

1

Online Adaboost-Based Parameterized Methods for Dynamic

Distributed Network Intrusion Detection

Weiming Hu, Jun Gao, Yanguo Wang, and Ou Wu

(National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190)

{wmhu, jgao, ygwang, wuou}@nlpr.ia.ac.cn

Stephen Maybank

(Department of Computer Science and Information Systems, Birkbeck College, Malet Street, London WC1E 7HX)

sjmaybank@dcs.bbk.ac.uk

Abstract: Current network intrusion detection systems (NIDS) lack the adaptability to the frequently changing

network environments. Furthermore, intrusion detection in the new distributed architectures is now a major

requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first

algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In

the second algorithm, an improved online Adaboost process is proposed, and online GMMs are used as weak

classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized

detection model is constructed in each node using the online Adaboost algorithm. A global detection model is

constructed in each node by combining the local parametric models using a small number of samples in the node.

This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector

machines (SVM). The global model in each node is used to detect intrusions. Experimental results show that the

improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than

the traditional online Adaboost process which uses decision stumps. Both the algorithms outperform existing

intrusion detection algorithms. It is also shown that our PSO and SVM-based algorithm effectively combines the

local detection models into the global model in each node: the global model in a node can handle the intrusion

types which are found in other nodes, without sharing the samples of these intrusion types.

Index terms: Network intrusions, Dynamic distributed detection, Online Adaboost learning, Parameterized

model

1. Introduction

Network attack detection is one of the most important problems in network information security. Currently

there are mainly firewall, NIDS/NIPS (network-based intrusion detection and prevention systems) and UTM

(unified threat management) like devices to detect attacks in network infrastructure. NIDS/NIPS detect and

prevent network behaviors which violate or endanger network security. Basically, firewalls are used to block

certain types of traffic to improve the security. NIDS and firewalls can be linked to block network attacks. UTM

devices combine firewall, NIDS/NIPS and other capabilities onto a single device to detect similar events as

standalone firewalls and NIDS/NIPS devices. Deep Packet Inspection (DPI) [52] adds analysis on the application

layer, and then recognizes various applications and their contents. DPI can incorporate NIDS into firewalls. It

can increase the accuracy of intrusion detection, but it is more time-consuming, in contrast to traditional package

header analysis. This paper focuses on investigation of NIDS.

The current practical solutions for NIDS used in industry are misuse-based methods which utilize signatures

2

of attacks to detect intrusions by modeling each type of attack. As typical misuse detection methods, pattern

matching methods search packages for the attack features by utilizing protocol rules and string matching. Pattern

matching methods can effectively detect the well-known intrusions. But they rely on the timely generation of

attack signatures, and fail to detect novel and unknown attacks. In the case of rapid proliferation of novel and

unknown attacks, any defense based on signatures of known attacks becomes impossible. Moreover, the

increasing diversity of attacks obstructs modeling signatures.

Machine learning deals with automatically inferring and generalizing dependencies from data to allow

extrapolation of dependencies to unseen data. Machine learning methods for intrusion detection model both

attack data and normal network data, and allow for detection of unknown attacks using the network features [60].

This paper focuses on machine learning-based NIDS. The machine learning-based intrusion detection methods

can be classified as statistics-based, data mining-based, and classification-based. All the three classes of methods

first extract low level features and then learn rules or models which are used to detect intrusions. A brief review

of each class of methods is given below.

1) Statistics-based methods construct statistical models of network connections to determine whether a new

connection is an attack. For instance, Denning [1] construct statistical profiles for normal behaviors. The profiles

are used to detect anomalous behaviors which are treated as attacks. Caberera et al. [2] adopt the

Kolmogorov-Smirnov test to compare observation network signals with normal behavior signals, assuming that

the number of observed events in a time segment obeys the Poisson distribution. Li and Manikopoulos [22]

extract several representative parameters of network flows, and model these parameters using a hyperbolic

distribution. Peng et al. [23] use a nonparametric cumulative sum algorithm to analyze the statistics of network

data, and further detect anomalies on the network.

2) Data mining-based methods mine rules which are used to determine whether a new connection is an

attack. For instance, Lee et al. [3] characterize normal network behaviors using association rules and frequent

episode rules [24]. Deviations from these rules indicate intrusions on the network. Zhang et al. [40] use the

random forest algorithm to automatically build patterns of attacks. Otey et al. [4] propose an algorithm for

mining frequent itemsets (groups of attribute value pairs) to combine categorical and continuous attributes of

data. The algorithm is extended to handle dynamic and streaming data sets. Zanero and Savaresi [25] first use

unsupervised clustering to reduce the network packet payload to a tractable size, and then a traditional anomaly

detection algorithm is applied to intrusion detection. Mabu et al. [49] detect intrusions by mining fuzzy class

association rules using genetic network programming. Panigrahi and Sural [51] detect intrusions using fuzzy

logic, which combines evidence from a user’s current and past behaviors.

3) Classification-based methods construct a classifier which is used to classify new connections as either

attacks or normal connections. For instance, Mukkamala et al. [30] use the support vector machine (SVM) to

distinguish between normal network behaviors and attacks, and further identify important features for intrusion

detection. Mill and Inoue [31] propose the TreeSVM and ArraySVM algorithms for reducing the inefficiencies

which arise when a sequential minimal optimization algorithm for intrusion detection is learnt from a large set of

training data. Zhang and Shen [7] use SVMs to implement online intrusion detection. Kayacik et al. [5] propose

3

an algorithm for intrusion detection based on the Kohonen self organizing feature map (SOM). Specific attention

is given to a direct labeling of SOM nodes with the connection type. Bivens et al. [26] propose an intrusion

detection method in which SOMs are used for data clustering and multi-layer perceptron (MLP) neural networks

are used for detection. Hierarchical neural networks [28], evolutionary neural networks [29], and MLP neural

networks [27], have been applied to distinguish between attacks and normal network behaviors. Hu and

Heywood [6] combine SVM with SOM to detect network intrusions. Khor et al. [55] propose a dichotomization

algorithm in which rare categories are separated from the training data and cascaded classifiers are trained to

handle both the rare categories and other categories. Xian et al. [32] combine the fuzzy K-means algorithm with

the clonal selection algorithm to detect intrusions. Jiang et al. [33] use an incremental version of the K-means

algorithm to detect intrusions. Hoglund et al. [34] extract features describing network behaviors from audit data,

and use the SOM to detect intrusions. Sarasamma et al. [18] propose a hierarchical SOM which selects different

feature subset combinations that are used in different layers of the SOM to detect intrusions. Song et al. [35]

propose a hierarchical random subset selection-dynamic subset selection (RSS-DSS) algorithm to detect

intrusions. Lee et al. [8] propose an adaptive intrusion detection algorithm which combines the adaptive

resonance theory with the concept vector and the Mecer-Kernel. Jirapummin et al. [21] employ a hybrid neural

network model to detect TCP SYN flooding and port scan attacks. Eskin et al. [20] use a k-nearest neighbor

(k-NN)-based algorithm and a SVM-based algorithm to detect anomalies.

Although there is much work on intrusion detection, several issues are still open and require further

research, for example:

 Network environments and the intrusion training data change rapidly over time, as new types of attack

emerge. In addition, the size of the training data increases over time and can become very large. Most

existing algorithms for training intrusion detectors are offline. The intrusion detector must be retrained

periodically in batch mode in order to keep up with the changes in the network. This retraining is time

consuming. Online training is more suitable for dynamic intrusion detectors. New data are used to update

the detector and are then discarded. The key issue in online training is to maintain the accuracy of the

intrusion detector.

 There are various types of attributes for network connection data, including both categorical and

continuous ones, and the value ranges for different attributes differ greatly — from {0, 1} to describe the

normal or error status of a connection, to [0, 107] to specify the number of data bytes sent from source to

destination. The combination of data with different attributes without loss of information is crucial to

maintain the accuracy of intrusion detectors.

 In traditional centralized intrusion detection, in which all the network data are sent to a central site for

processing, the raw data communications occupy considerable network bandwidth. There is a

computational burden in the central site and the privacy of the data obtained from the local nodes cannot

be protected. Distributed detection [36], which shares local intrusion detection models learned in local

nodes, can reduce data communications, distribute the computational burden, and protect privacy. Otey

et al. [4] construct a novel distributed algorithm for detecting outliers (including network intrusions). Its

4

limitation is that many raw network data still need to be shared among distributed nodes. There is a

requirement for a distributed intrusion detection algorithm to make only a small number of

communications between local nodes.

In this paper, we address the above challenges, and propose a classification-based framework for the

dynamic distributed network intrusion detection using the online Adaboost algorithm [58]. The Adaboost

algorithm is one of the most popular machine learning algorithms. Its theoretical basis is sound, and its

implementation is simple. Moreover, the AdaBoost algorithm corrects the misclassifications made by weak

classifiers and it is less susceptible to over-fitting than most learning algorithms. Recognition performances

of the Adaboost-based classifiers are generally encouraging. In our framework, a hybrid of online weak

classifiers and an online Adaboost process results in a parameterized local model at each node for intrusion

detection. The parametric models for all the nodes are combined into a global intrusion detector in each

node using a small number of samples, and the combination is achieved using an algorithm based on

particle swarm optimization (PSO) and SVMs. The global model in a node can handle the attack types

which are found in other nodes, without sharing the samples of these attack types. Our framework is

original in the following ways:

 In the Adaboost classifier, the weak classifiers are constructed for each individual feature

component, both for continuous and categorical ones, in such a way that the relations between these

features can be naturally handled, without any forced conversions between continuous features and

categorical features.

