a beating heart. Mio et al. (2006) define a metric
on the space of all curves in the plane using concepts from
elasticity, and then use geodesics in the space of curves to in-
terpolate between two given planar shapes. A mathematical
overview of Riemannian metrics on spaces of curves and the
applications of these methods to shape description is given
by Michor and Mumford (2007).

Srivastava et al. (2011) define a number of metrics on the
space of curves in Rn. Shape spaces are defined for general
curves and for closed curves by identifying any two curves
that differ by a reparameterisation, a rigid motion or a scale
change. Algorithms are described for computing geodesics
between points in the shape spaces. Applications to the clas-
sification of curves are described.

Any metric on the space of all curves induces a met-
ric on any finite dimensional submanifold of the space of
all curves. However, there are relatively few computer vi-
sion papers that explicitly describe Riemannian metrics on
finite dimensional parameter manifolds for curves. Tatu et
al. (2010) describe a Riemannian metric which is induced
on a finite dimensional family of closed B-spline curves in
which the number of nodes is fixed and the nodes are equally
spaced along each curve. These B-spline curves are used for
modeling shapes in images.

2.3 Curve detection

The Hough transform is the basis for many curve detection
methods in which the parameter space is partitioned into dis-
joint subsets. Each subset is assigned a value which is equal
to the number of measurements exactly compatible with one
or more curves specified by the points in the subset. The
variable holding this value is referred to as an accumula-
tor. Curve detection is based on the subset with the high-
est accumulator value. Introductory material on the Hough
transform can be found in the books by Forsyth and Ponce
(2011), Gonzalez and Woods (2008) and Szeliski (2011). A
survey of the literature on the Hough transform is given by
Leavers (1993). Kimme et al. (1975) describe a Hough trans-
form based algorithm for circle detection in which the local
edge orientations are used to simplify the updating of the
Hough accumulators associated with the different subsets of
the parameter space. Olson (1999) describes a constrained
Hough transform for curve detection. The transform is de-
fined using subsets of the measurements, rather than single
measurements. Aguado et al. (1996) describe a two stage
Hough transform for detecting circles. In the first stage, can-
didate centres of circles are identified. In the second stage
the corresponding radii are found. The two stage method is
then extended to detect ellipses. Ballard (1981) uses table
look up to define a Hough transform method for detecting
arbitrary shapes. Woodford et al. (2014) use a minimum en-
tropy criterion to select Hough accumulators which receive
contributions from many measurements. Code for a Hough
transform based algorithm for detecting circles can be found
in OpenCV (2014). The MATLAB function imfindcircles
also uses a Hough transform to detect circles. See ‘More
About’ on the MathWorks page for imfindcircles1.

In Bayesian algorithms for curve detection each sub-
set of the parameter space is assigned a value equal to the
probability that the subset contains a parameter vector for
a curve that is a good fit to the measurements. The advan-
tage of Bayesian algorithms is that they make the best pos-
sible use of the available data (Jaynes 2003). Bonci et al.
(2005) describe a Hough transform method for curve detec-
tion which is Bayesian provided all the measurements are
known to be inliers. Bonci et al’s method is similar to one
due to Ji and Haralick (1999), except that Bonci et al. mul-
tiply probabilities in order to obtain the values of the Hough
accumulators, while Ji and Haralick add probabilities. The
advantage of adding probabilities is that it is not necessary
to exclude measurements which are outliers. Each outlying
measurement far from the curve makes only a very small
contribution to the sum. The disadvantage of adding proba-
bilities in this way is that the method is no longer Bayesian.
Toronto et al. (2007) describe a Bayesian foundation for the
Hough transform, however their pdf for a measurement con-

1 http://uk.mathworks.com/help/images/ref/imfindcircles.html
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ditional on a given curve is in effect constant on the space of
measurements, once the Lebesgue measure is taken into ac-
count. Werman and Keren (2001) describe a general method
for curve detection which is Bayesian, provided all the mea-
surements are known to be inliers. Their method can be ap-
plied even if the errors in the measurements of an image
point are relatively large.

3 Step Edges

There are many different types of edges in natural images,
for example step edges, ramps and roof edges (Gonzalez and
Woods 2008). In this paper the edges are chosen to be step
edges. This choice is appropriate for applications in which
the curve to be detected is the boundary of an object seen
against a contrasting background. The model for step edges
is described in Sect. 3.1 and a probability density function
for the measurements of the direction of a step edge is de-
scribed in Sect, 3.2.

3.1 Step edges

Fig. 1 A pixel cut by a line l(β ) into two parts, with areas a1 and a2
respectively.

