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Digital Images

A digital image is a rectangular array
of pixels. Each pixel has a position
and a value.

95 110 40 34

125 108 25 91

158 116 59 112

166 132 101 124

Original colour image from the Efficient
Content Based Retrieval Group, University
of Washington
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Size of Images

 Digital camera, 5,000x5,000 pixels, 3 
bytes/pixel -> 75 MB.

 Surveillance camera at 25 f/s ->

1875 MB/s.

 1000 surveillance cameras -> ~1.9 TB/s.

 Not all of these images are useful!
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Image Compression

 Divide the image into blocks, and compress 
each block separately, e.g. JPEG uses 8x8 
blocks.

 Lossfree compression: the original image can 
be recovered exactly from the compressed 
image.

 Lossy compression: the original image cannot 
be recovered.
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Why is Compression Possible?

Natural image: values of
neighbouring pixels are
strongly correlated.

White noise image: values of
neighbouring pixels are not
correlated. Compression discards
information.
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Measurement Space

Each 8x8 block yields a vector in R64. The vectors
from natural images tend to lie in a low dimensional
subspace of R64. 

R64

Vectors from 8x8 blocks
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Strategy for Compression

Choose a basis for R64 in which the low dimensional
subspace is spanned by the first few coordinate vectors.
Retain these coordinates and discard the rest. 

R64 vectors from 8x8 blocks
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Discrete Cosine Transform
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Basis Images for the DCT

UTe(1) UTe(2) UTe(3) UTe(4)
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Example of Compression using DCT

Original image Image constructed from 3 DCT
coefficients in each 8x8 block.



Histogram of a DCT Coefficient
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The pdf for ci is leptokurtic,
i.e. it has a peak at 0 and
"fat tails"

DCT(𝑤) = 

𝑖=1

64

𝑐𝑖𝑒(𝑖)



Sparseness of the DCT Coefficients

 For a given 8×8 block, only a few DCT 
coefficients ci are significantly different from 
0.

 For a given DCT coefficient, there exist some 
blocks for which it is large.
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Linear Classification

x
x

xx

x

x

y y
y y

Given two sets X, Y of
measurement vectors from
different classes, find a hyperplane
that separates X and Y.

A new vector is assigned to the
class of X or to the class of Y,
depending on its position relative
to the hyperplane.
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Projection to a Line
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Projection to the line defined by the unit vector w
separates the two sets, 𝑥 ⟼ 𝑥.𝑤
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Fisher Linear Discriminant

Let 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑚 and 𝑌𝑖 , 1 ≤ 𝑖 ≤ 𝑛 be two

sets of points in ℝ𝑘 from different classes.

Mean values: 𝜇𝑋, 𝜇𝑌
Covariances: 𝐶𝑋 , 𝐶𝑌

Project the 𝑋𝑖 and the 𝑌𝑖 onto the line with
direction 𝑤, 𝑋𝑖 ↦ 𝑤.𝑋𝑖, etc.

between class variance

within class variance
=
𝑤. 𝜇𝑋 − 𝜇𝑌

2

𝑤𝑇 𝐶𝑋 + 𝐶𝑌 𝑤
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Maximise Ratio of Variances

𝐶𝑋 + 𝐶𝑌 𝑤 = 𝜆 𝜇𝑋 − 𝜇𝑌

Equate the derivative of the ratio with 0, to obtain

where 𝜆 is an arbitrary number
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Two Classes of Edges

3x3 blocks matching mask
{{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}}

3x3 blocks matching mask
{{-1,-2,-1}, {0, 0, 0}, {1, 2, 1}}

𝑥.𝑚𝑎𝑠𝑘 > 0.8
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Projections Onto a 1-Dimensional FLD

Histogram for
{{-1,0,1}, {-2,0,2}, {-1,0,1}

Histogram for
{{-1,-2,-1}, {0,0,0}, {1,2,1}}

Combined
histograms



Discrete Distribution

 A probability distribution on a discrete 
set S={1, 2,…, n} is a set of numbers 𝑝𝑖
such that

0 ≤ 𝑝𝑖 ≤ 1

 

𝑖=1

𝑛

𝑝𝑖 = 1
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Interpretations

 Bayes: 𝑝𝑖 is a measure of our knowledge that 
item i is chosen from S.

 Frequentist: in a large number m of 
independent samples from S, i occurs 
approximately 𝑚 𝑝𝑖 times
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Terminology

 Event: subset of S

 Probability of event E:

P E =  𝑖𝜖𝐸 𝑝𝑖

 Conditional Probability:

𝑃 𝐸 𝐹 =
𝑃(𝐸 ∩ 𝐹)

𝑃(𝐹)
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Example

 Roll two dice. F=event that total is 8.