 New algorithms are designed for local intrusion detection. The traditional online Adaboost process

and a newly proposed online Adaboost process are applied, to construct local intrusion detectors.

The weak classifiers used by the traditional Adaboost process are decision stumps. The new

Adaboost process uses online Gaussian Mixture Models (GMM) as weak classifiers. In both cases

the local intrusion detectors can be updated online. The parameters in the weak classifiers and the

strong classifier construct a parametric local model.

 The local parametric models for intrusion detection are shared between the nodes of the network.

The volume of communications is very small and it is not necessary to share the private raw data

from which the local models are learnt.

 We propose a PSO and SVM-based algorithm for combining the local models into a global detector

in each node. The global detector which obtains information from other nodes obtains more

accurate detection results than the local detector.

The remainder of this paper is organized as follows. Section 2 introduces the distributed intrusion detection

framework. Section 3 describes the online Adaboost-based local intrusion detection models. Section 4 presents

the method for constructing the global detection models. Section 5 shows the experimental results. Section 6

summarizes the paper.

2. Overview of Our Framework

In the distributed intrusion detection framework, each node independently constructs its own local intrusion

5

detection model according to its own data. By combining all the local models, at each node, a global model is

trained using a small number of the samples in the node, without sharing any of the original training data

between nodes. The global model is used to detect intrusions at the node. Fig. 1 gives an overview of our

framework which consists of the modules of data preprocessing, local models, and global models.

Fig. 1. Overview of the intrusion detection framework

1) Data preprocessing: For each network connection, three groups of features [9] which are commonly

used for intrusion detection are extracted: basic features of individual TCP (transmission control protocol)

connections, content features within a connection suggested by domain knowledge, and traffic features computed

using a two-second time window [14]. The extracted feature values from a network connection form a vector x =

(x1, x2, …, xD), where D is the number of feature components. There are continuous and categorical features,

and the value ranges of the features may differ greatly from each other. The framework for constructing these

features can be found in [9]. A set of data is labeled for training purposes. There are many types of attacks on the

Internet. The attack samples are labeled as “-1”, “-2”, ... depending on the attack type, and the normal samples

are all labeled as “+1”.

2) Local models: The construction of a local detection model at each node includes the design of weak

classifiers and Adaboost-based training. Each individual feature component corresponds to a weak classifier. In

this way, the mixed attribute data for the network connections can be handled naturally, and full use can be made

of the information in each feature. The Adaboost training is implemented using only the local training samples at

each node. After training, each node contains a parametric model which consists of the parameters of the weak

classifiers and the ensemble weights.

3) Global models: By sharing all the local parametric models, a global model is constructed using the PSO

and SVM-based algorithm in each node. The global model in each node fuses the information learned from all

the local nodes using a small number of training samples in the node. Feature vectors of new network

connections to the node are input to the global classifier, and classified as either normal or attacks. The results of

the global model in the node are used to update the local model in the node and the updated model is then shared

Online Adaboost learning

Local model 1

Network
connections

Classification
results of new
connections

Global model 1

Feature extraction
and data labeling

Distributed node 1 Distributed node N

Online Adaboost learning

Local model N

Network
connections

Global model N

Feature extraction
and data labeling

Classification
results of new
connections

……

……

PSO and SVM algorithm

6

by other nodes.

3. Local Detection Models

The classical Adaboost algorithm [37] carries out the training task in batch mode. A number of weak

classifiers are constructed using a training set. Weights, which indicate the importance of the training samples,

are derived from the classification errors of the weak classifiers. The final strong classifier is an ensemble of

weak classifiers. The classification error of the final strong classifier converges to 0. However, the Adaboost

algorithm based on offline learning is not suitable for networks. We apply online versions of Adaboost to

construct the local intrusion detection models. It is proved in [38] that the strong classifier obtained by the online

Adaboost converges to the strong classifier obtained by the offline Adaboost as the number of training samples

increases.

In the following, we first introduce the weak classifiers for intrusion detection, and then describe the online

Adaboost-based intrusion detection algorithms.

3.1. Weak classifiers

Weak classifiers which can be updated online match the requirement of dynamic intrusion detection. We

consider two types of weak classifier. The first type consists of decision stumps for classifying attacks and

normal behaviors. The second type consists of online GMMs which model a distribution of values of each

feature component for each attack type.

3.1.1. Decision stumps

A decision stump is a decision tree with a root node and two leaf nodes. A decision stump is constructed for

each feature component of the network connection data.

For a categorical feature f, the set of attribute values
fC is divided into two subsets

f

iC and
f

nC with

no intersection, and the decision stump takes the form:

1
()

1

f

f n

f f

f i

x C
h x

x C

 
 

 

 (1)

where fx is the attribute value of x on the feature f. The subsets
f

iC and
f

nC are determined using the

training samples: for an attribute value z on a feature f, all the training samples whose attribute values on f are

equal to z are found; if the number of attack samples in these samples is more than the number of normal

samples, then z is assigned to
f

iC , otherwise, z is assigned to
f

nC . In this way, the false alarm rate for the

training samples is minimized.

For a continuous feature f, the range of attribute values is split by a threshold v, and the decision stump

takes the form:

1
()

1

f

f

f

x v
h x

x v


 

 
. (2)

The threshold v is determined by minimizing the false alarm rate for the training samples.

7

The above design of weak classifiers for intrusion detection has the following advantages:

 The decision stumps operate on individual feature components. This first deals naturally with

combination of information from categorical attributes and from continuous attributes, and second deals

with the large variations in value ranges for the different feature components.

 There is only one comparison operation in a decision stump. The computation complexity for

constructing the decision stumps is very low, and online updating of decision stumps can be easily

implemented when new training samples are obtained.

The limitation of the above design of weak classifiers is that the decision stumps do not take into account the

different types of attacks. This may influence the performance of the Adaboost method.

3.1.2. Online GMM

For the samples of each attack type or the normal samples, we use a GMM to model the data on each

feature component. Let  1, 1, 2, ,c M     be a sample label, where “+1” represents the normal

samples and “-1, -2,…-M” represents different types of attacks where M is the number of attack types. The

GMM model
c

j on the jth feature component for the samples with label c is represented as:

 
1

(), (), ()
K

c c c c

j j j j i
i i i   


 (3)

where K is the number of GMM components indexed by i, and  ,  and  represent the weight, mean and

standard deviation for the corresponding component. Then, the weak classifier on the jth feature is constructed

as:

1 1
1 (|) (|) 1, 2,...,

()

1

c

j j

j

if p x p x for c M
h x M

otherwise

 
    

 


 (4)

where “1/M” is used to weight the probabilities for attack types in order to balance the importance of the attack

samples and the normal samples. In this way, the sum of the weights for all the types of attack samples is equal

to the weight of normal samples, and then the false alarm rate is reduced for the final ensemble classifier.

The traditional way for estimating the parameter vectors
c

j , using the K-means clustering and the

expectation-maximization (EM) algorithm [41], from the training samples, is time-consuming and is not suitable

for online learning. In this paper, we use the online EM-based algorithm [44] to estimate these parameters. Given

a new sample (,)x y where x is the feature vector of the sample and {1, 1, 2 }y   , the parameter vectors

y

j are updated using the following steps:

Step 1: Update the number ()y

jN i of the training samples belonging to the ith component of the GMM

by:

()
1

() ()

0

y

j

y

i j

x i
if T

x i

else





 


  



 (5)

8

() () ()y y

j j iN i N i x  (6)

where the binary function ()i x determines whether (x, y) belongs to the ith component, and

the threshold T depends on confidence limits required.

 Update ()y

j i by:

1

()
()

()

y

jy

j K
y

j

k

N i
i

N k








. (7)

Step 2: Calculate the following equation:

1

() (| (), ()) ()
K

y y y

j j j i

i

i p x i i x  


  . (8)

where describes the relation between (x, y) and the GMM of
y

j .

If 0 , then go to Step 3; else (0 means that there is no relation between (x, y) and the

GMM of
y

j), go to Step 5 for setting a new Gaussian component for (x, y).

Step 3: Update the sum ()y

jA i of the weighted probabilities for all the input training samples belonging

to the ith component by:

() () (| (), ()) () /y y y

j j j ii i p x i i x     (9)

() () ()y y

j jA i A i i  (10)

where ()i is the probability that (x, y) belongs to the ith component of the GMM.

Step 4: Update ()y

j i and ()y

j i by:

() () ()
() ()

() ()

y

jy y

j jy y

j j

A i i i
i i x

A i A i

 
 


  (11)

2 2 2
() () (() ()) ()

() () (())
() ()

y y

j jy y y

j j jy y

j j

A i i A i i i
i i x i

A i A i

  
  

 
   . (12)

 Exit.

Step 5: Reset a Gaussian component t in y

j by:

arg min(())y

j
i

t i (13)

() () 1

() () 1

y y

j j

y y

j j

N t N t

A t A t

  


 

 (14)

()

()

y

j

y

j

t x

t



 

 




. (15)

 where  is used to initialize the standard deviation of the component t.

9

The terms () / ()y

ji A i in (11) and (() ()) () / ()y y

j jA i i i A i  in (12) are the learning rates of the algorithm.

