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Abstract - Certain structure detection problems can be solved by sampling a param-

eter space for the different structures at a finite number of points and checking each point

to see if the corresponding structure has a sufficient number of inlying measurements. The

measurement space is a Riemannian manifold and the measurements relevant to a given

structure are near to or on a submanifold which constitutes the structure. The probability

density function for the errors in the measurements is described using a generalisation of

the Gaussian density to Riemannian manifolds. The conditional probability density func-

tion for the measurements yields the Fisher information which defines a metric, known

as the Fisher-Rao metric, on the parameter space. The main result is a derivation of

an asymptotic approximation to the Fisher-Rao metric, under the assumption that the

measurement noise is small. Using this approximation to the Fisher-Rao metric, the pa-

rameter space is sampled, such that each point of the parameter space is near to at least

one sample point, to within the level of accuracy allowed by the measurement errors. The

probability of a false detection of a structure is estimated. The feasibility of this ap-
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proach to structure detection is tested experimentally using the example of line detection

in digital images.

Index Terms-asymptotic approximation, false detection, Fisher-Rao metric, heat

equation, Hough transform, line detection, parameter space, Riemannian manifold.

1 Introduction

In many practical cases of structure detection the measurements take values in a d-

dimensional manifold D, the set of all structures is parameterised by the points θ in

an n-dimensional parameter manifold T and the measurements exactly compatible with

a given point θ in T form a submanifold M(θ) of D. For example, if the structures to be

detected are lines in two dimensional images, then D is a subset of the image, T is a two

dimensional parameter space for lines and the M(θ) are lines in D [22]. If the structures

are epipolar transforms between pairs of images, then D is the Cartesian product of two

images, T is a seven dimensional parameter space for the epipolar transforms and the

M(θ) are certain quadric hypersurfaces in D [13].

The key quantity required for an analysis of the structure detection problem is the

probability density function p(x|θ) for the measurement x conditional on the presence of

the structure θ. In forming p(x|θ) it is assumed that x is caused by or arises from the

structure θ. The formation of p(x|θ) is divided into two stages. In the first stage it is

assumed that x arises from a single unknown error free measurement x̃ which is located

on the structure θ. The probability density function for x conditional on x̃ is p(x|x̃). In

the second stage it is assumed that x̃ has a known density p(x̃|θ) on M(θ). The density
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p(x|θ) is obtained by integrating p(x|x̃) over M(θ) with weight p(x|x̃). Further details

are given in Section 3.1.

The conditional density p(x|θ) gives rise to a Riemannian metric on T known in

statistics as the Fisher-Rao metric [1,10,18,27]. The Fisher-Rao metric, J , has two key

roles. Firstly, it defines a level of resolution on T , namely the level or scale at which

pairs of points of T can be distinguished. If two points θ(1), θ(2) of T are close together

under J , then the corresponding structures are difficult to distinguish given only a single

measurement. The second key role of J is that it defines the volume [6,11] V (T, J)

of T . This volume measures the difficulty of detecting the structures parameterised by

T . If V (T, J) is small, then detection is easy because there is only a small number of

distinguishable structures that might be detected in D. Conversely, if V (T, J) is large,

then detection is difficult because there is a large number of distinguishable structures

that might be detected in D. This interpretation of V (T, J) is one of the most important

aspects of this work. It provides a quantitative measure of the difficulty of solving the

associated detection problem.

The above properties of J suggest an algorithm for structure detection based on sam-

pling T at a discrete set of points θ(i), 1 ≤ i ≤ ns. The θ(i) are chosen such that each

point θ of T is near to at least one of the θ(i). If V (T, J) is finite, then only a finite

number of sample points is needed. Each θ(i) is checked in turn to see if the number of

measurements near to the submanifold M(θ(i)) of D exceeds a given threshold r(N, θ(i))

where N is the total number of measurements. If the threshold is exceeded, then the

structure θ(i) is detected. The number, ns, of sample points is of order O(V (T, J)). The

threshold r(N, θ(i)) can be calculated under the assumption that the outliers for θ(i) are
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distributed uniformly in D.

The two main advantages of this sample based approach are firstly that it is possible

to detect structures in the presence of very large numbers of outliers and secondly any

structure that is present in the image is detected. The accuracy with which a structure

is located depends on the density of the sample points θ(i). If the density is high, then

the structure is located accurately but the run time of the algorithm is long. In practice,

a relatively low density of sample points is used. Once a structure is detected, the mea-

surements inlying to it can be identified and the position of the structure estimated more

accurately. The problem of finding the best position estimate, given a set of measurements

known to be inliers, is outside the scope of this paper.

The main result of this paper is that J(θ) has an asymptotic approximation K(θ)

which is accurate if the noise level is low. The approximation, K(θ), is useful because in

all except the simplest cases the expression for J(θ), as given below in (1), is intractable.

In many cases of practical interest, including line detection [22], and the detection of pro-

jective transformations of the line [23], the components of K(θ) are given by closed form

expressions and it is possible to design and use statistically sound detection algorithms

based on K(θ).

Related work on the Fisher-Rao metric and structure detection is described in Section

2. The probabilistic model for structure detection is described in Section 3 and the

asymptotic approximation to J is obtained. Two special cases of the Fisher-Rao metric

are described in Section 4. The sample based algorithm for structure detection is described

in Section 5 and thresholds for structure detection are obtained. Experimental results are

reported in Sections 6 and 7. Some concluding remarks and suggestions for future work
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are made in Section 8. Mathematical results relating to Section 3 are given in Appendix

A.

2 Related Work

Rissanen [28,29] shows that T can be sampled by a discrete set of points θ(i), 1 ≤ i ≤

O(V (T, J)) such that any point of T is indistinguishable from at least one θ(i), given the

measurements. In effect T can be replaced by a finite discrete approximation with only

a negligible effect on the ability to detect structures. In [24], Myung et al. point out the

importance of V (T, J) as a measure of the complexity of structure detection, or to use

their terminology, as a measure of model complexity. Jeffreys [16] and Balasubramanian

[2,3] show that the correct prior density on T is the normalized canonical measure obtained

from J . Under this prior density, the probability of a subset B of T is V (B, J)/V (T, J).