Let Z2 be the integer lattice in the plane R2. Let I be an
image such that each pixel in I corresponds to a unit square
centred at a point of Z2. Let β be an angle such that 0 ≤
β < 2π and let l(β ) be the oriented line through the origin
(0,0)⊤ with direction

v = (cos(β ),sin(β ))⊤. (1)

Each pixel in I is given a value equal to the area of that part
of the pixel to the left of the line l(β ), as shown in Fig. 1.

Let m be odd positive integer and let R(β ) be the m×m
matrix of pixel values obtained from the m×m image region
centred at (0,0)⊤ in I. Let M be an m×m matrix of pixel
values, let µ be the average value of the elements of M, let e
be the vector of dimension m2 in which every entry is equal
to 1 and let g(M) be the m2 dimensional vector obtained

by flattening M. If g(M) ̸= µe, then the function ζ (M) is
defined by

ζ (M) = ∥g(M)−µe∥−1(g(M)−µe),

where ∥.∥ is the Euclidean norm.
An image region with an m×m matrix M of pixel values

is said to contain an edge if ζ (M) is near to ζ (R(β )) for
some value of β . In detail, let α be defined by

α = argmax0≤β<2π β 7→ ζ (R(β ))⊤ζ (M). (2)

Let b, ψ be non-negative thresholds. The image region from
which M is obtained contains an edge with measured direc-
tion α if the standard deviation of the pixel values in M is
greater than or equal to b and

cos−1(ζ (R(α))⊤ζ (M))≤ ψ.

These criteria are used for step edge detection in the experi-
ments reported in Sect. 6.2 and Sect. 6.3.

3.2 PDF for the direction of a step edge

Let Hβ be the hypothesis that a given image region contains
a step edge subject to noise and with an underlying true di-
rection β . Let α be the measured direction. The conditional
probability density function p(α|Hβ ) is assumed to be a von
Mises density of the form

p(α|Hβ ) = (2πI0(κ))−1 exp(κ cos(α−β )),0≤ α < 2π,
(3)

where κ is a strictly positive constant and I0 is a modified
Bessel function of the first kind (Mardia and Jupp 2000). If κ
is large then the von Mises density is closely approximated
by a Gaussian density with expected value β and variance
κ−1. The advantage of using the von Mises density is that
it automatically takes into account the fact that α and β are
angles defined on [0,2π).

4 Fisher-Rao Metrics

Let J be the Fisher-Rao metric for curves based on the infor-
mation in compound measurements of the form (x,α) where
x is a pixel in the image and α is a measurement of the di-
rection of a step edge in an m×m image region centred at x,
as described in Sect. 3.1. It is shown that J = J′+J′′, where
J′ is the Fisher-Rao metric for curves based on the infor-
mation in the measurements x, and J′′ is obtained from the
measurements α . Approximations K′, K′′ to J′, J′′ are ob-
tained, such that the metric K defined by K = K′+K′′ is an
approximation to J.

A conditional pdf for the measurement x is described in
Sect. 4.1. The Fisher-Rao metrics J, J′ and the approxima-
tion K′ to J′ are obtained in Sect. 4.2. The approximation
K′′ to J′′ is obtained in Sect. 4.3.
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4.1 Probability density for the measurement points

xHs,0LxHs,Ν3L
Ν3

Γ HΘ L

Ν=Ν1 Ν=0 Ν=Ν2

Fig. 2 Coordinates (s,ν) for points x(s,ν) near to or on the trace γ(θ)
of the curve θ . The arrow on γ(θ) shows the direction in which the
arc length s increases. The curves defined by ν = ν1 and ν = ν2, with
ν1 < 0 < ν2, are shown. A point x(s,ν) is on γ(θ) if and only if ν = 0.

Let T be a parameter manifold for a family of curves
in an image I, let ∥.∥ be the Euclidean metric in I and let
γ(θ) be the trace of the curve specified by the point in T
with coordinates θ in a suitable parameterisation of T . By
definition, γ(θ) is the subset of points in I that are on the
curve specified by θ . It is assumed that γ(θ) has a tangent
line at each of its points. Let s be an arc length parameter
on γ(θ). The arc length parameter specifies an orientation of
γ(θ) in which the positive direction is the direction in which
the arc length increases. Coordinates (s,ν) are chosen in a
neighbourhood of γ(θ) such that ν is the signed distance
from the image point x(s,ν) to γ(θ),

ν(x,θ) =± min
y∈γ(θ )

∥x(s,ν)−y∥, (4)

where the minus sign is chosen if x(s,ν) is on the left hand
side of γ(θ) and the plus sign is chosen if x(s,ν) is on the
right hand side of γ(θ), as illustrated in Fig. 2. The point on
γ(θ) nearest to x(s,ν) is x(s,0).