They are changed dynamically: getting smaller with the growth of the training samples. This behavior of the

learning rates ensures that the online EM algorithm achieves the balance between the stability needed to keep the

characteristics of the model learned from the previous samples and necessity of adapting the model as new

samples are received.

The computational complexity of the online GMM for one sample is ()O K . While the online GMM,

which can be used to model distributions of each type of attack, has a higher complexity than decision stumps,

the complexity for the online GMM is still very low as K is a small integer. So, the online GMM is suitable in

online environments.

3.2. Online ensemble learning

To adapt to online training in which each training sample is used only once for learning the strong classifier,

online Adboost makes the following changes to the offline Adaboost:

● All the weak classifiers are initialized.

● Once a sample is input, a number of weak classifiers are updated using this sample, and the weight of this

sample is changed according to certain criteria such as the weighted false classification rate of the weak

classifiers.

In the following, we first apply the traditional online Adaboost algorithm to intrusion detection, and then we

propose a new and more effective online Adaboost algorithm.

3.2.1. Traditional online Adaboost

Oza [38] proposes an online version of Adaboost, and gives a convergence proof. This online Adaboost

algorithm has been applied to the computer vision field [42]. When a new sample is input to the online Adaboost

algorithm, all the weak classifiers (ensemble members) are updated in the same order [10]. Let 1,...,{ }t t Dh  be

the weak classifiers. This online Adaboost algorithm is outlined as follows:

Step 1: Initialize the weighted counters
sc

t and
sw

t of “historical” correct and wrong classification

results for the t-th weak classifier th as: 0sc

t  , 0sw

t  (t=1, 2, …, D).

Step 2: For each new sample (x, y)

Initialize the weight  of the current sample as: 1  .

For t = 1, 2, …, D

(a) Randomly sample an integer k from the Poisson distribution: ()Poisson  .

(b) Update the weak classifier th using the sample (x, y) k times

(c) If the weak classifier th correctly classifies the sample (x, y), i.e. () ()th x sign y ,

then

the weighted correct classification counter
sc

t is updated by
sc sc

t t    ;

10

the approximate weighted false classification rate t is updated by:

sw

t
t sc sw

t t




 



 (16)

the weight of the sample (x, y) is updated by:

1

2(1)t

 


 
  

 
 (17)

else

sw

t is updated by
sw sw

t t    ;

t is updated using (16);

the weight of the sample (x, y) is updated by:

1

2 t

 


 
  

 
. (18)

(d) The weight t for the weak classifier th is:

1
log t

t

t






 
  

 
. (19)

The weight t reflects the importance of feature t for detecting intrusions.

Step 3: The final strong classifier is defined by:

1 1

1
() () log ()

D D
t

t t t

t t t

H x sign h x sign h x



 

   
       

    
  . (20)

The differences between the offline Adaboost algorithm and the online Adaboost algorithm are as follows:

 In the offline Adaboost algorithm, the weak classifiers are constructed in one step using all the training

samples. In the online Adaboost algorithm, the weak classifiers are updated gradually as the training

samples are input one by one.

 In the offline Adaboost algorithm, all the sample weights are updated simultaneously according to the

classification results of the optimal weak classifier for the samples. In the above online Adaboost

algorithm, the weight of the current sample changes as the weak classifiers are updated one by one using

the current sample.

 In the offline Adaboost algorithm, the weighted classification error for each weak classifier is calculated

according to its classification results for the whole set of the training samples. In online Adaboost, the

weighted classification error for each weak classifier is estimated using the weak classifier’s

classification results only for the samples which have already been input.

 The number of weak classifiers is not fixed in the offline Adaboost algorithm. In the online Adaboost,

the number of weak classifiers is fixed, and equal to the dimension of the feature vectors.

 When only a few training samples have been input, the online ensemble classifier is less accurate than

11

the offline ensemble classifier. As the number of training samples increases, the accuracy of the online

ensemble classifier gradually increases until it approximates to the accuracy of the offline ensemble

classifier [43].

The limitation of the traditional online Adaboost algorithm is that for each new input sample, all the weak

classifiers are updated in a predefined order. The accuracy of the ensemble classifier depends on this order.

There is a tendency to over-fit to the weak classifiers which are updated first.

3.2.2. A new online Adaboost algorithm

To deal with the limitation of the traditional online Adaboost, our new online Adaboost algorithm selects a

number of weak classifiers according to a certain rule and updates them simultaneously for each input training

sample. Let S 
 and S 

 be, respectively, the numbers of the normal and attack samples which have already

been input. Let  be the number of the samples, each of which is correctly classified by the previous strong

classifier which has been trained before the sample is input. Let
sc

t be the sum of the weights of the input

samples that are correctly classified by the weak classifier th . Let
sw

t be the sum of the weights of the input

samples that are mistakenly classified by th . Let tC be the number of the input samples which are correctly

classified by th . All the parameters S 
, S 

,  ,
sc

t ,
sw

t , and tC are initialized to 0. For a new sample

(,)x y , {1, 1, 2, }y   , the strong classifier is updated online by the following steps:

Step 1: Update the parameter S 
 or S 

 by:

1 1

1

S S if y

S S else

 

 

   


 

. (21)

Initialize the weight  of the new sample by:

1() /

() /

if yS S S

elseS S S





  

  

  


 

 (22)

where  follows the change of S 
 and S 

, in favor of balancing the proportion of the

normal samples and the attack samples to ensure that the sum of the weights of the attack

samples equals to the sum of the weights of the normal samples.

Step 2: Calculate the combined classification rate t for each weak classifier th by:

(1) () () (1) () ()
sw

t
t t t tsc sw

t t

sign y h x sign y h x


     
 

     


 (23)

where  is a weight ranging in (0,0.5] . The rate t combines the “historical” false

classification rate t of th for the samples input previously and the result of th for the

current sample (x, y). The rate t is more effective than t , as it gives th whose t is high

more chance to be updated and then increases the detection rate of th .

Define min by:

12

{1,2,... }
min min t

t D
 


 (24)

The weak classifiers  
1,...,t t D

h


 are ranked in the ascending order of t and then the weak

classifiers are represented by
1 2

{ , , , }
Dr r rh h h , {1,2, , }ir D .

Step 3: The weak classifies whose combined classification rates ri are not larger than 0.5 are selected

from
1 2

{ , , , }
Dr r rh h h . Each of these selected weak classifiers rih is updated using (x, y) in the

following way:

Compute the number
iP of iterations for

rih by:

(exp((min)))i iP Integer P      (25)

where  is an attenuation coefficient and P is a predefined maximum number of

iterations.

Repeat the following steps (a) and (b) iP times in order to update rih :

(a) Online update rih using (x, y).

(b) Update the sample weight  ,
sc

t , and
sw

t :

If () ()risign y h x , then

1

1 2

2(1)

t t

sc sc

ri ri

ri

C C

  


 



  




 


    
  

. (26)

 ( is decreased)

If () risign y h , then

1 2

2

sw sw

ri ri

ri

  


 



  


  
  

 

. (27)

( is increased)

Step 4: Update tC ,
sc

t and
sw

t for each th of the weak classifiers whose combined classification

rates are larger than 0.5 (0.5t ):

 if () ()tsign y h x , then

1t t

sc sc

t t

C C

  

 


 
 (28)

else
sw sw

t t    .

13

Step 5: Update the parameter  : If the current sample is correctly classified by the previous strong

classifier which has been trained before the current sample (x, y) is input, then 1 .

Step 6: Construct the strong ensemble classifier:

 Calculate the ensemble weight
*

t of th by

* 1
log (1) logt t

t

t

C
  



   
     

  

. (29)

The
*

t is normalized to t by:

*

*

1

t
t D

i

i










. (30)

The strong classifier H(x) is defined by:

1

() (())
D

t t

t

H x sign h x


  . (31)

We explain two points for the above online Adaboost algorithm:

 The attenuation coefficient  controls the number of weak classifiers which are chosen for further

updating. When  is very small, iP is large and all the chosen weak classifiers are updated using the

new sample. When  is very large, iP equals 0 if t is large. As a result, for very large  , only the

weak classifiers with the small t are updated.

 The ensemble weight t , which is calculated from t and log(/)tC  , is different from the one in

the traditional Adaboost algorithm. The term log(/)tC  which is called a “contributory factor”

represents the contribution rate of
th to the strong classifier. It can be used to tune the ensemble

weights to attain better detection performance.

3.3. Adaptable initial sample weights

We use the detection rate and the false alarm rate to evaluate the performance of the algorithm for detecting

network intrusions. It is necessary to pay more attention to the false alarm rate, because in real applications most

network behaviors are normal. A high false alarm rate wastes resources, as each alarm has to be checked. For

Adaboost-based learning algorithms, the detection rate and the false alarm rate depend on the initial weights of

the training samples. So we propose to adjust the initial sample weights in order to balance the detection rate and

the false alarm rate. We introduce a parameter (0,1)r for setting the initial weight  of each training

sample:

(1)

normal intrusion

normal

normal intrusion

intrusion

N N
r for normal connections

N

N N
r for network intrusions

N







 

  


. (32)

14

where normalN and intrusionN are approximated using the numbers of normal samples and attack samples

which have been input online to train the classifier. The sums of the weights for the normal samples and the

attack samples are ()normal intrusionN N r  and () (1)normal intrusionN N r   respectively. Through adjusting

the value of the parameter r, we change the importance of normal samples or attack samples in the training

process, and then make a tradeoff between the detection rate and the false alarm rate of the final detector. The

selection of r depends on the proportion of the normal samples in the training data, and the requirements for the

detection rate and the false alarm rate in specific applications.