The prior probability depends on the number of distinguishable densities x �→ p(x|θ)

as θ ranges over B. If B contains many densities which are easily distinguishable from

each other given the measurements, then B is assigned a high prior probability. An

important observation is that J and the prior density B �→ V (B, J)/V (T, J) transform

under reparameterisations of T in such a way that the probability assigned to any subset

of T remains unchanged. If these probabilities were to change under reparameterisation

of T , then the choice of parameterisation of T would depend on the statistical properties

of the measurements. The invariance of the probabilities ensures that any mathematically

convenient parameterisation of T can be chosen.

There are two well established structure detection methods based on discrete approx-

imations to T . These methods are RANSAC and the Hough transform. To describe
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RANSAC [9], let S be the set of measurements and let k be the minimum number of

measurements sufficient to determine a structure uniquely in the noise free case. For

example, if the structures are lines, then k = 2. A set of k measurements S(k) =

{x(i(1)), . . . , x(i(k))} is chosen from S at random, and T is sampled at the point θ̂(S(k)).

If θ̂(S(k)) has a sufficient number of inlying measurements, then a structure is detected.

Sets S(k) are chosen repeatedly and randomly, in order to ensure that any structure with

a large number of inliers has a high probability of being detected.

In the Hough transform [15,19] T is divided into a finite set of regions called buckets

or accumulator cells. Each bucket B has an associated integer valued counter a(B) which

is initialized at 0. Each measurement x(i) is associated with a set C(i) consisting of

those θ ∈ T exactly compatible with x(i). If C(i) meets a bucket B, then the counter

a(B) is incremented by 1. After all the measurements have been examined, structures are

detected corresponding to those buckets B for which a(B) is sufficiently large.

In the literature the Hough transform has many variations depending on i) the way

in which T is divided into cells; ii) the criteria for deciding if a structure θ is present; and

iii) techniques for reducing the computational cost. For example, in [4, 20] a hierarchical

division of the parameter space is used to speed up line detection. The parameter space

is enclosed in a single box. If the box is proved not to contain any line with sufficient

support from the measurements, then the box is discarded, otherwise it is subdivided and

the search for lines continued recursively. A similar approach is developed in [26] and

applied to circle detection.

The Hough transform is extended to more complicated shapes in the Generalised

Hough Transform (GHT). A plane object is described by a set of points on the boundary
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of the object. At each boundary point the direction of the normal to the boundary is

recorded. In [31] a real time object recognition system based on the GHT is described.

Recognition is speeded up by constructing multiresolution pyramids for the object and

for the image. The search is begun at low resolutions and extended to higher resolutions.

Olson [25] describes an algorithm for detecting curves belonging to parameterised

families for which the number, k, of parameters is large. The algorithm is a combination

of RANSAC and the Hough transform. A set of j measurements is chosen at random

and the search for curves supported by the measurements is restricted to those curves

which pass exactly through the j measurements. This restriction fixes the values of j

parameters. The remaining k − j parameters are found using a Hough transform.

In [30] Rucklidge describes a sampling algorithm to find an affine transformation from

a geometrical model to an image. The model consists of a finite set of points in known

relative positions. The space of affine transformations is rasterised, i.e. sampled at a set

of points defined by the vertices of a discrete lattice, and a divide and conquer strategy is

used to search the vertices of the lattice for the affine transformation which most nearly

matches the model points with feature points in the image. The lattice spacing is chosen

such that the affine transformations associated with neighbouring lattice vertices differ

on the image by no more than the width of one pixel.

The main contribution of this paper is a proof that the Fisher-Rao metric on the

parameter space has an asymptotic approximation which is accurate if the noise level is

small. The volume of the parameter space under this approximating metric is a funda-

mental measure of the difficulty of detecting the particular structure under consideration.
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3 Probabilistic Model

The information contained in the differential structures of the manifolds D, T is only

sufficient for a superficial analysis of the structure detection problem. In order to carry

out a deeper analysis, it is necessary to include enough information about the measurement

errors to determine the conditional probability density p(x|θ) for a measurement x given

a structure θ.

A suitable definition of p(x|θ) is given in Section 3.1. The Fisher-Rao metric J is

defined in Section 3.2 and the asymptotic approximations to p(x|θ) and J are obtained

in Sections 3.3 and 3.4 respectively. The differential entropy of p(x|θ) is estimated in

Section 3.5. Some mathematical results relevant to Sections 3.3, 3.4 and 3.5 are described

in Appendix A.

3.1 Definition of the conditional density

The definition of p(x|θ) is a generalisation of one given by Werman and Keren [33] for

the special case D = IRd. It is assumed that D, T are differentiable manifolds with

dim(D) = d and dim(T ) = n. The manifold T is parameterised by a vector θ containing

n coordinates. It is assumed that D is compact and that each set M(θ) of measurements

exactly compatible with θ is a compact submanifold of D with dim(M(θ)) = m for all θ in

T . The manifold D is given a Riemannian metric g with the associated canonical measure

dµ [6,11]. The metric g usually arises naturally from the fact that D is a measurement

space. For example, if D is an image, then g is the Euclidean metric defined on D by the

pixel coordinates.

It is assumed that each measurement x is derived from an underlying noise free mea-

8



surement x̃ and that the conditional density p(x|x̃) for x given x̃ is the result of a heat

flow or diffusion on D [5]. The heat flow begins at time 0 as a delta function concentration

of heat at x̃ and lasts for a time t, giving a probability density function p(x|x̃) = pt(x|x̃).

If g is Euclidean in a neighbourhood of x̃, then pt(x|x̃) is closely approximated by the

Gaussian density with expected value x̃ and covariance 2tI where I is the d × d identity

matrix.