Let L(θ) be the length of γ(θ) and let σ be the stan-
dard deviation of the error in the displacement of the mea-
surement x normal to γ(θ). The pdf p(x|θ) is defined as in
Maybank (2004) by

p(x|θ)dx = p(x(s,ν)|θ)dsdν =

L(θ)−1(2πσ 2)−1/2 exp
(
−ν2/(2σ2)

)
dsdν, x ∈ I. (5)

Intuitively, p(x|θ) is uniform along the trace γ(θ) and Gaus-
sian with standard deviation σ perpendicular to γ(θ).

4.2 The Fisher-Rao metric

Let d(T ) be the dimension of the parameter manifold T for
the family of curves in the image I. The Fisher-Rao metric J

on T , for the compound measurements (x,α), is

Ji j(θ) = −
∫

I

∫ 2π

0

(
∂ 2

∂θi∂θ j
ln(p(x,α |θ))

)
×

p(x,α |θ)dαdx, 1≤ i, j ≤ d(T ). (6)

The conditional probability p(x,α |θ) is written in the form

p(x,α |θ) = p(α|x,θ)p(x|θ),
x ∈ I,α ∈ [0,2π),θ ∈ T. (7)

It follows from (6) and (7) that J(θ) is the sum of terms
J′(θ) and J′′(θ), that are defined by

J′i j(θ) =

−
∫

I

∫ 2π

0

(
∂ 2

∂θi∂θ j
ln(p(x|θ))

)
p(α|x,θ)p(x|θ)dαdx,

= −
∫

I

(
∂ 2

∂θi∂θ j
ln(p(x|θ))

)
p(x|θ)dx,1≤ i, j ≤ d(T ),(8)

J′′i j(θ) =

−
∫

I

∫ 2π

0

(
∂ 2

∂θi∂θ j
ln(p(α|x,θ))

)
p(α|x,θ)p(x|θ)dαdx,

1≤ i, j ≤ d(T ). (9)

It is apparent from (8) that J′ is the Fisher-Rao metric on T
based on the information contained in the measurements x.
It is shown in Maybank (2004) that if the pdf p(x|θ) is given
by (5) and if σ is small, then J′ is closely approximated by
the Riemannian metric K′ defined by

K′i j(θ) =
1

2σ2L(θ)

∫ L(θ )

0

(
∂ 2

∂θi∂θ j
ν(x,θ)2

)
x=x(s,0)

ds,

1≤ i, j ≤ d(T ), (10)

where s is an arc length parameter on γ(θ), chosen such that
0≤ s≤ L(θ) and ν(x,θ) is given by (4). See also Kanatani
(1996, Section 14.4). It is noted that K′(θ) has the equiva-
lent form

K′i j(θ) =
1

σ2L(θ)
×

∫ L(θ )

0

((
∂

∂θi
ν(x,θ)

)(
∂

∂θ j
ν(x,θ)

))
x=x(s,0)

ds,

1≤ i, j ≤ d(T ). (11)

4.3 Contribution of the directions to the Fisher-Rao metric

Let J̃′′(x,θ) be the matrix defined by

J̃′′i j(x,θ) = −
∫ 2π

0

(
∂ 2

∂θi∂θ j
ln p(α|x,θ)

)
p(α |x,θ)dα,

1≤ i, j ≤ d(T ). (12)

It is assumed that p(α|x,θ) ≡ p(α|Hβ ), where p(α|Hβ ) is
given by (3). The angle β specifies the direction of the tan-
gent to γ(θ) at the nearest point of γ(θ) to x, as illustrated
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xHs,0L
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Γ HΘ L

Ν

l

Fig. 3 The line l is tangent to γ(θ) at the point x(s,0) of γ(θ) nearest
to x(s,ν). The direction of l is β (x(s,0),θ).

in Fig. 3. On substituting p(α |Hβ ) for p(α|x,θ) in (12), it
follows that

J̃′′i j(x,θ) =U(β )
∂β
∂θi

∂β
∂θ j

, 1≤ i, j ≤ d(T ), (13)

where

U(β ) =
∫ 2π

0
p(α |Hβ )

−1
(

∂
∂β

p(α|Hβ )

)2

dα .

= κI1(κ)/I0(κ). (14)

The terms I0(κ), I1(κ) are modified Bessel functions of the
first kind. The argument β is omitted from U(β ) in the rest
of this section, because U(β ) is independent of β .