3.4. Local parameterized models

Subsequent to the construction of the weak classifiers and the online Adaboost learning, a local

parameterized detection model  is formed in each node. The local model consists of the parameters w of

the weak classifiers and the parameters d for constructing the Adaboost strong classifier: { , }w d   . The

parameters for each decision stump-based weak classifier include the subsets
f

iC and
f

nC for each

categorical feature and the thresholds v for each continuous feature. The parameters for each GMM-based weak

classifier include a set of GMM parameters { | 1,2,..., ;c

w j j D   1, 1, 2,...}c    . The parameters of

the strong classifier for the online Adaboost algorithm include a set of ensemble weights

{ | 1,2,..., }d t t D   for the weak classifiers.

The parameters in the decision stump-based weak classifiers depend on the differences between normal

behaviors and attacks in each component of the feature vectors. The parameters in the GMM-based weak

classifiers depend on the distributions of the different types of attacks and normal behaviors in each component

of the feature vectors. The parameters in the strong classifier depend on the significances of individual feature

components for intrusion detection. The local detection models capture the distribution characteristics of

observed mixed-attribute data in each node. They can be exchanged between the different nodes.

Compared with the non-parametric distributed outlier detection algorithm proposed by Otey et al. [4],

where a large amount of statistics about frequent itemsets need to be shared among the nodes, the parametric

models are not only concise to be suitable for information sharing, but also very useful to generate global

intrusion detection models.

4. Global Detection Models

The local parametric detection models are shared among all the nodes, and combined in each node to

produce a global intrusion detector using a small number of samples left in the node (most samples in the node

are removed, in order to adapt to changing network environments). This global intrusion detector is more

accurate than the local detectors which may be only adequate for specific attack types, due to the limited training

data available at each node.

Kittler et al. [11] develop a common theoretical framework for combining classifiers using the product rule,

the sum rule, the max rule, the min rule, the median rule, and the majority vote rule. It is shown that the sum rule

15

has a better performance than others. Some researchers fuse multi-classifiers by combine the output results of all

the classifiers into a vector, and then using a classifier, such as SVM or ANN, to classify the vectors.

The combination of the local intrusion detection models has two problems. First, there may be large

performance gaps between the local detection models for different types of attacks, especially for new attack

types which have not appeared previously. So, the sum rule may not be the best choice for combining the local

detectors. Second, some of the local models may be similar for a test sample. If the results of the local models

for the test sample are combined into a vector, the dimension of the vector has to be reduced to choose the best

combination of the results from local models.

To solve the above two problems, we combine the particle swarm optimization (PSO) and SVM algorithms,

in each node, to construct the global detection model. The PSO [12, 13] is a population search algorithm which

simulates the social behavior of birds flocking. The SVM is a learning algorithm based on the structural risk

minimization principle from statistical learning theory. It has a good performance even if the set of the training

samples is small. We use the PSO to search for the optimal local models and the SVM is trained using the

samples left in a node. Then, the trained SVM is used as the global model in the node. By combining the

searching ability of the PSO and the learning ability of the SVM for small sample sets, a global detection model

can be constructed effectively in each node.

The state of a particle i used in the PSO for one of the A nodes is defined as 1 2(, , ,)i AX x x x ,

{0,1}jx  , where “ 1jx  ” means that the j-th local model is chosen, and “ 0jx  ” means the j-th local model

is not chosen. For each particle, a SVM classifier is constructed. Let L be the number of local detection nodes

chosen by the particle state iX . For each network connection sample left in the node, a vector 1 2(, , ,)Lr r r

is constructed, where jr is the result of the j-th chosen local detection model for the sample (corresponding to

(20) and (31)):

1

()
D

j t t

t

r h x


 (33)

where D is the dimension of network connection feature vectors. These results are in the range [-1, 1]. All the

vectors corresponding to the small number of samples left in the node, together with the attributions (normal

connections or attacks) of the samples, are used to train the SVM classifier.

Each particle i has a corresponding fitness value which is evaluated by a fitness model ()if X . Let

()iX be the detection rate of the trained SVM classifier for particle i, where the detection rate is estimated

using another set of samples in the node. The fitness value is evaluated as:

() * () (1) logi i

A L
f X X

A
  


   (34)

where  is a weight ranging between 0 and 1.

For each particle i, its individual best state
l

iS which has the maximum fitness value is updated in the n-th

PSO iteration using the following equation:

16

, ,if () (S)l

l i n i n i

i l

i

X f X f
S

S else

 
 


 (35)

The global best state
gS in all the particles is updated by:

arg max ()
l
i

g l

i
S

S f S (36)

Each particle in the PSO is associated with a velocity which is modified according to its current best state and

the current best state among all the particles:

 , 1 , 1 1 , 2 2 ,() ()l g

i n i n i i n i nV F wV c S X c S X       (37)

where w is the inertia weight which is negatively correlated with the number of iterations; 1c and
2c are

acceleration constants called the learning rates; 1 and 2 are relatively independent random values in the

range [0,1]; and ()F is a function which confines the velocity within a reasonable range:

max

max

()
V if V V

F V
V else

 
 


. (38)

The states of the particles are evolved using the updated velocity :

, 1 , , 1i n i n i nX X V   . (39)

In theory, PSO can find the global optimum after sufficiently many iterations. In practice, a local optimum

may be obtained, due to an insufficient number of iterations. PSO has a higher probability of reaching the global

optimum than gradient descent approaches or particle filtering approaches.

The SVM and PSO-based fusion algorithm is outlined as follows:

Step 1: Initialization: The particles  ,0 1i i
X


 are randomly chosen in the particle space, where is the

number of particles. ,0

l

i iS X . A SVM classifier is constructed for each particle, and the

detection rate ,0()iX of the SVM classifier is calculated. The fitness value ,0()if X is

calculated using (34). The global best state gS is estimated using (36). 0n  .

Step 2: The velocities  , 1 1i n i
V  

 are updated using (37).

Step 3: The particles’ states  , 1 1i n i
X  

 are evolved using (39).

Step 4: The SVM classifier is constructed for each particle, and the detection rate , 1()i nX  is calculated.

The fitness values , 1()i nf X  are calculated using (34). The individual best states  
1

l

i i
S


 are

update using (35). The global best sate
gS is updated using (36).

Step 5: 1n n  . If ()gf S max_fintness or the predefined number of iterations is achieved, then

the particle evolution process terminates and the SVM classifier corresponding to
gS is chosen

17

as the final classifier — the global model in the node; otherwise go to Step 2 for another loop of

evolution.

When certain conditions are met, nodes may transmit their local models to each other. Then, each node can

construct a customized global model using a small set of training samples randomly selected from the

“historical” training samples in the node according to the proportion of various kinds of the network behaviors.

Once local nodes gain their own global models, the global models are used to detect intrusions: for a new

network connection, the vector of the results from the local models chosen by the global best particle is used as

the input to the global model whose result determines whether the current network connection is an attack.

We explain two points:

● A uniform global model can be constructed for all the local nodes. But, besides the parameters of local

models, small sets of samples should be shared through communications between the nodes.

● The computational complexity of the PSO for searching for the optimal local models determines the

scale of network for our global model. The computational complexity of the PSO is
2 2()O IA 

where I is the number of iterations, and  is the number of the training samples.

5. Experiments

We use the KDD (Knowledge Discovery and Data Mining) CUP 1999 dataset [14, 15, 16, 45] to test our

algorithms. This dataset is still the most trustful and credible public benchmark dataset [53, 54, 55, 56, 57, 58, 59]

for evaluating network intrusion detection algorithms. In the dataset, 41 features including 9 categorical features

and 32 continuous features are extracted for each network connection. Attacks in the dataset fall into four main

categories:

 DOS: denial-of-service;

 R2L: unauthorized access from a remote machine, e.g. guessing password;

 U2R: unauthorized access to local super-user (root) privileges;

 Probe: surveillance and other probing, e.g. port scanning.

Each of the four categories contains some low-grade attack types. The test dataset includes some attack types

that do not exist in the training dataset. The numbers of normal connections and each category of attacks in the

training and test datasets are listed in Table 1.

Table 1. The KDD CUP 1999 data set

Categories Training data Test data

Normal 97278 60593

DOS 391458 223298

R2L 1126 5993

U2R 52 39

Probing 4107 2377

Others 0 18729

Total 494021 311029

In the following, we first introduce the performances of our online learning-based intrusion detection

18

algorithms: one with decision stumps and the traditional online Adaboost process, and the other with online

GMMs and our proposed online Adaboost process. Then, the performance of our PSO and SVM-based

distributed intrusion detection algorithm is evaluated.

5.1. Local models

For the online local models, the ability to handle mixed features, the effects of parameters on detection

performance, and the ability to learn new types of attacks are estimated in succession. Finally, the performances

of our algorithms are compared with the published performances of the existing algorithms.

1) Handling mixed features

Table 2 shows, respectively, the results of the classifier with decision stumps and the traditional online

Adaboost and the classifier with online GMMs and our online Adaboost, when only continuous features or both

continuous features and categorical features are used respectively, tested on the KDD training and test data sets

respectively. It is seen that the results obtained by using both continuous and categorical features are much more

accurate than the results obtained by only using continuous features. This shows the ability of our algorithms to

handle mixed features in network connection data.