Each submanifold M(θ) is given a probability measure dh which specifies the distri-

bution of x̃ on M(θ). The simplest, default choice is to make dh equal to a scaled version

of the measure induced on M(θ) by g. The scaling of dh is chosen such that the total

volume of M(θ) under dh is 1.

The density p(x|θ) = pt(x|θ) is obtained by integrating the contributions pt(x|x̃) as x̃

varies over M(θ), or equivalently, by solving the heat equation on D with the condition

that at time 0 the heat is distributed on M(θ) in accordance with the probability measure

dh [5]. As the time increases away from 0 towards t, the heat flows from M(θ) into the

rest of D. If t is small, then the density pt(x|θ) is concentrated in a neighbourhood of

M(θ).

3.2 Definition of the Fisher-Rao metric

The Fisher-Rao metric [1,7] is given on T by the n× n symmetric matrix J(θ) defined at

each point θ of T by

Jij(θ) = −
∫

D

(
∂2

θiθj ln p(x|θ)
)
p(x|θ) dµ(x), 1 ≤ i, j ≤ n, (1)
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where θi, θj are components of the vector θ, and ∂2
θiθj is the differential operator defined

such that

∂2
θiθj ln p(x|θ) =

∂2

∂θi∂θj
ln p(x|θ), 1 ≤ i, j ≤ n.

The superscript notation θi for the components of θ is usual in the context of Riemannian

geometry [6,11]. The matrix J(θ) is the Fisher information at θ for a single measurement

x. The Fisher information for k measurements sampled independently from D according

to the density p(x|θ) is kJ(θ). The matrix J(θ) is used rather than kJ(θ) because it is

not known a priori which subsets of measurements are inliers to a single structure.

If θ, θ′ are nearby points in T then the squared distance between θ, θ′ is

(θ′ − θ)�J(θ)(θ′ − θ) + O3(θ
′ − θ), (2)

where O3(θ
′ − θ) consists of terms which are third order or higher in the components of

θ′ − θ. Another measure of the distance between θ′, θ is the Kullback-Leibler distance

[7,21], D(θ||θ′), defined by

D(θ||θ′) =
∫

D
ln(p(x|θ)/p(x|θ′))p(x|θ) dµ(x). (3)

The log likelihood ratio ln(p(x|θ)/p(x|θ′)) in the integrand of (3) is the key quantity

needed for choosing between θ and θ′ as ‘explanations’ for a given measurement x. The

Kullback-Leibler distance is related to the squared distance (2) by

D(θ||θ′) =
1

2
(θ′ − θ)�J(θ)(θ′ − θ) + O3(θ

′ − θ). (4)

Let τ(θ) dθ be the canonical measure [6,11] on T associated with the Fisher-Rao metric,

τ(θ) dθ = | det(J(θ))|1/2 dθ.
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The probability density V (T, J)−1τ(θ) dθ is Jeffrey’s prior density on T [16]. The volume

V (B, J) of any subset B of T under the canonical measure is independent of the choice

of parameterisation of T . It is defined by

V (B, J) =
∫

B
τ(θ) dθ. (5)

If V (B, J) is small, then the densities p(x|θ), θ ∈ B are similar. If x is a measurement

chosen independently of B, then there is a relatively low probability that p(x|θ) will

be large for some θ ∈ B. Conversely, if V (B, J) is large, then the densities p(x|θ) are

dissimilar as θ varies over B and there is an increased probability that p(x|θ) will be large

for some θ in B.

3.3 Asymptotic approximation to the conditional density

The density p(x|θ), as defined in Section 3.1, is a solution to the heat equation on D with

the initial condition given by the measurement dh on M(θ). There is a well developed

mathematical theory for the heat equation and its solutions [5]. The results of most

interest here are that the heat equation has a fundamental solution, known as the heat

kernel, and the heat kernel has an asymptotic expansion valid for small times t > 0. The

expansion is stated as (37) in Appendix A. A proof can be found in [5].

It is assumed that M(θ) is a smooth compact submanifold of D. Let distg(x, x′) be

the geodesic distance between any two points x, x′ of D. It is assumed that the initial

probability measure dh on M(θ) has the form dh = f(y) dy for a choice of coordinates y

on M(θ). The notation distg(x, y) is also used for the distance between the point x of D

and the point y of M(θ). In this latter use of the notation distg(x, y) the coordinates of

x, y are specified in different coordinate systems. The coordinate system for x is defined
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on D and the coordinate system for y is defined on M(θ).

It follows from (37), Appendix A that p(x|θ) has an asymptotic approximation,

p(x|θ) =
1

(4πt)d/2

∫
M(θ)

exp

(
−distg(x, y)2

4t

)
ρ(distg(x, y)) (u0(x, y) + O(t)) f(y) dy,

0 < t. (6)

The functions ρ and u0 are defined in Appendix A. It is apparent from (6) that 2t is

analogous to the variance σ2 of a Gaussian density.

The approximation (6) to p(x|θ) is simplified by applying a result from the asymptotic

analysis of multi-dimensional integrals given in Chapter IX of [35]. Let x �→ w(x, θ) be

the function defined on D by

w(x, θ) = inf{distg(x, y) | y ∈ M(θ)}. (7)

It is assumed that M(θ) ⊂ U(θ), where U(θ) is an open set in D such that i) p(x|θ) is

negligible for x /∈ U(θ); and ii) if x ∈ U(θ), then there is a unique point x(y) ∈ M(θ)

such that w(x, θ) = distg(x, x(y)). On taking a chart on M(θ), it can be assumed that

y ∈ IRm. These choices of coordinates are closely related to the Fermi coordinates, as

described in [6]. Let A(x, θ) be the m × m matrix defined by

Aij(x, θ) = ∂2
yiyjdistg(x, y)2

∣∣∣
y=y(x)

, 1 ≤ i, j ≤ m. (8)

The matrix A(x, θ) is non-singular provided x is sufficiently close to M(θ), i.e. w(x, θ) <

δ for some δ > 0. The assumption that M(θ) is compact ensures that a suitable δ exists

for each θ. It is assumed that i) δ can be chosen independently of θ, ii) w(x, θ) > δ if

x /∈ U(θ) and iii) the value of δ is significantly larger than σ = (2t)1/2. In practice the

lower bound δ > 3σ is sufficient. In order to ensure the existence of a suitable δ it may
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be necessary to remove from T those structures θ for which M(θ) contains regions of very

high curvature.