It follows from (9), (12) and (13) that

J′′i j(θ) =U
∫

I

∂β
∂θi

∂β
∂θ j

p(x|θ)dx, 1≤ i, j ≤ d(T ).

If the image noise level σ in the definition (5) of p(x|θ) is
small then J′′(θ) is closely approximated by the matrix

L(θ)−1U
∫ L(θ )

0

∂β
∂θi

∂β
∂θ j

ds, 1≤ i, j ≤ d(T ), (15)

where s is an arc length parameter on the trace γ(θ) and β
is a function of s. The expression (15) is a product of two
terms. The first term, U , depends only on the probabilistic
model for edges. The second term is purely geometric, in
that it depends only on the parameterised family of curves. If
κ is large then the von Mises pdf (3) is closely approximated
by a Gaussian pdf with standard deviation τ = κ−1/2. In this
case U is closely approximated by τ−2.

To summarise, the Fisher-Rao metric J is closely ap-
proximated by the metric K defined by

Ki j(θ) = K′i j(θ)+K′′i j(θ),

=
1

L(θ)

∫ L(θ )

0

(
1

σ2
∂ν
∂θi

∂ν
∂θ j

+
1
τ2

∂β
∂θi

∂β
∂θ j

)
x=x(s,0)

ds,

1≤ i, j ≤ d(T ), (16)

where K′′(θ) is obtained on replacing U by τ−2 in (15).

5 Inliers and Outliers

In this section and in later sections it is convenient to assume
that the image I has the form of the unit disk D, centred at the
origin. The symmetry of D ensures that certain integrations
can be carried out exactly.

Let δ be the prior probability that a measurement (x,α)
is an inlier to p(x,α|θ). As in earlier sections, x is a point in
the image and α is the direction of a step edge centred at x.
It is assumed that the outliers to p(x,α|θ) are uniformly dis-
tributed on D× [0,2π). The pdf q(x,α|θ) for (x,α) taking
the outliers into account is given by

q(x,α|θ) = δ p(x,α|θ)+(1−δ )/(2π2),

(x,α) ∈ D× [0,2π), θ ∈ T. (17)

Let J(q,θ) be the Fisher-Rao metric for the family of pdfs
q. In this section tractable approximations K(q,θ) to J(q,θ)
are obtained for the family of circles in D and the family
of lines in D. The metric K(q,θ) is the basis for a circle
detection algorithm described in Sect. 6.

The metric K(q,θ) for circles is obtained in Sect. 5.1. In
Sect. 5.2 this metric is used to assess the effect of outliers
on the accuracy of circle detection. The metric K(q,θ) for
lines is obtained in Sect. 5.3.

5.1 Circles

Let θ = (ξ ,c1,c2)
⊤ be the parameter vector for a circle

in the unit disk D. The circle has radius ξ and centre c =
(c1,c2)

⊤. The entire circle is required to be in D, thus

ξ +∥(c1,c2)
⊤∥ ≤ 1.

Let q be the pdf (17) for the family of circles in D. It follows
from the definition of the Fisher-Rao metric that

Ji j(q,θ) =
∫ 2π

0

∫
D

q−1 ∂q
∂θi

∂q
∂θ j

dxdα,

= δ 2
∫ 2π

0

∫
D

q−1 p2
(

∂
∂θi

ln p
)(

∂
∂θ j

ln p
)

dxdα,

1≤ i, j ≤ 3. (18)

The arguments x, α , θ are omitted from p(x,α |θ) and q(x,α |θ)
in (18) to reduce clutter.

It follows from (3), (5) and (7) that the pdf p(x,α|θ) is
given by

p(x,α|θ) =
(
(2π)3/2σ I0(κ)L(θ)

)−1
×

exp
(
− 1

2σ2 (∥x− c∥−ξ )2 +κ cos(α−β )
)
, θ ∈ T, (19)

where β is the direction of the tangent at the nearest point of
the curve θ to x. Let x = (x1,x2)

⊤. The angle β is given by

tan(β ) =−(x1− c1)/(x2− c2). (20)
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The coordinate transformation between x and (s,ν) is de-
fined by

x = c+(ξ +ν)(cos(ξ−1s),sin(ξ−1s)).