Table 2. The results obtained by using only continuous features or both continuous and categorical features

Algorithms Features
Training data Test data

Detection
rate

False alarm
rate

Detection
rate

False alarm
rate

Decision stump +

Traditional online Adaboost

Only Continuous 98.68% 8.35% 90.05% 13.76%

Continuous + Categorical 98.93% 2.37% 91.27% 8.38%

Online GMM + Our online

Adaboost

Only Continuous 98.79% 7.83% 91.33% 11.34%

Continuous + Categorical 99.02% 2.22% 92.66% 2.67%

2) Effects of parameters on detection performance

In the following, we illustrate the effects of important parameters, i.e. the adaptable initial weight parameter

r in (32), the data distribution weight coefficient “1/M” in (4), the parameter  in (23), the parameter  in

(29), and the attenuation coefficient parameter  in (25).

Table 3. The results of the algorithm with decision stumps and the traditional online Adaboost when adaptable initial weights are

used

r
Training data Test data

Detection rate False alarm rate Detection rate False alarm rate

0.25 98.71% 2.38% 90.83% 8.42%

0.3 98.69% 0.78% 90.69% 2.29%

0.35 98.63% 0.77% 89.80% 1.92%

0.4 98.53% 0.73% 89.66% 1.88%

0.5 98.16% 0.16% 88.97% 0.37%

Table 3 shows the results of the algorithm with decision stumps and the traditional online Adaboost when

the adaptable initial weights formulated by (32) are used. When r is increased the detection rate and the false

alarm rate are decreased. An appropriate setting of r is 0.3, as with this value of r, the false alarm rate of 2.28%

is much smaller than the false alarm rate of 8.42% obtained by choosing r as 0.25, while an acceptable detection

rate of 90.69% is still obtained. As shown in Table 2, when an identical initial weight is used for each training

sample in the traditional online Adaboost algorithm using decision stumps as weak classifiers, a high detection

19

rate of 91.27% is obtained on the test data, but the false alarm rate is 8.38%, which is too high for intrusion

detection. After adaptable initial weights are introduced, although the detection rate is slightly decreased, the

false alarm rate is much decreased, producing more suitable results for intrusion detection. This illustrates that

adjustable initial weights can be used effectively to balance the detection rate and the false alarm rate.

Table 4 shows the results of the algorithm with online GMMs and our online Adaboost when the data

distribution weight “1/M” in (4) and adaptable initial weights are used or not used. It is seen that when the

parameter M is not used, the false alarm rate is 54.15%, which is too high for intrusion detection. When the

parameter M is used, the false alarm rate falls to 4.82%. When adaptable initial weights are used (r is set to 0.35)

the false alarm rate further falls to 1.02%, while an acceptable detection rate is maintained.

Table 4. The results of our online Adaboost algorithm based on online GMMs with or without adaptable initial weights and the data

distribution weight “1/M”

Parameters

Training data Test data

Detection rate False alarm rate Detection rate False alarm rate

Without the data distribution

weight “1/M”
99.86% 48.85% 97.49% 54.15%

With “1/M” and without

adaptable initial weights
99.22% 8.10% 91.74% 4.82%

With “1/M” and adaptable

initial weights
98.91% 2.65% 90.65% 1.02%

Parameters  in (23) and  in (29) influence the detection results. Table 5 shows the detection rates

and false-alarm rates of the algorithm with online GMMs and our online Adaboost when 0  or 0.1 and

1  or 0.8. From this table, the following two points are deduced:

 When  is set to 0, the false alarm rate is very high. This is because the weak classifiers are chosen

only according to the false classification rate t , without taking into account the current sample.

Adopting the measure t of the combined classification rate balances the effects of “historical”

samples and the current sample, and then results in more accurate results.

 When  is set to 1, the detection rate is too low. This is because under this case only t is used to

weight the weak classifiers, i.e. every weak classifier is weighted in the same way as in the offline

Adaboost and the traditional online Adaboost. In the online training process, weighting every weak

classifier only using t causes over-fitting to some weak classifiers. Namely, the ensemble weights of

weak classifiers based only on t are not accurate. Weighting weak classifiers by combining t and

“contributory factors” yields the better performance.

Table 5. The results of the algorithm with online GMMs and our online Adaboost when 0  or 0.1 and 0.8  or 1

 Detection rate False alarm rate

0   0.8  96.22% 77.66%

0.1  , 1  85.36% 0.60%

0.1  , 0.8  91.15% 1.69%

20

The attenuation coefficient  in (25) is important for the performance of our online Adaboost algorithm.

Table 6 shows the detection rates and the false alarm rates of our online Adaboost algorithm based on GMMs,

when  ranges from 10 to 50. When {20,25,30}  , the updating times Pt is better chosen for the weak

classifiers and thus good results are obtained. In fact, when  is set to 25, the detection rate reaches 91.15%

with a false-alarm rate of 1.69%. This is a preferable result compared with those obtained when  is set to 10

or 50.

Table 6. The detection results of our online Adaboost algorithm based on online GMMs with varying 

 Detection rate False alarm rate

10 92.50% 12.87%

20 90.61% 1.17%

25 91.15% 1.69%

30 90.55% 1.26%

40 88.28% 0.37%

50 24.33% 0.34%

3) Learning new attack types

The ability to learn effectively from new types of attacks and then correctly detect these types of attacks is

an attractive and important characteristic of our online Adaboost-based intrusion detection algorithms.

Fig. 2. Online learning with decision stumps and the traditional online Adaboost for “guess-passwd” attacks

Figs. 2 and 3 show the online learning process of the ensemble classifier with decision stumps and the

traditional online Adaboost with respect to two attack types, “guess-passwd” and “httptunnel”, which have not

appeared before in the training data. In the figures, the horizontal coordinate indicates the number of samples of

“guess-passwd” or “httptunnel”, which have appeared in the learning process; and the vertical coordinate

indicates the class label y predicted by the detector for a sample before it takes part in the learning process,

where “ 1y  ” means that the sample is mistakenly classified as a normal connection, and “ 1y   ” means that

it is correctly classified as a network attack. It is seen that at the beginning of learning for new types of attacks,

the classifier frequently classifies mistakenly samples of these new attack types as normal network connections.

After some samples of these types of attacks take part in the online learning of the classifier, these new attack

21

types are much more correctly detected. These two examples show the effectiveness of online learning of the

algorithm with decision stumps and the traditional online Adaboost for new attack types.

Fig. 3. Online learning with decision stumps and the traditional online Adaboost for “httptunnel” attacks

Figs. 4 and 5 show the online learning process of the ensemble classifier with online GMMs and our online

Adaboost for the two attack types, “guess-passwd” and “httptunnel”, which have not appeared before in the

training data. It is seen that after some samples of “guess-passwd” and “httptunnel” occur in the online learning,

these two types of samples are then detected much more correctly by the ensemble classifier. Compared with the

classifier with decision stumps and the traditional online Adaboost, the classifier with online GMMs and our

online Adaboost learns the new types of attacks more quickly and accurately. This is because the classifier with

online GMMs and our online Adaboost has more powerful learning ability based on modeling the distributions

of each type of attacks.

Fig. 4. Online learning with online GMMs and our online Adaboost for “guess-passwd” attacks

Fig. 5. Online learning with online GMMs and our online Adaboost for “httptunnel” attacks

4) Comparisons

22

We first compare the detection results obtained from part of the labeled KDD CUP 1999 dataset, then the

results obtained from the whole labeled KDD CUP 1999 dataset.

Some intrusion detection algorithms are tested on a smaller dataset that contains only three common attack

types, namely Neptune, Satan, and Portsweep, in order to examine the algorithm’s ability to detect specific types

of attack. The samples in the dataset are randomly selected from the KDD CUP 1999 data set. Table 7 lists the

numbers of the training and test samples of all the types in this smaller dataset. Table 8 shows the detection

results of the algorithm based on hybrid neural networks [21], the algorithm based on the hierarchical SOM [18],

the algorithm with decision stumps and the traditional online Adaboost, and the algorithm with online GMMs

and our online Adaboost, all tested on the smaller data set. It is seen that the detection rate of our algorithm with

decision stumps and the traditional online Adaboost for the specific types of attacks is 99.55%, which is close to

the highest detection rate for the two algorithms in [18] and [21]. The false alarm rate of this algorithm is only

0.17%, which is much less than the means in the false alarm rate ranges for the algorithms in [18] and [21]. Our

algorithm with online GMMs and our online Adaboost even obtains more accurate results. It is shown that our

online Adaboost-based algorithms are effective for these three types of attacks.