It follows from (6), (8) and the Laplace approximation in IRm [35] that

p(x|θ) =

2m/2f(y(x))ρ(distg(x, y(x))) (u0(x, y(x)) + O(t))

(4πt)(d−m)/2(det(A(x, θ)))1/2
exp

(
−w(x, θ)2

4t

)
. (9)

It follows from (9) that

ln p(x|θ) = −w(x, θ)2

4t
− 1

2
(d − m) ln t + O(t0). (10)

Equation (10) is related to a result of Varadhan [5,32].

3.4 Asymptotic approximation to the Fisher information

It follows from (1), (10) and (36) that

Jij(θ) =
1

4t

∫
D

(
∂2

θiθjw(x, θ)2
)
p(x|θ) dµ(x) + O(t0),

=
1

4t

∫
D

∫
D

(
∂2

θiθjw(x, θ)2
)
k(x, y, t)dh(y)dµ(x) + O(t0), 1 ≤ i, j ≤ n, (11)

where k is the heat kernel on D. On exchanging the order of integration in (11) and

applying (38), it follows that

Jij(θ) =
1

4t

∫
D

∫
D

(
∂2

θiθjw(x, θ)2
)
k(x, y, t)dµ(x)dh(y) + O(t0),

=
1

4t

∫
D

(
∂2

θiθjw(x, θ)2
)

x=x(y)
dh(y) + O(t0),

=
1

4t

∫
M(θ)

(
∂2

θiθjw(x, θ)2
)

x=x(y)
f(y) dy + O(t0). (12)

Let K(θ) be the leading order term in the asymptotic expansion of J(θ) with respect

to t. It follows from (12) that

Kij(θ) =
1

4t

∫
M(θ)

(
∂2

θiθjw(x, θ)2
)

x=x(y)
f(y) dy, 1 ≤ i, j ≤ n. (13)
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Let N be the number of measurements. The matrix N K(θ) is closely related to the

matrix M̄∞ defined by Kanatani in Section 14.4 of [17]. Kanatani identifies the inverse

of M̄∞ as an asymptotic approximation, as N → ∞, to the Cramer-Rao lower bound for

the covariance of an unbiased estimate of θ.

The expression (13) for K(θ) can be simplified if M(θ) has codimension 1 in D,

m = d − 1. Let M(θ) be fixed and let M(θ′) be variable but with θ′ close to θ. Let x be

a point of D near to M(θ′) and let y be a point on M(θ) near to x. Let η(x, θ′) = ±1 be

defined such that

(x, θ′) �→ w̃(x, θ′) ≡ η(x, θ′)w(x, θ′), x ∈ D,

is a C2 function of x. Let v(x, θ) be the vector with components defined by

vi(x, θ) = ∂θ
′iw̃(x, θ′)|θ′=θ , 1 ≤ i ≤ n. (14)

The Taylor series expansion of w̃(x, θ′) about θ is

w̃(x, θ′) = w̃(x, θ) +
n∑

i=1

vi(x, θ)(θ
′i − θi) + O2(θ

′ − θ), (15)

where O2(θ − θ′) consists of terms of second order or higher in the components of θ − θ′.

It follows from (15) that

w(x, θ′)2 = w̃(x, θ′)2

= w̃(x, θ)2 +

(
n∑

i=1

vi(θ
′i − θi)

)2

+ w̃(x, θ)O2(θ
′ − θ) + O3(θ

′ − θ),

thus

∂2
θ
′iθ′jw(x, θ′)2

∣∣∣
x=x(y),θ′=θ

= 2vi(x(y), θ)vj(x(y), θ), 1 ≤ i, j ≤ n. (16)

The simplified expression for K(θ) follows from (13), (16),

K(θ) =
1

2t

∫
M(θ)

v(x(y), θ) ⊗ v(x(y), θ) f(y) dy. (17)
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It is apparent from (17) that the components of K(θ) are large if small changes in θ

produce large changes in the position of M(θ).

3.5 Differential entropy

An approximation to the differential entropy H(θ) of p(x|θ) is obtained. The differential

entropy is the usual entropy, as defined for a continuous probability density function. The

definition of H(θ) is

H(θ) = −
∫

D
(ln p(x|θ))p(x|θ) dµ(x). (18)

It follows from (10) and (18) that

H(θ) =
1

4t

∫
D

w(x, θ)2p(x|θ) dµ(x) +
1

2
(d − m)

∫
D
(ln t)p(x|θ) dµ(x) + O(t0). (19)

It follows from (36),(38) in Appendix A that

1

4t

∫
D

w(x, θ)2p(x|θ) dµ(x) =
1

4t

∫
D

∫
D

w(x, θ)2k(x, z, t) dh(z)dµ(x),

=
1

4t

∫
D

(∫
D

w(x, θ)2k(x, z, t) dµ(x)
)

dh(z),

=
1

4t

∫
D

(
w(z, θ)2 + O(t)

)
dh(z),

=
1

4t

∫
M(θ)

O(t) dh,

= O(t0),

thus

H(θ) =
1

2
(d − m) ln t + O(t0). (20)

It is shown in Section 4.2 below that under certain conditions (20) leads to a simple

expression for the trace of K(θ).
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4 Special Cases

In certain very special cases, partial information about J and K can be obtained quickly.

Two such cases are described in Sections 4.1 and 4.2 below.

4.1 Symmetry

Suppose that D has a coordinate system in which the Riemannian metric g is independent

of one of the components xk of x, and suppose that θ has a component, without loss of

generality also labelled k, such that

∂xkp(x|θ) = −∂θkp(x|θ). (21)

If xk is an angular coordinate taking values in the circle, or if p(x|θ) and ∂xkp(x|θ) are

negligibly small outside an open set on which the coordinates x are defined, then J(θ) is

independent of θk. In the following proof the arguments of p(x|θ) are omitted in order to

simplify the notation.