It follows from (19) that to leading order,

ln p(x,α|θ) =−(2σ2)−1(∥x− c∥−ξ )2 +κ cos(α−β ),

thus to leading order

∂ ln p/∂ξ = σ−2(∥x− c∥−ξ ),
∂ ln p/∂c1 = σ−2∥x− c∥−1(∥x− c∥−ξ )(x1− c1)+

κ sin(α−β )∂β/∂c1,

∂ ln p/∂c2 = σ−2∥x− c∥−1(∥x− c∥−ξ )(x2− c2)+

κ sin(α−β )∂β/∂c2. (21)

It follows from (20) that the derivatives of β are given by

∂β/∂ξ = 0,

∂β/∂c1 = ∥x− c∥−2(x2− c2),

∂β/∂c2 = −∥x− c∥−2(x1− c1). (22)

Let the function f (ν ,α) be defined by

f (ν,α) = q(x(s,ν),α|θ)−1 p(x(s,ν),α|θ)2, θ ∈ T. (23)

It is noted that the right-hand side of (23) is independent of
s, and that f (ν ,α) is an even function of ν . It follows from
(18), (21), (22) and (23) that J11(q,θ) is approximated by

K11(q,θ) = σ−4δ 2
∫ 2π

0

∫
R

∫ 2πξ

0
f (ν,α−β )ν2dsdνdα ,

= 2πσ−4δ 2ξ
∫ 2π

0

∫
R

f (ν,α)ν2 dνdα . (24)

Similarly, J22(q,θ) is approximated by

K22(q,θ) = δ 2
∫ 2π

0

∫
R

∫ 2πξ

0
f (ν ,α−β )×(

σ−2ν cos(ξ−1s)+κξ−1 sin(α−β )sin(ξ−1s)
)2

dsdνdα ,

= πδ 2ξ
∫ 2π

0

∫
R

f (ν ,α)
(
σ−4ν2 +κ2ξ−2 sin2(α)

)
dνdα.

(25)

It follows from symmetry that K33(q,θ) = K22(q,θ). Simi-
lar calculations show that K(q,θ) is a diagonal matrix, which
is function of ξ but independent of c. It is straightforward to
estimate the integrals in (24) and (25) numerically.

On setting δ = 1 and approximating the von Mises den-
sity with a Gaussian density with standard deviation τ , the
following expression for K(θ) is obtained,

K(θ) =
1

2σ2

2 0 0
0 1 0
0 0 1

+
1

2τ2ξ 2

0 0 0
0 1 0
0 0 1

 . (26)

The expression (26) for K(θ) can be obtained directly from
(16), using (19).

5.2 Effect of outliers on circle detection

An estimate is made of the number of measurements re-
quired to locate a circle accurately in the presence of out-
liers. Let θ and θ +∆θ be two nearby points in the param-
eter space T for circles. Let X be a set of n compound mea-
surements sampled from the circle θ . The Kullback-Leibler
divergence of q(X |θ +∆θ) from q(X |θ) is equal to the ex-
pected value of the log likelihood ratio

ln(q(X |θ)/q(X |θ +∆θ))

where the expectation is taken over X . The Kullback-Leibler
divergence of q(X |θ +∆θ) from q(X |θ) is given to leading
order by

1
2

n∆θ⊤J(q,θ)∆θ +O(∥∆θ∥3).

It is assumed that θ can be reliably distinguished from θ +

∆θ if the expected value of the log likelihood ratio is at least
ln(10). It follows that the minimum value of the number n
of measurements required on average to distinguish θ from
θ +∆θ can be estimated using the equation

ln(10) =
1
2

n∆θ⊤K(q,θ)∆θ . (27)

0.4 0.6 0.8 1.0 ∆

50

100

150

200

n

Fig. 4 Lower curve: number of compound measurements (x,α) re-
quired to detect a circle, as a function of δ . Upper curve: number of
measurements x as a function of δ .

A numerical example of (27) is investigated. The param-
eters σ , τ are assigned the values σ = 0.05, τ = 0.1. Let
θ = (0.5,0,0)⊤ and let the increment ∆θ is chosen such
that

∆θ = (0,∆c1,∆c2)
⊤ and ∆c2

1 +∆c2
2 = σ2. (28)

It follows from (27), (28) and the properties of the matrix
K(q,θ) that

n = 2ln(10)/(σ2K22(q,θ)).

A graph of n as a function of the prior probability δ that a
measurement is an inlier is shown as the lower curve in Fig.
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4. The upper curve in Fig. 4 is the graph of n as a function of
δ for measurements consisting of points x in the image. At
high values of δ the two curves are similar. At low values of
δ the two curves rise rapidly but the rate of increase of the
curve for measurements x is much greater than the rate of
increase of the curve for measurements (x,α).