Table 7. A smaller data set

Categories Training data Test data

Normal 20676 60593

Neptune 22783 58001

Satan 316 1633

Portsweep 225 354

Total 44000 120581

Table 8. The detection results for some specific attacks

Algorithms Detection rate False alarm rate

Hybrid neural networks [21] 90%-99.72% 0.06%-4.5%

Hierarchical SOM [18] 99.17%-99.63% 0.34%-1.41%

Our algorithm (decision stumps + traditional online Adaboost) 99.55% 0.17%

Our algorithm (online GMM + our online Adaboost) 99.99% 0.31%

We also compare our online Adaboost-based algorithms with other recently published algorithms for

intrusion detection. The algorithms are tested on the whole labeled KDD CUP 1999 dataset. Table 9 lists the

detection results of the following algorithms: the clustering-based algorithm in [3], the k-NN-based algorithm in

[20], the SVM-based approach in [20], the algorithm based on SOMs in [5], the genetic clustering-based

algorithm in [17], the hierarchical SOM-based algorithm in [18], the bagged C5 algorithm in [19], the offline

Adaboost-based algorithm in [39], the Mercer kernel ART algorithm in [8], our algorithm using decision stumps

and the traditional online Adaboost, and our algorithm using online GMMs and our online Adaboost. The

Mercer kernel ART algorithm in [8] and our algorithms are online learning algorithms and the others are offline

learning algorithms. From the table, the following useful points are deduced:

 Overall, the detection accuracies of the online Adaboost-based algorithms are comparable with those of

23

the other algorithms.

 Compared with the offline algorithms, our algorithms not only gain satisfactory detection rates while

keeping low false alarm rates, but also adaptively modify the local models in online mode. This

adaptability is very important for intrusion detection applications.

 The detection accuracies of the online Adaboost-based algorithms are comparable with the detection

accuracies of the Adaboost-based algorithm in batch mode.

 Our online Adaboost-based algorithms outperform the online algorithms in [8]. In particular, lower false

alarm rates are obtained.

 The detection accuracy of the algorithm using decision stumps and the traditional online Adaboost is

lower than the algorithm using online GMMs and our proposed online Adaboost. The reason for this is

that the algorithm based on GMMs models online the distribution of each type of attacks and also

updates the weak classifiers in a more effective way, which obtains more accurate weights for the weak

classifiers.

Table 9. Comparison between algorithms tested on the KDD CUP 1999 data set

Algorithms Detection rate False alarm rate

Offline

Clustering [3] 93% 10%

K-NN [20] 91% 8%

SVM [20] 91%-98% 6%-10%

SOM [5] 89%-90.6% 4.6%-7.6%

Genetic clustering[17] 79.00% 0.30%

Hierarchical SOM [18] 90.94%-93.46% 2.19%-3.99%

Bagged C5 [19] 91.81% 0.55%

Offline Adaboost [39] 90.04-90.88% 0.31-1.79%

Online

Mercer kernel ART [8] 90.00-94.00% 2.9-3.4%

Our algorithm(decision stumps+traditional Adaboost) 90.13% 2.23%

Our algorithm(Online GMMs+our Adaboost) 90.61-91.15% 1.17-1.69%

Moreover, Brugger and Chow [50] have assessed the performance of the Snort algorithm, a typical pattern

matching-NIDS, on the DARPA 1998 dataset which is the dataset of the raw data of the KDD CUP 1999 dataset.

It is shown that Snort has a very high alarm rate. The results of the Snort algorithm are less accurate than those

of the machine learning algorithms listed in Table 9.

Our online Adaboost-based algorithms are implemented on a Pentium IV computer with 2.6GHZ CPU and

256M RAM, using MATLAB 7. The mean training time for our algorithm with decision stumps and the

traditional online Adaboost is only 46s and that for our algorithm with online GMMs and our online Adaboost is

65 minutes, using all 494,021 training samples. This is an empirical demonstration that the computational

complexity of our algorithm with decision stumps and the traditional online Adaboost is relatively low, due to

very simple operations for the decision stumps. The computational complexity of our algorithm with online

GMMs and our online Adaboost is moderate. In [46], the least training times required for the SOM and improved

competitive learning neural network are, respectively, 1057s and 454s, only using 101,000 samples for training.

24

The bagged C5 algorithm [19, 47] took a bit more than a day on a machine with a two-processor ultra-sparc2

(2~300Mhz) and 512M main memories. The RSS-DSS algorithm [35] requires 15 minutes to finish the learning

process on a 1 GHz Pentium III laptop with 256M RAM. In [4], 8 minutes are taken for processing the training

data in an eight-node cluster, where each node has dual 1GHz Pentium III processors and 1GB memory, running

Red Hat Linux7.2, while 212 minutes are taken for the algorithm in [48]. The mean training time for the offline

Adaboost is 73s [39].

5.2. PSO and SVM-based global models

The proposed distributed intrusion detection algorithm is tested with 6 nodes. The KDD CUP 1999 training

dataset is split into six parts and each part of data is used to construct a local detection model in a detection node.

In this way, the size of training data in each node is small, with the result that accurate local intrusion detectors

cannot be found in some nodes. In each node, a global model is constructed using the six local models.

To simulate a distributed intrusion detection environment, the four kinds of attacks: neptune, smurf,

portsweep and satan in the KDD CUP 1999 training dataset are used for constructing local detection models, as

samples of these four kinds take up 98.46% of all the samples in the KDD training dataset. Table 10 shows the

training sets used for constructing the global models in the 6 nodes. It is seen that the sizes of the training sets are

comparatively small. Node 1 has not the portsweep and satan attack samples; Node 2 has not the satan samples;

and Node 3 has not the portsweep attack samples. Table 11 shows the test set used in all the nodes.

Table 10. The training sets in the 6 nodes

Nodes

Attack types
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Neptune 5000 1000 1000 3500 2500 1500

smurf 5000 1000 1000 3500 2500 1500

portsweep 0 8000 0 1500 2500 3500

satan 0 0 8000 1500 2500 3500

Nomal 10000 10000 10000 10000 10000 10000

Table 11. The test set in each node

neptune smurf portsweep satan Normal

58001 164091 10413 15892 60593

In the experiments, the inertia weight w in (37) varies from 1.4 to 0.4, according to the following equation:

(0.4) 0.4
Titer Iter

w w
Titer


   (40)

where Titer is the predefined maximum number of iterations and Iter is the current iteration number.

Tables 12 and 13 show, using our algorithm with decision stumps and the traditional online Adaboost and

our algorithm with online GMMs and our online Adaboost respectively, the detection rates and false alarm rates

of the local models and those of the PSO and SVM-based global models, as well as those obtained by combining

the local models using the SVM algorithm, the sum rule, and the majority vote rule. From the tables, the

following three points are deduced:

 It is seen that, overall, our PSO and SVM-based combination algorithm greatly increases the detection

25

rate and decreases the false alarm rate for each node after the local models with only a small number of

parameters are shared.

 In node 2, the detection rate of the PSO-SVM method is slightly less than the detection rate of the local

model, but the false alarm rate of the PSO-SVM method is much less than the false alarm rate of the

local model. In node 4, the alarm rate of the PSO-SVM method is slightly more than the alarm rate of the

local model, but the detection rate of the PSO-SVM method is higher than the detection rate of the local

model. Thus, the PSO-SVM method is more accurate than the local models in nodes 2 and 4.

 Our PSO and SVM-based algorithm is superior to the SVM algorithm, the sum rule and the majority

vote rule for combining local detection models. The performance disparities between different local

models ensure that the sum rule and the majority vote rule are not suitable for distributed intrusion

detection. The SVM may not find the optimal local model combination to improve the performance.

Through dynamically combining a small portion of the local models to obtain the global model, our PSO

and SVM-based algorithm effectively chooses the optimal local model combination, reduces the time

consumption for detecting intrusions, and then achieves a better performance.

Table 12. The results for the 6 local detection nodes using our algorithm with decision stumps and the traditional online Adaboost

Methods Performance Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Average

Local

model

Detection rate 99.48% 99.96% 99.98% 97.01% 97.13% 99.96% 98.92%

False alarm rate 24.07% 9.64% 18.45% 0.42% 0.49% 8.28% 10.23%

PSO-SVM
Detection rate 99.59% 99.70% 99.67% 99.78% 99.65% 99.74% 99.69%

False alarm rate 0.38% 0.44% 0.43% 0.44% 0.41% 0.48% 0.43%

SVM
Detection rate 99.76% 99.78% 97.13% 99.78% 99.78% 97.13% 98.89%

False alarm rate 0.44% 0.44% 0.42% 0.44% 0.45% 0.42% 0.44%

Sum rule
Detection rate 99.96% 99.96% 99.96% 99.96% 99.96% 99.96% 99.96%

False alarm rate 1.98% 1.98% 1.98% 1.98% 1.98% 1.98% 1.98%

Majority

vote

Detection rate 99.96% 99.96% 99.96% 99.96% 99.96% 99.96% 99.96%

False alarm rate 7.95% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95%

Table 13. The results for 6 local detection nodes using our algorithm with online GMMs and our online Adaboost

Methods Performance Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Average

Local

model

Detection rate 96.19% 33.66% 33.9% 99.72% 99.82% 33.77% 66.18%

False alarm rate 0.35% 0.39% 0.56% 0.34% 0.37% 0.40% 0.40%

PSO-SVM
Detection rate 99.61% 99.64% 99.89% 99.84% 99.84% 99.83% 99.78%

False alarm rate 0.3% 0.31% 0.39% 0.35% 0.34% 0.33% 0.34%

SVM
Detection rate 97.46% 99.76% 99.85% 99.83% 99.84% 99.85% 99.43%

False alarm rate 0.31% 0.35% 0.36% 0.33% 0.34% 0.34% 0.34%

Sum
Detection rate 99.76% 99.76% 99.76% 99.76% 99.76% 99.76% 99.76%

False alarm rate 0.37% 0.37% 0.37% 0.37% 0.37% 0.37% 0.37%

Majority

vote

Detection rate 33.79% 33.79% 33.79% 33.79% 33.79% 33.79% 33.79%

False alarm rate 0.34% 0.34% 0.34% 0.34% 0.34% 0.34% 0.34%

As stated in the last paragraph of Section 4, a uniform global model can be constructed for all the local

nodes, if small sets of samples are shared among the nodes, sacrificing the privacy of raw data. We also test the

uniform global model using the dataset of the four kinds of attacks: neptune, smurf, portsweep and satan in the

26

KDD CUP 1999 set. The training set used for constructing the global model only contains 4000 randomly chosen

samples, and the test set for the global model contains 284672 samples of the four types of attacks and all the

normal samples. Table 14 shows the attack types used to train local models in each node. It is seen that each

node has only one or two types of attack. Tables 15 and 16 show, using our algorithm with decision stumps and

the traditional online Adaboost and our algorithm with online GMMs and our online Adaboost respectively, the

detection rates and false alarm rates of the local models in each node and those of the PSO and SVM-based

global model, as well as those obtained by combining local models using the sum rule and the SVM algorithm. It

is seen that our PSO and SVM-based algorithm greatly increases the detection accuracy in each node and our

PSO and SVM-based algorithm obtains more accurate results than the sum rule and the SVM algorithm.