∂θkJij(θ) = −
∫

D
∂θk

((
∂2

θiθj ln(p)
)
p
)

dµ,

=
∫

D
∂xk

((
∂2

θiθj ln(p)
)
p
)

det(g(x))1/2 dx,

=
∫

D
∂xk

((
∂2

θiθj ln(p)
)
p det(g(x))1/2

)
dx,

= 0, 1 ≤ i, j ≤ n. (22)

The matrix K(θ) is an asymptotic approximation to J(θ), thus ∂θkKij(θ) = 0, 1 ≤ i, j ≤ n.

Examples of (21) arise when D has a family of isometries which act in a simple way

on the submanifolds θ �→ M(θ). For example, suppose that D is the open unit disk and

the M(θ) are lines in D. Cartesian coordinates are chosen in D with origin at the centre
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of D. The set of lines in D is parameterised by θ = (ρ, α), where ρ(cos(α), sin(α)) is the

point on the line M(θ) closest to the origin. The manifold D is not compact, but the

boundary effects are negligible for those lines (ρ, α) with ρ ≤ 1 − O(
√

t). The length of

the line M(θ) contained in D is 2(1 − ρ2)1/2 and the conditional density p(x|θ) is

p(x|θ) =
1

(16πt)1/2(1 − ρ2)1/2
exp

(
−w(x, θ)2/(4t)

)
+ O(t).

The isometries of D are the rotations about the centre of D. A rotation through an angle

β transforms the line M(ρ, α) to the line M(ρ, α + β). If polar coordinates (r, φ) are

chosen in D, then w(x, θ) = (r cos(φ−α)−ρ)2 and ∂φp(x|θ) = −∂αp(x|θ). It follows from

(22) that K(θ) is independent of α. An expression for K(θ) is stated below as (34), and

derived in [22].

4.2 Trace of the Fisher-Rao metric on a torus

In this subsection the notation pt(x|θ) is used rather than p(x|θ) because the main result,

stated as (24) below, involves the differential operator ∂t. Let D be the d-dimensional

torus with g equal to a flat metric, let xi, 1 ≤ i ≤ d be a set of coordinates on D, let θ be

a d-dimensional vector of parameters such that

∂xipt(x|θ) = −∂θipt(x|θ), 1 ≤ i ≤ d, (23)

and let H(θ) be the differential entropy of pt(x|θ), as defined by (18). Then a version of

de Bruijn’s identity [7] holds,

∂tH(θ) = trace(J(θ)). (24)

To prove (24), note first that pt(x|θ) satisfies the heat equation on D,

∂tpt(x|θ) =
d∑

i=1

∂2
xixipt(x|θ).
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Equation (24) is obtained by the following steps,

∂tH(θ) = −
∫

D
(ln pt)∂tpt dx,

= −
∫

D
(ln pt)

(
d∑

i=1

∂2
xixipt

)
dx,

= −
∫

D

(
d∑

i=1

∂2
θiθi ln pt

)
pt dx,

= trace(J(θ)). (25)

It follows from (20) and (24) that trace(J) = (d − m)/2t + O(t0), thus

trace(K(θ)) =
1

2t
(d − m). (26)

5 Algorithm for Structure Detection

If the volume V (T, J) is small, then it is possible to search efficiently for structures θ by

sampling T at a finite set of points θ(i), 1 ≤ i ≤ ns and checking each θ(i) to see if it is

supported by a sufficient number of measurements. As noted in Section 1, algorithms of

this type can detect structures M(θ(i)) even in the presence of large numbers of outliers.

The outliers could be measurements arising from other structures M(θ(j)) or they could

be random in that they are not associated with any recognizable structure in the image.

The number n(T, J) of distinguishable structures is estimated in Section 5.1. Methods

for defining inliers and for reducing the probability of false detections are described in

Sections 5.2 and 5.3. The algorithm itself is described in Section 5.4.
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5.1 The number of sample points

Let γ be a strictly positive constant and define B(θ) ⊆ T by

B(θ) =
{
θ′ | θ′ ∈ T and (θ′ − θ)�J(θ)(θ′ − θ) ≤ γ

}
. (27)

If θ′ is in B(θ) and if γ is sufficiently small, then the submanifolds M(θ), M(θ′) of D are

so close together that a measurement x sampled from p(x|θ) is with a high probability

also a plausible sample from p(x|θ′). The vector θ is chosen as a single representative for

all the vectors θ′ in B(θ). The sets B(θ) are similar to the buckets used in the Hough

Transform [15,19].

Let b(n) be the volume of the unit ball in the Euclidean space IRn. It can be shown that

the volume V (B(θ), J) of B(θ) under J , as defined by (5), satisfies V (B(θ), J) ≈ γn/2b(n).

In particular, V (B(θ), J) is independent of θ to leading order. The number, n(T, J), of

distinguishable structures in T is defined by

n(T, J) =
V (T, J)

γn/2b(n)
.

The quantity n(T, J) is independent of the choice of parameterisation of T . If n(T, J) is

small, then it is easy to detect the presence of any structures θ in D by checking each one

of ns = O(n(T, J)) sample points in turn. Note that ns > n(T, J), because the sets B(θ)

in any covering of T overlap if n ≥ 2.

If γ is too small, then the sample will contain points θ(i), θ(j) for which M(θ(i)),

M(θ(j)) are so close together in D that they cannot be distinguished using only a single

measurement. Either θ(i) or θ(j) could be removed from the set of sample points without

affecting the performance of a structure detection algorithm based on the sample. If γ

is too large, then measurements far from M(θ) will be mistakenly classified as inliers
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to M(θ). If θ′ is on the boundary of B(θ), then D(θ||θ′), or equivalently, the weighted

average of ln(p(x|θ)/p(x|θ′)) over x ∈ D, is approximately γ/2. This suggests that a

suitable value for γ is γ ≈ 1.