 S={(i, j), 1<=i, j<=6}

 The pairs (i, j) all have the same probability, 
thus

P({i, j})=1/36, 1<=i<=36

 F={(6,2), (2,6), (3,5), (5,3), (4,4)}

 P(F) = 5/36
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Example of a Conditional Probability

 E={(6,2)}. What is the probability of E 
given F (the total is 8)?

 𝑃 𝐸 𝐹 =
𝑃 𝐸∩𝐹

𝑃 𝐹
=
𝑃 𝐸

𝑃 𝐹
=

1

36

5/36
= 1/5
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Independent Events

 The events E, F are independent if
𝑃 𝐸 ∩ 𝐹 = 𝑃 𝐸 𝑃 𝐹

 Example: E=first number is 6

F=second number is 5

𝑃 𝐸 ∩ 𝐹 =
1

36
 P(E) = 1/6, P(F)=1/6
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Bayes Theorem

 If E, F are two events then

𝑃 𝐸 𝐹 = 𝑃 𝐹 𝐸 𝑃(𝐸)/𝑃(𝐹)

 Example: roll two dice

E = sum is 7

F = {(4, 3)}

P(E|F) = 1, P(E) = 1/6,

P(F) = 1/36, P(F|E) = 1/6
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Probability Density Function

 A pdf of the real line R is a function

𝑓: 𝑅 → 𝑅

such that
𝑓 𝑥 ≥ 0, 𝑥𝜖𝑅

 
−∞

∞

𝑓 𝑥 𝑑𝑥 = 1

 A pdf is used to assign probabilities to subsets of R:

P(A) =  𝐴 𝑓𝑑𝑥
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The Gaussian PDF
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𝑓 𝑥 = (2𝜋)−1/2𝑒−𝑥
2/2

Mean value: μ =  −∞
∞
𝑥𝑓 𝑥 𝑑𝑥

Variance:  −∞
∞
𝑥 − 𝜇 2𝑓 𝑥 𝑑𝑥



Estimation of Parameters

 Given samples 𝑥1, 𝑥2, … 𝑥𝑛 in R from a 
probability distribution, estimate the pdf, 
assuming it is Gaussian

 Mean value: 𝜇 =
1

𝑛
 𝑖=1
𝑛 𝑥𝑖

 Variance: 𝜎2 =
1

𝑛
 𝑖=1
𝑛 (𝑥𝑖 − 𝜇)

2
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𝑓 𝑥 = (2𝜋𝜎2)−1/2𝑒− 𝑥−𝜇
2/(2𝜎2)



Gaussian pdf in 2D

𝑓 𝑥, 𝑦 = (2𝜋)−1𝑒−(𝑥
2+𝑦2)/2
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Bayes Theorem for Parameter Estimation

 Given samples 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑛} in R from a 
Gaussian distribution with variance 1, 
estimate the mean value μ
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𝑝 𝜇|𝑋 = 𝑝 𝑋 𝜇 𝑝 𝜇 /𝑝(𝑋)

𝑝 𝜇 , 𝑝 𝑋 are prior pdfs, 
𝑝 𝑋|𝜇 is the likelihood function for 𝜇
𝑝 𝜇|𝑋 is the posterior pdf for 𝜇



Classification Problem

 Given an image 𝐷 of a digit, classify it as 

0 or 1 or … or 9.

 Let 𝜃 𝑖 be the hypothesis that the class 
is 𝑖.

 Assume that the probability density 

functions 𝑝 𝐷|𝜃 𝑖 are known

 The Bayes method gives the best solution
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MNIST database and 
http://andrew.gibiansky.com
/blog/machine-learning/
k-nearest-neighbors-
simplest-machine-learning/

http://andrew.gibiansky.com/blog/
http://andrew.gibiansky.com/blog/


Bayes Solution
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𝑝 𝜃 𝑖 |𝐷 = 𝑝 𝐷|𝜃 𝑖 𝑝 𝜃 𝑖 /𝑝 𝐷

𝑝 𝜃 𝑖 : prior density

𝑝 𝜃 𝑖 |𝐷 : posterior density

Find 𝑖 for which 𝑝 𝜃 𝑖 |𝐷 is a maximum

The density 𝑝 𝐷 is unknown, but only the ratios
𝑝 𝜃 𝑖 |𝐷 /𝑝 𝜃 𝑗 |𝐷 are required