Table 14. The attack types used to train the local models in each node

Local models Types of attack

Node 1 Neptune

Node 2 Smurf

Node 3 Portsweep

Node 4 Satan

Node 5 neptune, smurf

Node 6 portsweep, satan

Table 15. The results of the uniform global model based on our algorithm with decision stumps and the traditional online Adaboost

when some samples are shared among nodes

Detection models
Detection

rate

False

alarm rate

Local

models

Node 1 26.47% 0.12%

Node 2 73.20% 0.22%

Node 3 2.19% 0.1%

Node 4 8.77% 0.01%

Node 5 99.62% 0.32%

Node 6 5.32% 0.11%

Global model (PSO-SVM) 99.99% 1.35%

Sum rule 9.10% 0.01%

SVM 98.98% 1.41%

Table 16. The results of the uniform global model based on our algorithm with online GMMs and our online Adaboost when some

samples are shared among nodes

Detection models
Detection

rate

False

alarm rate

Local

models

Node 1 26.48% 0.08%

Node 2 70.16% 0.01%

Node 3 7.92% 0.17%

Node 4 0.81% 0.01%

Node 5 99.62% 0.21%

Node 6 26.77% 1.80%

Global model (PSO-SVM) 99.99% 0.37%

Sum rule 26.37% 0.01%

SVM 99.99% 0.39%

27

The distributed outlier detection algorithm in [4] has a detection rate of 95% and a false alarm rate of 0.35%

for the KDD CUP 1999 training data set, however, the algorithm in [4] requires a data preprocessing procedure

in which the attack data are packed into bursts in the data set. An intrusion is marked as detected if at least one

instance in a burst is flagged as an outlier. Furthermore, the high communication cost and the need to share a

large number of the original network data confine the application of the algorithm in [4] to network intrusion

detection. In our proposed algorithm, no assumptions are made about bursts of attacks in the training data and no

private data are shared among the nodes, and the only communication is the concise local model parameters.

6. Conclusion

In this paper, we have proposed online Adaboost-based intrusion detection algorithms, in which decision

stumps and online GMMs have been used as weak classifiers for the traditional online Adaboost and our

proposed online Adaboost respectively. The results of the algorithm using decision stumps and the traditional

online Adaboost have been compared with the results of the algorithm using online GMMs and our online

Adaboost. We have further proposed a distributed intrusion detection framework, in which the parameters in the

online Adaboost algorithm have formed the local detection model for each node, and local models have been

combined into a global detection model in each node using a PSO and SVM-based algorithm. The advantages of

our work are as follows: 1) Our online Adaboost-based algorithms successfully overcome the difficulties in

handling the mixed-attributes of network connection data. 2) The online mode in our algorithms ensures the

adaptability of our algorithms to the changing environments: the information in new samples is incorporated

online into the classifier, while maintaining high detection accuracy. 3) Our local parameterized detection models

are suitable for information sharing: only a very small number of data are shared among nodes. 4) No original

network data are shared in the framework, so that the data privacy is protected. 5) Each global detection model

improves considerably on the intrusion detection accuracy for each node.

References

[1] D. Denning, “An intrusion detection model,” IEEE Trans. on Software Engineering, vol. SE-13, no. 2, pp. 222-232, Feb. 1987.

[2] J.B.D. Caberera, B. Ravichandran, and R.K. Mehra, “Statistical traffic modeling for network intrusion detection,” in Proc. of

Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 466-473, 2000

[3] W. Lee, S.J. Stolfo, and K. Mork, “A data mining framework for building intrusion detection models,” in Proc. of IEEE

Symposium on Security Privacy, pp. 120-132, May 1999.

[4] M.E. Otey, A. Ghoting, and S. Parthasarathy, “Fast distributed outlier detection in mixed-attribute data sets,” Data Ming and

Knowledge Discovery, vol. 12, no. 2-3, pp. 203-228, May 2006.

[5] H.G. Kayacik, A.N. Zincir-heywood, and M.T. Heywood, “On the capability of an SOM based intrusion detection system,” in

Proc. of International Joint Conference on Neural Networks, vol. 3, pp. 1808-1813, July 2003.

[6] P.Z. Hu and M.I. Heywood, “Predicting intrusions with local linear model,” in Proc. of International Joint Conference on

Neural Networks, vol. 3, pp. 1780-1785, July 2003.

[7] Z. Zhang and H. Shen, “Online training of SVMs for real-time intrusion detection,” in Proc. of Advanced Information

Networking and Applications, vol. 2, pp. 568-573, 2004.

[8] H. Lee, Y. Chung, and D. Park, “An adaptive intrusion detection algorithm based on clustering and kernel-method,” in Proc .of

International Conference on Advanced information Networking and Application, pp.603-610, 2004.

[9] W. Lee and S.J. Stolfo, “A framework for constructing features and models for intrusion detection systems,” ACM Transactions

on Information an System Security, vol. 3, no. 4, pp. 227-261, Nov. 2000.

[10] A. Fern and R. Givan, “Online ensemble learning: an empirical study,” in Proc. of International Conference on Machine

Learning, pp. 279-286, 2000.

[11] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. “On combining classifiers,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 20, no.3, pp. 226-238, March 1998.

[12] J. Kennedy, “Particle swarm optimization,” in Proc. of IEEE International Conference on Neural Networks, Perth, pp.

1942-1948, 1995.

[13] Y. Shi and R.C. Eberhart, “A modified particle swarm optimizer,” in Proc. of IEEE International Conference on Evolutionary

Computation, Anchorage, USA, pp.69-73, 1998.

[14] S. Stofo et al. “The third international knowledge discovery and data mining tools competition,” The University of California.

2002. Available: http://kdd.ics.uci.edu/databases/kddCup99/kddCup99.h-tml.

28

[15] S. Mukkamala, A.H. Sung, and A. Abraham. “Intrusion detection using an ensemble of intelligent paradigms,” Network and

Computer Applications, vol. 28, no. 2, pp. 167-182, April 2005.

[16] R. Lippmann, J.W. Haines, D.J. Fried, J. Korba, and K. Das, “The 1999 DARPA off-line intrusion detection evaluation,” ACM

Trans. on Information and System Security, vol. 34, no. 4, pp. 579-595, Oct. 2000.

[17] Y.G. Liu, K.F. Chen, X.F. Liao, and W. Zhang. “A genetic clustering method for intrusion detection,” Pattern Recognition, vol.

37, no. 5, pp. 927-942, May 2004.

[18] S.T. Sarasamma, Q.A. Zhu, and J. Huff. “Hierarchical Kohonenen net for anomaly detection in network security,” IEEE Trans.

on Systems, Man and Cybernetics, Part B: Cybernetics, vol. 35, no. 2, pp. 302-312, April 2005.

[19] B. Pfahringer. “Winning the KDD99 classification cup: bagged boosting,” SIGKDD Explorations, vol. 1, no. 2, pp. 65-66,

2000.

[20] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric framework for unsupervised anomaly detection:

detecting intrusions in unlabeled data,” in Applications of Data Mining in Computer Security, Chapter 4. D. Barbara and S.

Jajodia (editors) Kluwer, 2002

[21] C. Jirapummin, N. Wattanapongsakorn, and P. Kanthamanon. “Hybrid neural networks for intrusion detection systems,” in

Proc. of International Technical Conference on Circuits/Systems, Computers and Communications, pp. 928-931, July 2002.

[22] J. Li and C. Manikopoulos, “Novel statistical network model: the hyperbolic distribution,” IEE Proceeding on

Communications, vol. 151, no. 6, pp. 539-548, Dec. 2004.

[23] T. Peng, C. Leckie, and K. Ramamohanarao, “Information sharing for distributed intrusion detection systems,” Journal of

Network and Computer Applications, vol. 30, no. 3, pp. 877-899, Aug. 2007.

[24] M. Qin and K. Hwang, “Frequent episode rules for internet anomaly detection,” in Proc. of IEEE International Symposium on

Network Computing and Applications, pp. 161-168, 2004.

[25] S. Zanero and S.M. Savaresi, “Unsupervised learning techniques for an intrusion detection system,” in Proc. of ACM

Symposium on Applied Computing, pp. 412-419, 2004.