5.2 Inliers and false detections

A measurement is defined to be an inlier to θ if it is contained in the subset A(θ) of D

defined by

A(θ) = ∪{M(θ′) | θ′ ∈ B(θ)}.

Any measurements not contained in A(θ) are outliers for θ although they may be inliers

for other structures θ′. The structure θ is detected if the number of measurements in A(θ)

exceeds a threshold r(N, θ), where N is the total number of measurements.

If the threshold r(N, θ) is too small, then false detections occur: the structure θ is

not in the image, but by chance A(θ) contains r(N, θ) or more measurements and θ is

detected. If r(N, θ) is too big, then missed detections occur: θ is not detected, even

though it is present, because A(θ) does not contain enough measurements. The exact

value for r(N, θ) depends on the application, but a convenient default is to make r(N, θ)

large enough to ensure that the false detection rate is small when the measurements are

random in that they are sampled uniformly and independently from D.

The probability, p(θ), that a measurement sampled uniformly on D is contained in

A(θ) is

p(θ) = V (A(θ), g)/V (D, g).

Let S be a set of N measurements sampled independently and uniformly from D. Let

E(θ, r) be the event that r or more of the measurements in S are contained in A(θ). The
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probability Prob(E(θ, r)) of E(θ, r) is given by

Prob(E(θ, r)) =
N∑

i=r

(
N
i

)
p(θ)i(1 − p(θ))N−i.

The values of the r(N, θ) are chosen such that the Prob(E(θ, r(N, θ))) are constant, to

a first approximation. In effect, each B(θ) is regarded as a single structure and the

different B(θ) contribute equally to the false detection rate. This choice of the r(N, θ)

is in line with the observation that to first approximation the Jeffrey’s prior density

θ �→ V (T, J)−1τ(θ) dθ assigns the same probability to each set B(θ).

Let ef be a user specified false detection rate. The term ‘rate’ is used rather than ‘prob-

ability’ because ef might be greater than 1. The common value es of the Prob(E(θ, r(N, θ))

for θ in T is defined by

es = ef/n(T, J). (28)

The thresholds r(N, θ) are defined by

r(N, θ) = min{r | Prob(E(θ, r)) ≤ es}. (29)

Numerical experiments, described in Section 6.2, strongly suggest that if the r(N, θ) are

defined by (29), then the false alarm rate over the whole of T is approximately equal to

ef .

The probabilities Prob(E(θ, r)) and hence the values of r(N, θ) defined by (29) can

be estimated using the Poisson approximation to the Binomial distribution [8]. The

parameter of the Poisson approximation is λ(θ) = Np(θ) and

Prob(E(θ, r)) ≈ exp(−λ(θ))
N∑

i=r

λ(θ)i/i!. (30)

The threshold rp(N, θ) estimated using (30) is often equal to r(N, θ) for the ranges of
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parameter values relevant to structure detection, especially if p(θ) is small. For example,

if p(θ) = 0.01, es = 0.5 × 10−4 and N = 450, then rp(N, θ) = r(N, θ) = 16.

5.3 Volume of A(θ)

An estimate of V (A(θ), g) is obtained for the case in which M(θ) has codimension 1 in

D. The strategy is to fix a point x(y) on M(θ), take the normal to M(θ) at x(y) and

then find a point x′ on the normal as far from M(θ) as possible subject to the condition

that x′ is in A(θ). Equivalently, x′ is in M(θ′) for some θ′ on the boundary of B(θ). The

volume, V (A(θ), g), is estimated by integrating y �→ 2distg(x
′, y) over M(θ).

Let ξ be the distance from x(y) to x′. It follows that w(x′, θ) = ξ. Let w̃(x, θ′), v(x, θ)

be as defined in Section 3.4. A Taylor expansion of w(x′, θ′) yields

w̃(x′, θ′) = w̃(x′, θ) +
n∑

i=1

vi(x
′, θ)(θ′i − θi) + O2(θ

′ − θ), (31)

where O2(θ
′ − θ) consists of terms second order or higher in the components of θ′ − θ. It

follows from (31) and the condition w̃(x′, θ′) = 0 that

ξ = −v(x′, θ).(θ′ − θ) + O2(θ
′ − θ) = −v(x, θ).(θ′ − θ) + O2(θ

′ − θ). (32)

The second order terms in (32) are ignored and the absolute value of ξ is maximized

subject to the condition that θ′ is in the boundary of B(θ), or equivalently,

(θ′ − θ)�J(θ)(θ′ − θ) = γ. (33)

Let ξm be the value of ξ for which |ξ| is a maximum. It follows from (32) and (33) that

ξm(x(y)) = −γ1/2(v(x(y), θ)�J(θ)−1v(x(y), θ))1/2.
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Let dµM(θ) be the measure induced on M(θ) by g. The volume V (A(θ), g) is estimated

by

V (A(θ), g) = 2
∫

M(θ)
|ξm(x(y))| dµM(θ),

= 2γ1/2
∫

M(θ)
(v(x(y), θ)�J(θ)−1v(x(y), θ))1/2 dµM(θ).

5.4 Algorithm

The discussion in Sections 5.1-5.3 above leads to the following algorithm for detecting

structures. Note that |S| is the number of elements in the finite set S.

Algorithm 1

Input: values of t, γ, ef and a set S of measurements.

Output: A set of structures.

1. Choose a finite set θ(i), 1 ≤ i ≤ ns of samples in T such that each point θ of T is

in at least one of the sets B(θ(i)).

2. Find the least thresholds r(|S|, θ(i)), 1 ≤ i ≤ ns sufficient to ensure that the proba-

bility of falsely detecting θ(i) is no greater that ef/n(T, J) when |S| measurements

are distributed independently and uniformly in D.

3. Form the set L of those θ(i) for which |S ∩ A(θ(i))| ≥ r(|S|, θ(i)), 1 ≤ i ≤ ns.

4. Output L.

5. Stop.

Step 1 can be carried out off-line if the values of t, γ are known. Similarly, Step 2 can
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be carried out off-line if the r(|S|, θ(i)), 1 ≤ i ≤ ns can be calculated for the ranges of

values of |S| and ef that arise in practice.