5.3 Lines

The space T of lines which intersect the unit disk D is pa-
rameterised by the polar coordinates (ξ ,γ)⊤≡ θ of the near-
est point on a line to the origin. The coordinates ξ , γ take
values in the ranges

0≤ ξ ≤ 1 and 0≤ γ < 2π.

Let

u = (cos(γ),sin(γ))⊤.

It follows from (3), (5) and (7) that the pdf p(x,α |θ) is given
by

p(x,α |θ) = ((2π)3/2σ I0(κ)L(θ))−1×

exp
(
− 1

2σ2 (x.u−ξ )2 +κ cos(α−β )
)
. (29)

The angle β is given by β = γ +π/2. The coordinate trans-
formation between x and (s,ν) is defined by

x = (ξ +ν)u+ s(−sin(γ),cos(γ))⊤.

It follows from (29) that to leading order

∂ ln p/∂ξ = σ−2(x.u−ξ ),
∂ ln p/∂γ = σ−2(x.u−ξ )(x1 sin(γ)− x2 cos(γ))+

κ sin(α−β ). (30)

Let f (ν ,α) be defined by

f (ν,α) = q(x(s,ν),α|θ)−1 p(x(s,ν),α|θ)2, θ ∈ T. (31)

It is noted that the right-hand side of (31) is independent
of s and that f (ν ,α) is an even function of ν . It follows
from (30) and (31) that J(q,θ) is approximated by the ma-
trix K(q,θ) defined by

K11(q,θ) = 2σ−4δ 2(1−ξ 2)1/2
∫ 2π

0

∫
R

f (ν ,α)ν2dνdα,

K22(q,θ) = 2δ 2
∫ 2π

0

∫
R

f (ν ,α)×(
(3σ4)−1(1−ξ 2)3/2ν2 +(1−ξ 2)1/2κ2 sin2(α)

)
dνdα,

K12(q,θ) = K21(q,θ) = 0. (32)

It is straightforward to estimate the integrals in (32) numer-
ically.

On setting δ = 1 and approximating the von Mises den-
sity with a Gaussian density with standard deviation τ , the
following expression for K(θ) is obtained,

K(θ) = σ−2
(

1 0
0 3−1(1+3τ−2σ2−ξ 2)

)
. (33)

The expression (33) for K(θ) can be obtained directly from
(16). A consequence of (33) is that if τ−1σ is small, then
the contribution of K′′(θ) to K(θ) is small. In particular,
suppose that a disk shaped image with radius r is scaled to
the unit disk, such that σ = O(r−1). If r is large then τ−1σ
is small. It follows that there is an upper limit on the size of
an image for which K′′(θ) makes a significant contribution
to K(θ).

6 Bayesian Algorithm for Curve Detection

A Bayesian algorithm for curve detection is described in
Sect. 6.1. Experimental results obtained on applying the al-
gorithm to circle detection are reported in Sect. 6.2. Ex-
perimental results obtained on applying a Hough transform
based algorithm to the same task of circle detection are re-
ported in Sect. 6.3.

6.1 Curve detection

Let the Si for 1≤ i≤N be subsets of the parameter manifold
T , and let X be a set of n compound measurements,

X = {(x1,α1), . . . ,(xn,αn)},

where the xi are points in the image and αi is the orientation
of a step edge centred at xi. It is assumed that the elements
of X are independent samples from a conditional pdf

q(x,α|θ) = δ p(x,α|θ)+(1−δ )/(2π2),

x ∈ D,α ∈ [0,2π),θ ∈ T,

where δ is the prior probability that the measurement (x,α)
is an inlier to p(x,α|θ). The outlying measurements are
sampled from the uniform distribution on D× [0,2π).

Let Hi be the hypothesis that there is a single curve to be
detected and that this curve is specified by a point in Si. The
conditional probability P(Hi|X) is given by

P(Hi|X) =
∫

Si

q(θ |X)dθ , 1≤ i≤ N. (34)

Let q(θ) be the prior pdf for θ and let q(X) be the pdf for
the measurements X . An application of Bayes rule to (34)
yields

P(Hi|X) = q(X)−1
∫

Si

(
n

∏
j=1

q(x j,α j|θ)

)
q(θ)dθ ,

1≤ i≤ N. (35)
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If the Si are disjoint, then q(X) can be found using the con-
dition
N

∑
i=1

P(Hi|X) = 1.

Let P(Bi|X) be the probability assigned to Si under the
hypothesis that the measurements in X are sampled from
the uniform distribution on D× [0,2π). These measurements
contain no information about the presence of a curve, thus
P(Bi|X) is given by

P(Bi|X) =
∫

Si

q(θ)dθ .