[26] A. Bivens, C. Palagiri, R. Smith, B. Szymanski, and M. Embrechts, “Network-based intrusion detection using neural

networks,” in Proc. of Artificial Neural Networks in Engineering, vol. 12, New York, pp. 579-584, Nov. 2002.

[27] J.J.M. Bonifacio, A.M. Cansian, A.C.P.L.F. De Carvalho, and E.S. Moreira, “Neural networks applied in intrusion detection

systems,” in Proc. of IEEE International Joint Conference on Neural Networks, vol. 1, pp. 205-210, 1998.

[28] C. Zhang, J. Jiang, and M. Kamel, “Intrusion detection using hierarchical neural networks,” Pattern Recognition Letters, vol.

26, no. 6, pp. 779-791, 2005.

[29] S.J. Han and S.B. Cho, “Evolutionary neural networks for anomaly detection based on the behavior of a program,” IEEE Trans.

on Systems, Man, and Cybernetics-Part B, vol. 36, no. 3, pp. 559-570, June 2006.

[30] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neural networks and support vector machines,” in Proc. of

International Joint Conference on Neural Networks, vol. 2, pp. 1702-1707, 2002.

[31] J. Mill and A. Inoue, “Support vector classifiers and network intrusion detection,” in Proc. of International Conference on

Fuzzy Systems, vol. 1, pp. 407-410, 2004.

[32] J. Xian, F. Lang, and X. Tang, “A novel intrusion detection method based on clonal selection clustering algorithm,” in Proc. of

International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3905-3910, 2005.

[33] S. Jiang, X. Song, H. Wang, J. Han, and Q. Li, “A clustering-based method for unsupervised intrusion detections,” Pattern

Recognition Letters, vol. 27, no. 7, pp. 802-810, May 2006.

[34] A.J. Hoglund, K. Hatonen, and A.S. Sorvari, “A computer host-based user anomaly detection system using the self-organizing

map,” in Proc. of International Joint Conference on Neural Networks, vol. 5, pp. 411-416, 2000.

[35] D. Song, M.I. Heywood, and A.N. Zincir-Heywood, “Training genetic programming on half a million patterns: an example

from anomaly detection,” IEEE Trans. on Evolutionary Computation, vol. 9, no. 3, pp. 225-239, June 2005.

[36] S. Parthasarathy, A. Ghoting, and M.E. Otey, “A survey of distributed mining of data streams,” Data streams: models and

algorithms, C. C. Aggarwal, Eds. New York: Springer-Verlag, Nov. 2006.

[37] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal

of Computer and System Sciences, vol. 55, no. 1, pp. 119-139, August 1997.

[38] N. Oza. “Online Ensemble Learning,” PhD thesis, University of California, Berkeley, 2001.

[39] W.M. Hu, W. Hu, and S. Maybank, “Adaboost-based algorithm for network intrusion detection,” IEEE Trans. on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol. 38, no. 2, pp. 577-583, April 2008.

[40] J. Zhang, M. Zulkernine, and A. Haque, “Random-forests-based network intrusion detection systems,” IEEE Trans. on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, vol. 38, no. 5, pp. 649-659, Sep. 2008

[41] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of

the Royal Statistical Society, Series B (Methodological), vol. 39, no. 1, pp. 1-38, 1977.

[42] H. Grabner and H. Bischof, “On-line boosting and vision,” in Proc. of IEEE Conference on Computer Vision and Pattern

Recognition, pp. 260-267, 2006.

[43] N. Oza and S. Russell, “Experimental comparisons of online and batch versions of bagging and boosting,” in Proc. of ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, pp. 359-364, 2001.

[44] Y. Lei, X.Q. Ding, and S.J. Wang, “Visual tracker using sequential Bayesian learning: discriminative, generative and hybrid,”

IEEE Trans. on Systems, Man and Cybernetics, Part B: Cybernetics, vol. 38, no. 6, pp. 1578-1591, Dec. 2008.

[45] J. McHugh, “Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system

evaluations as performed by Lincoln laboratory,” ACM Trans. on Information and System Security, vol. 3, no. 4, pp. 262-294,

Nov. 2000.

[46] J.Z. Lei and A. Chorbani, “Network intrusion detection using an improved competitive learning neural network,” in Proc. of

Second Annual Conference on Communication Networks and Services Research, vol. 4, pp. 190-197, May 2004.

[47] C. Elkan. “Results of the KDD99 classifier learning contest,” SIGKDD Explorations, vol. 1, no. 2, pp. 63-64, 2000.

[48] S. Bay and M. Schwabacher, “Mining distance-based outliers in near linear time with randomization and a simple pruning

rule,” in Proc. of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 29-38, 2003.

[49] S. Mabu, C. Chen, N. Lu, K. Shimada, and K. Hirasawa, “An intrusion-detection model based on fuzzy class-association-rule

29

mining using genetic network programming,” IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and

Reviews, vol. 41, no. 1, pp. 130-139, Jan. 2011.

[50] S.T. Brugger and J. Chow, “An assessment of the DARPA IDS evaluation dataset using Snort,” Technical Report CSE-2007-1,

University of California, Jan. 2007.

[51] S. Panigrahi and S. Sural, “Detection of database intrusion using a two-stage fuzzy system,” Information Security, Lecture

Notes in Computer Science, vol. 5735, pp. 107-120, 2009.

[52] D. Smallwood and A. Vance, “Intrusion analysis with deep packet inspection: increasing efficiency of packet based

investigations,” in Proc. of International Conference on Cloud and Service Computing, pp. 342-347, Dec. 2011.

[53] S. Mabu, C. Chen, N. Lu, K. Shimada, and K. Hirasawa, “An intrusion-detection model based on fuzzy class-association-rule

mining using genetic network programming,” IEEE Trans. on Systems, Man, and Cybernetics. Part C: Applications and

Reviews, vol. 41, no. 1, pp. 130-139, Jan. 2011.

[54] C. Otte and C. Stormann, “Improving the accuracy of network intrusion detectors by input-dependent stacking,” Integrated

Computer-Aided Engineering, vol. 18, pp. 291-297, 2011.

[55] K.-C. Khor, C.-Y. Ting, S. Phon-Amnuaisuk, “A cascaded classifier approach for improving detection rates on rare attack

categories in network intrusion detection,” Applied Intelligence, vol. 36, pp. 320-329, 2012.

[56] B. Zhang, “A heuristic genetic neural network for intrusion detection,” in Proc. of International Conference on Internet

Computing and Information Services, pp. 510-513, Sept. 2011.

[57] C.-F. Tsai, J.-H. Tsai, and J.-S. Chou, “Centroid-based nearest neighbor feature representation for e-government intrusion

detection,” in Proc. of World Telecommunications Congress, pp. 1-6, March 2012.

[58] J. Gao, W. Hu, X. Zhang, and X. Li, “Adaptive distributed intrusion detection using parametric model,” in Proc. of

IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, vol. 1, pp. 675-678,

Sept. 2009.

[59] P. Prasenna, A.V.T. RaghavRamana, R. KrishnaKumar, and A. Devanbu, “Network programming and mining classifier for

intrusion detection using probability classification,” in Proc. of the International Conference on Pattern Recognition,

Informatics and Medical Engineering, pp. 204-209, March 2012.

[60] K. Rieck, “Machine learning for application-layer intrusion detection,” Dissertation, Fraunhofer Institute FIRST & Berlin

Institute of Technology, Berlin Germany, 2009.

Acknowledgments

This work is partly supported by NSFC (Grant No. 60935002), the National 863 High-Tech R&D Program

of China (Grant No. 2012AA012504), the Natural Science Foundation of Beijing (Grant No. 4121003), and The

Project Supported by Guangdong Natural Science Foundation (Grant No. S2012020011081).

Weiming Hu received the Ph.D. degree from the department of computer science and engineering, Zhejiang

University in 1998. From April 1998 to March 2000, he was a postdoctoral research fellow with the Institute of

Computer Science and Technology, Peking University. Now he is a professor in the Institute of Automation,

Chinese Academy of Sciences. His research interests are in visual surveillance, and filtering of Internet

objectionable information.

Jun Gao has a B.S. in Automation Engineering from BeiHang University, Beijing, China, and a Ph.D. in

Computer Science from Institute of Automation, Chinese Academy of Sciences. His major research interests

include machine learning, data mining, and network information security.

Yanguo Wang received the BSc degree in information and computing science from Sun Yat-sen University,

Guangzhou, China, in 2005. In 2008, he received the MSc degree at the National Laboratory of Pattern

Recognition, Institute of Automation, Chinese Academy of Sciences. He is currently a project manager in the

Institute of Infrastructure Inspection, China Academy of Railway Sciences, Beijing. His research interests

include pattern recognition, computer vision, and data mining.

Ou Wu received the BS degree in Electrical Engineering from Xi’an Jiaotong University in 2003. He received

the MS degree and PhD degree both from pattern recognition and machine intelligence from National

Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences in 2006

and 2011, respectively. Now, he is an Assistant Professor in NLPR. His research interests include information

filtering, data mining, and web vision computing.

30

Stephen Maybank received a BA in Mathematics from King's college Cambridge in 1976 and a PhD in

computer science from Birkbeck college, University of London in 1988. Now he is a professor in the School of

Computer Science and Information Systems, Birkbeck College. His research interests include the geometry of

multiple images, camera calibration, visual surveillance etc.