When Algorithm 1 is applied to the detection of lines in digital images the set L found

in Step 3 is too large. The reason is that the measurements tend to clump together. A

single clump of measurements can strongly support the presence of any one of a large

number of lines, all of which pass through the clump. For this reason Algorithm 1 is

modified. The modification involves editing L to remove those lines which are not required

to ‘explain’ the measurements. Further details are given in Section 7.

6 Experimental Investigation of the Thresholds for

Line Detection

The software for the experiments described in this Section and the next was written in

Mathematica [34].

6.1 The Fisher-Rao metric for line detection

The theory developed in Sections 3 and 5 was applied to line detection in digital images.

The measurement space D is the unit disk centred at the origin of Cartesian coordinates.

The family of lines in D is parameterised by θ = (ρ, α) where ρ(cos(α), sin(α)) is the point

on the line θ closest to the origin. The parameter space is T = [0, 1) × [0, 2π) and the

approximation K(θ) to J(θ) is [22]

K(θ) =
1

2t

⎛
⎜⎝ 1 0

0 3−1(1 − ρ2)

⎞
⎟⎠ . (34)
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The approximation (34) to J(θ) fails if ρ is near to 1, or equivalently if only a small part

of the line θ is included in D.

A short calculation yields

V (T,K) = π2/(4
√

3 t),

n(T,K) = π/(4
√

3 γt),

p(θ) = π−1(8γt(1 − ρ2))1/2
(
2 + sinh−1

(√
3
)
/
√

3
)
.

Let s be an arc length parameter on M(θ), chosen such that s = 0 corresponds to the point

ρ(cos(α), sin(α)). Let ξm(s) be the distance from the point with arc length parameter s

to the boundary of A(θ). It can be shown that to leading order

ξm(s) =
√

2γt
(
1 + 3s2(1 − ρ2)−1

)1/2
, − (1 − ρ2)1/2 ≤ s ≤ (1 − ρ2)1/2.

The probability p(θ) is required to calculate the thresholds r(N, θ) and ξm(s) is required

to find those measurements which are in A(θ). A measurement x is in A(θ), at least to a

first approximation, if w(x, θ) ≤ ξm(x(s)) where x(s) is the projection of x in a direction

parallel to θ in D.

It is straightforward to choose the sample points θ(i), 1 ≤ i ≤ ns because K(θ) is

diagonal and K11(θ) is constant. The quantity ∆ρ is defined by ∆ρ = 2
√

γt and the

ρ-axis is sampled at the points ρ(i) = ∆ρ/2 + i∆ρ, 0 ≤ i ≤ �∆ρ−1 − 1/2�. To sample in

the α direction, the quantities ∆α(i) are defined by

∆α(i) =

(
12γt

1 − ρ(i)2

)1/2

, 1 ≤ i ≤ �∆ρ−1 − 1/2�,

and samples (ρ(i), ∆α(i)/2 + j∆α(i)) chosen for 0 ≤ j ≤ �2π∆α(i)−1 − 1/2�.
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6.2 Thresholds for line detection

Experiments were carried out to assess the prediction (29) for the threshold r(N, θ) for

a false detection. The results are shown in Table 1. The lower part of the left hand

column shows the values of the number N of random measurements, the top row shows

the values of ef , ef = 0.004, 0.02, 0.1, 0.5, 2.5. Each row in the main body of Table 1 shows

the number of false detections summed over the 50 trials with γ = 1, t = 2 × 10−4. In

each trial all the contributions to the relevant row are included. The N measurements

were sampled independently and uniformly from D. To give an example, if N = 50 and

ef = 2.5, then the average number of false detections per trial is estimated at 71/50.

ef : 0.004 0.02 0.1 0.5 2.5

N = 50 0 0 1 12 71

N = 150 0 0 1 12 104

N = 250 0 0 6 26 125

N = 350 0 2 11 40 139

Table 1. Numbers of false detections.

An examination of Table 1 suggests that the number of false detections does not have

a strong dependence on N . The key parameter controlling the number of false detections

is ef . This suggestion is supported by the graphs shown in Figure 1.

The entries in Table 1 suggest a simple model for estimating the number of false

detections: assume that the n(T,K) distinct structures in T contribute independently

to the total number of false detections and that each structure has a probability of false

detection es = ef/n(T,K). The expected number of false detections over 50 trials is
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ef : 0.004 0.02 0.1 0.5 2.5

N = 50 -0.45 2.00 0.89 -0.40 -2.60

N = 150 1.79 0.00 -0.89 -0.20 -0.35

N = 250 -0.45 -1.00 -1.79 -1.40 -1.16

N = 350 -0.45 -1.00 -1.34 -1.80 -1.43

Table 2. Normalised entries from Table 1.

-5 -4 -3 -2 -1 1
ln ef

20

40

60

80

100

120

nf

Figure 1: Numbers of false detections as a function of ln ef for N = 50, 150, 250, 350.

50ef . The variance over 50 trials is 50n(T,K)es(1− es) = 50ef (1− es). These predictions

are tested in Table 2. If m is an entry in a column of Table 1 headed by ef , then the

corresponding entry in Table 2 is

(m − 50ef )/(50ef (1 − es))
1/2.

The entries in Table 2 are O(1) in magnitude. This suggests that the model for the number

of false detections is a useful guide for estimating thresholds, at least for the values of N

in the range 50 to 350.
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7 Line Detection
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Figure 2: Image imk00038 in the Groningen natural image data base

Algorithm 1 was applied to the detection of lines in the grey level image shown in

Figure 2. This image is imk00038 in the Groningen natural image data base [14] available

at http://hlab.phys.rug.nl/l1 200/index.html. The image is of size 128 × 192, and it was

taken by a Kodak DCS420 camera.