If the sets Si are disjoint but do not cover T , then the P(Bi|X)
are scaled such that

n

∑
i=1

P(Bi|X) = 1.

A curve associated with Si is detected if

P(Hi|X)/P(Bi|X)≫ 1. (36)

The above algorithm can be simplified if T is a bounded
open subset of Rd for some value of d and the sets Si have a
small diameter. To be specific, let t > 0 be a scale factor, let
θ i for 1≤ i≤ N be points in T at the vertices of a scaled in-
teger lattice tZd and let Si be the closure of the set of points
in T that are nearer to θ i than to any other lattice point. Sub-
sets Si, S j with i ̸= j may overlap but this does not cause any
difficulty because the d-volume of any intersection Si ∩ S j
with j ̸= i is zero. Sets Si that are not wholly contained in T
are discarded. Each remaining set Si is a hypercube centred
at θ i and with side length t.

It is assumed that t is relatively small. The conditional
probability P(Hi|X) is estimated by

P(Hi|X) = λ1

(
n

∏
j=1

q(x j,α j|θ i)

)
P(Bi|X), 1≤ i≤ N, (37)

where λ1 is a scale factor chosen such that
N

∑
i=1

P(Hi|X) = 1.

The conditional probability P(Bi|X) is estimated by

P(Bi|X) = λ2td
√

det(K(q,θ i)), 1≤ i≤ N. (38)

where λ2 is a scale factor chosen such that
N

∑
i=1

P(Bi|X) = 1.

The algorithm for curve detection is summarised as fol-
lows.

Name: Algorithm 1
Inputs: i) a bounded open subset T of Rd ; ii) parameters σ ,
τ , δ , t, a; and iii) a list X of compound measurements (x,α).
Output: A finite subset Θ of T .

1. obtain the set T ∩ tZd ≡ {θ1, . . . ,θN};
2. Θ ← /0;
3. for 1≤ i≤ N

3.1 define P(Bi|X) by (38); // σ , τ , δ required
3.2 define P(Hi|X) by (37); // σ , τ , δ required
3.3 if P(Hi|X)/P(Bi|X)≥ a, then Θ ←Θ ∪{θi};

4. endFor;
5. return Θ

The efficiency of the curve detection is increased by ap-
plying Algorithm 1 iteratively. Suppose that the first itera-
tion yields a set Θ of parameter vectors. In the next iteration
the value of t is reduced and the sets Si are chosen near to
the parameter vectors in Θ . The iteration is continued until
t is less than a specified threshold.

Algorithm 1 appears at first sight to be based on a Hough
transform. However, there is an essential difference to Hough
transform based algorithms. In (37) the product of the den-
sities q(x j,α j|θ i) is never zero. In Hough transform based
methods, measurements that are not on any curve specified
by an element of Si make a zero contribution to the accu-
mulator for Si. It follows that the contributions to an accu-
mulator from different measurements cannot be multiplied,
because in practice the result would always be zero. This
difficulty can be avoided by adding the contributions instead
of multiplying them, but the result of this addition is not a
probability. In this case, the curve detection method ceases
to be Bayesian, and thus does not make full use of the avail-
able information (Jaynes 2003).

6.2 Iris detection using Algorithm 1

Algorithm 1, as described in Sect. 6.1, was adapted for iris
detection using the images in the CASIA Iris Interval database
(CASIA 2010). The aim is to detect the two circles that to-
gether form the boundary of the iris. The purpose of the
adaptations is to reduce the number of measurements and the
number of lattice points that need to be taken into account.
The parameters for the edge detection described in Section
3 are: image size 280×320, m = 11, b = 8, ψ = 0.75. The
remaining parameters are σ = 0.014, τ = 1/m, δ = 0.2,
ξmin = 15σ , t = 10σ on the first iteration and t = 10σ/7
on the second iteration.

The set X of measurements and the set of lattice points
θ i, 1≤ i≤N in T are adapted as follows. Let cI be the centre
of the iris image and let D(cI ,r) be the disk centred at cI and
with the maximum radius r, given that D(cI ,r) is contained
in the iris image. All measurements (x,α) such that x is not
in D(cI ,r) are discarded. The remaining measurements are
translated and scaled,

(x,α) 7→ (r−1(x− cI),α)

to obtain measurements in the unit disk D centered at the
origin. It is assumed that the two circles bounding the iris
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are concentric and that the common centre is contained in
a disk D′ ⊂ D, centred at the origin and with radius 1/4.
All lattice points θ i for circles with centres outside D′ are
discarded. Let (x,α) be a measurement. Any circle through
x and with tangent direction α at x has its centre on a line
though x. The measurement is discarded if this line does not
intersect D′.