The centre of img00038 is c = (64, 96). Let D′ be the disk centred at c and with

radius r = 64. The measurements were obtained by applying Sobel operator [12] to D′

and choosing the N pixels with the largest responses. Each measurement x′ in D′ was

mapped to D by x′ �→ x ≡ (x′ − c)/r. The following parameter values were used: γ = 1,

t = 0.5r−2, N = 1000, ef = 0.1.

As noted in Section 5.4, the set L of lines produced by Step 3 of Algorithm 1 is too

large. The difficulty is overcome by editing L in order to obtain a subset Le such that

i) the inliers to each θ in Le are distributed along θ with no gap greater than a given

fraction δ of the length of θ;
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ii) each θ in Le has a sufficient number of inliers which are not shared with any other

line in Le.

To achieve (i), let θ = (ρ, α) be a line in L, let ν(θ) be a unit vector parallel to θ in D

and define the set R(θ) by

R(θ) = {2−1 + 2−1(1 − ρ2)−1/2x.ν(θ) | x ∈ A(θ) ∩ S} ∪ {0, 1}.

Let L′ be the subset of L consisting of all lines θ in L such that the length of the largest

gap between consecutive elements of R(θ) is less than or equal to δ. In these experiments,

δ = 0.25.

To achieve (ii), the lines θ(1), θ(2), . . . in L′ are first ordered such that

|S ∩ A(θ(1))| ≥ |S ∩ A(θ(2))| ≥ . . . .

The lines θ(i) are checked in order. Suppose that θ(i), 1 ≤ i ≤ k have been checked, and

let Le be the edited list of lines at this stage. Let S(k + 1) be the set defined by

S(k + 1) = S ∩ A(θ(k + 1)) \ ∪{S ∩ A(θ) | θ in Le}.

The line θ(k + 1) is added to Le if and only if |S(k + 1)| ≥ r(N, θ(k + 1)).

The number of lines detected in Step 3 of Algorithm 1 is 452. The number of lines

obtained after restricting the maximum size of the gap between the measurements is 160,

and the number of lines obtained after restricting the inliers is 8. The detected lines

are shown in Figure 3, superimposed on the measurements. The same detected lines are

shown in Figure 4 superimposed on the original image. The circle in Figures 3 and 4 is

the boundary of D′.
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Figure 3: Lines detected in imk00038, superimposed on the measurements.
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Figure 4: Lines detected in imk00038, superimposed on the original image.

8 Conclusion

A general probabilistic model for structure detection has been described. In the model

the probability density function for the measurement errors is defined using a diffusion or

heat flow from an unknown true measurement located on the structure. In the low noise

case known results on solutions to the heat equation are applied to obtain asymptotic

approximations to the probability density function for a measurement and to the Fisher-

Rao metric on the parameter space. These results are the basis of an algorithm, Algorithm
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1, for structure detection based on approximating the parameter space by a finite set of

points.

The theoretical results are applied to the special case of line detection in digital images.

A numerical study suggests that the false detection rate can be modelled by assuming

that the false detections arise independently from n(T, J) different sources, and that

the probability that a single source gives rise to a false detection is ef/n(T, J) where

ef is a user specified estimate of the false detection rate. In this model the expected

number of false detections is ef and the the variance in the number of false detections is

ef (1 − ef/n(T, J)).

The experiments with natural digital images show that a modification of Algorithm

1 is required to take account of the fact that the measurements tend to clump together.

Once this modification is made, the lines in the images can be detected reliably.

There are two different ways in which the theory might be developed. The first way

is to apply the results obtained so far to specific structure detection problems, especially

those for which the asymptotic approximation to the Fisher-Rao metric takes a simple

form. The second way is to construct more realistic models for the measurement process,

in order to make better use of the information in the image grey levels.

Acknowledgement. I thank the referees for providing the references [4,20,26,31].

A Appendix

The aim in this appendix is to describe the asymptotic expansion of the fundamental

solution to the heat equation on the measurement space D equipped with the Riemannian
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metric g. Let �x be the Laplace-Beltrami operator on D. The sign convention for �x is

chosen such that if D = IRd under the Euclidean metric, then �xf is the negative of the

Laplacian of f ,

�xf = −
d∑

i=1

∂2
xixif.

Let f be a continuous real value function defined on D × (0,∞) such that x �→ f(x, t)

is C2 for all t in (0,∞) and t �→ f(x, t) is C1 for all x in D. The heat equation on D is

�xf = ∂tf . A fundamental solution to the heat equation on D is a continuous function

(x, y, t) �→ k(x, y, t) defined on D × D × (0,∞) such that k is C2 with respect to x, C1

with respect to t, k satisfies the heat equation �xk = ∂tk, t > 0, x ∈ D and if f is any

bounded, continuous real function on D, then

lim
t→0+

∫
D

k(x, y, t)f(x) dµ(x) = f(y), y ∈ D. (35)

The solution p(x|θ) to the heat equation with initial conditions given by the measure dh

on M(θ) is obtained from the heat kernel k by

p(x|θ) =
∫

D
k(x, y, t) dh (36)

Let inj(D) be the injectivity radius of D, as defined in [5]. It is assumed that inj(D) >

0. Let ρ : [0,∞) → [0, 1] be a C∞ function such that ρ(r) = 1 for all r in [0, inj(D)/4],

and ρ(r) = 0 for all r in [inj(D)/2,∞). Let the set W be defined by

W = {(x, y) | (x, y) ∈ D × D and distg(x, y) < inj(D)},

In [5] functions u0, u1, . . . are constructed with the following properties: each ui is a real

valued C∞ function on W and k(x, y, t) has the asymptotic expansion

k(x, y, t) = (4πt)−d/2 exp

(
−distg(x, y)2

4t

)⎛⎝ρ(distg(x, y))
k∑

j=0

tjuj(x, y) + O(tk+1)

⎞
⎠ ,
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t > 0, k > d/2 + 2. (37)

It follows from (35) and (37) that if f is a bounded continuous real valued function defined

on D, then ∫
D

k(x, y, t)f(x) dµ(x) = f(y) + O(t), y ∈ D. (38)
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