After relabeling if necessary, let θ i, 1 ≤ i ≤ N, be the
remaining lattice points and let X be the set of remaining
measurements. Let i0 be the index defined by

i0 = argmax1≤i≤N i 7→ P(Hi|X).

The circle θ i0 is detected. The condition (36) is not required
because in this application P(Hi0 |X) is very near to 1. In the
second iteration, t = 10σ/7 and T is sampled at 7× 7× 7
points at the centres of a set of cubes centred on θ i0 . The
circle θ i1 detected at this stage is the boundary between the
iris and the pupil. The parameter space for the circle forming
the second part of the boundary of the iris has dimension 1,
because the centre of the second circle is set equal to the
centre of θ i1 . Only one iteration of the Bayesian algorithm
is required, with t = σ/2.

The results of circle detection are shown in Fig. 5 for the
first nine images in the CASIA Iris Interval database2.

6.3 Iris detection using Hough transform based algorithms

Algorithm 1, as described in Sect. 6.1 and adapted for iris
detection in Sect. 6.2, is in this Section reduced to a Hough
transform based algorithm, which is referred to as Algorithm
2. The notation in Sect. 6.1 is used.

As in Algorithm 1, the set T ∩ tZ3 is obtained. This
set and the set of measurements are edited as described in
Sect. 6.2. Each lattice point θi in T ∩ tZ3 is at the centre of a
cube Si in R3 with side length t. The associated accumulator
is Ai.

The points of T corresponding to circles exactly compat-
ible with the compound measurement (x,α) are contained in
the lines

ξ 7→ (ξ ,x+ξ (−sin(α),cos(α)))⊤, ξmin ≤ ξ ≤ 1, (39)

ξ 7→ (ξ ,x−ξ (−sin(α),cos(α)))⊤, ξmin ≤ ξ ≤ 1. (40)

The value of Ai is equal to the total number of measurements
(x,α) for which either of the lines (39), (40) intersects Si.
The circle θi with the largest value of Ai is detected.

The results obtained on applying Algorithm 2 to the same
9 iris images to which Algorithm 1 is applied are shown in
Fig. 6. In all 9 cases the inner boundary of the iris is detected.
However, the less well defined outer boundary is detected in
only 4 out of the 9 cases.

2 http://biometrics.idealtest.org/dbDetailForUser.do?id=4

Circle detection on the same 9 images was also carried
out using the Hough transform based MATLAB function
imfindcircles3. The following parameters were used: radius
range [30 150], Sensitivity 0.97 and ObjectPolarity set to
dark. The results are shown in Fig. 7. In all 9 cases the inner
boundary of the iris is detected but the outer boundary is not
detected. There are many false detections. If the Sensitivity
is reduced to 0.9 then in every case the inner boundary of the
iris is detected, the outer boundary is not detected and there
are no false alarms.

7 Conclusion

In this paper a tractable approximation is obtained to the
Fisher-Rao metric for a parameterised family of curves in an
image. The metric is based on compound measurements that
consist of a pixel and the direction of the grey level gradient
at the pixel. The additional information in the grey level gra-
dients is measured by a non-negative matrix, which is added
to the matrix for the Fisher-Rao metric based on measure-
ments that consist only of pixels in the image.

The probability density function for a measurement given
a curve is extended in the usual way to account for outliers.
If the curves are circles or straight lines, then the associated
Fisher-Rao metric has an accurate approximation which can
be evaluated numerically. The approximating metric is used
to estimate the minimum number of measurements required
to detect a circle in the presence of outliers. In addition, the
approximating metric is the basis of the first Bayesian al-
gorithm for curve detection in the presence of outliers. The
extension of the pdf to take account of outliers ensures that
it is not necessary to separate the inliers from the outliers
during the process of curve detection.

There are two major advantages of Bayesian methods
for curve detection. The first advantage is that the best use
is made of the available information. The second advantage
is that the parameter space for the curves can be edited to
remove subsets that are known a priori to be irrelevant. The
Bayesian nature of the algorithm is maintained by renormal-
ising the probabilities for the remaining parts of the param-
eter space.
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Fig. 5 Circles detected by Algorithm 1 in the first nine images of the CASIA Iris Interval database.

Fig. 6 Circles detected by Algorithm 2 in the first nine images of the CASIA Iris Interval database.
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Fig. 7 Circles detected by the MATLAB function imfindcircles with Sensitivity 0.97.


