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Abstract

In this paper, we address the problem of human action recognition through combining global temporal

dynamics and local visual spatio-temporal appearance features. For this purpose, in the global temporal

dimension, we propose to model the motion dynamics with robust linear dynamical systems (LDSs) and use

the model parameters as motion descriptors. Since LDSs live in a non-Euclidean space and the descriptors

are in non-vector form, we propose a shift invariant subspace angles based distance to measure the

similarity between LDSs. In the local visual dimension, we construct curved spatio-temporal cuboids along

the trajectories of densely sampled feature points and describe them using histograms of oriented gradients

(HOG). The distance between motion sequences is computed with the Chi-Squared histogram distance

in the bag-of-words framework. Finally we perform classification using the maximum margin distance

learning method by combining the global dynamic distances and the local visual distances. We evaluate

our approach for action recognition on five short clips datasets, namely Weizmann, KTH, UCF sports,

Hollywood2 and UCF50, as well as three long continuous datasets, namely VIRAT, ADL and CRIM13. We

show competitive results as compared with current state-of-the-art methods.

Index Terms

Action recognition, linear dynamical system, local spatio-temporal feature, non-vector descriptor,

distance learning.
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1 INTRODUCTION

Analysis of human activities concerns detecting, tracking, recognizing and understanding human

movements from image sequences. Among these problems, human action recognition is one of the

most active research areas and has attracted much research interest over the past couple of decades.

The surveys by Turaga et al. [1] and Poppe [2] provide a broad overview of numerous approaches

for analyzing human motion sequences in videos. In terms of the motion sequence representation,

previous work can be roughly classified into appearance-based methods and motion-based methods.

Appearance-based methods usually characterize the motion sequence with various local [3], [4], [5],
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[6] or global [7], [8], [9], [10] visual features extracted from raw video data. For example, Niebles et

al. [6] use a bag-of-words model to represent human actions. The bag-of-words model is learned by

extracting and clustering local spatio-temporal interest points. The major problem in these methods is

that they discard the temporal information inherent to actions and thus fail to capture the temporal

dynamics of human activities. Motion-based methods generally model the motion sequence with

temporal state-space models [11], [12], [13], [14] and view the human action recognition as a temporal

classification problem. For example, Yamato et al. [11] propose to recognize tennis shots by modeling

a sequence of grid-based silhouette features as outputs of class-specific HMMs. However, these

methods are of comparatively high complexity and require detailed statistical modeling and parameter

learning. They also do not model the motion dynamics in an explicit way.

It is known that appearance and dynamics are two important cues for human action recognition.

However, the capture of both global temporal dynamics and local visual appearance features of

action sequences has always been a challenging task, and few attempts have been made to explore it.

Mikolajczyk and Uemura [15] extract both local appearance features (i.e. MSER, Harris-Laplace and

Hessian-Laplace) and local motion features (i.e. dominant motion compensation) to jointly represent

human actions. These appearance-motion features are clustered to form many vocabulary trees.

Votes for action categories are given by matching features extracted from query frames to the trees.

Artizzu et al. [16] combine weak trajectory features with popular spatio-temporal features to recognize

long-time continuous social behaviors. Weak trajectory features, such as agent distance, movement

direction, velocities and accelerations are computed based on the tracked agent positions. Finally,

temporal context features are adopted to improve the classification performance. They conclude that

the combination of appearance and motion features outperforms their use separately, and suggest that

behavior understanding should be based on such heterogeneous features. Since these methods can

be regarded as feature-level combinations of local appearance and motion features, Wang et al. [10]

use a multi-channel approach to fuse different distance matrices computed with HOG (histograms

of oriented gradients), HOF (histograms of optical flow) and MBH (motion boundary histograms).

They calculate the χ2 distance matrix separately for each channel, and then sum them up, weighted

by their respective mean values, to form the final RBF-χ2 kernel. This method can be regarded as a

decision-level combination. Our approach is in part similar to that of Wang et al. [10], but different

in two aspects. First, we compute the robust LDS over the whole action sequence to describe the

global dynamics. In this way, we expect to capture the global temporal evolution of action sequences,

even when this can not be achieved with local motion features. Fig. 1 gives an example of how a

robust LDS captures the temporal dynamics of action sequences. With robust LDS, an action sequence

is decomposed into subspace components and state sequence, in which the latter represents the

temporal variations. Second, we combine the global dynamics and local appearance in a maximum

margin distance learning framework. The combination weights are learned, to balance the importance

of motion and appearance features, such that the action classes are maximally separated. In addition,

we point out that our combination framework can be easily extended to three or more heterogeneous

features without any modification.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

=
� � �
(a) (b) (c)

LDS

Fig. 1. This example illustrates the robust LDS representation of action sequences. (a) A video

sequence Y is decomposed into two parts with robust LDS. (b) The subspace components C show

the principal action appearance. (c) The state sequence X illustrates the motion dynamics over time.

1.1 Motivation and Overview

LDS and its extensions [17], [18], [19], [20] have long been studied for human motion analysis. They

demonstrate superiority over common HMMs on classification task, but generally require complex

Bayesian modeling and inference. Recent advances in system identification theory for learning LDS

parameters [21], [22] and similarity measures between LDSs [23], [24], [25], [26] have made LDS

successful for classification of high-dimensional time-series data in the field of dynamic texture [27],

[28]. This poses us a new way to model and compare action sequence dynamics. By modeling the

temporal variations with LDS, system theoretic methods specifically consider the global dynamics of

action sequences. The similarity between two LDSs is directly measured with a distance or kernel

metric defined on the LDS space. Considering that sequence similarity based on local appearance

features is commonly computed with a distance metric defined on the histogram space, this inspires

us to combine the global dynamics and local appearance features in a unified framework.

Following this idea, our study in this paper aims to combine global dynamics, which are described

with robust LDS, and local appearance, which is represented by dense curved spatio-temporal cuboids

[10], for human action recognition in a maximum margin distance learning framework. The main

motivation behind this method is to model the distance between two sequences as a weighted sum

of the respective distances obtained from global dynamics and local appearance features. Recognition

is carried out by learning the weights in a way that maximizes the class discrimination. By this

means, LDSs and cuboids are complementary in describing action sequences by capturing both motion

dynamics and visual gradients. Fig. 2 shows the system diagram of our proposed method.

Furthermore, we find that stability is a crucial property for dynamical systems, whereas it is

generally omitted by most of previous work [9], [26], [27], [29], though it has been intensively

studied in the system identification literature [21], [30], [31]. This motivates us to introduce an efficient

optimization method to learn robust LDS. We also develop a shift invariant distance metric based

on the subspace angles distance [24]. We demonstrate that our distance metric is insensitive to the

starting frame of action sequences, and thus outperforms the traditional metrics in recognition rate.

1.2 Contributions

The main contributions of this paper are summarized as follows:
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Fig. 2. System diagram of the proposed method. For global dynamics, MBH is extracted in each frame

and robust LDS is learned based on MBH sequences. Distance matrix is computed using a shift invariant

distance metric. For local appearance, HOG is calculated for each dense curved spatio-temporal cuboid.

Occurrence histogram is built in the bag-of-words framework and Chi-Squared distance is computed to

measure the pairwise distance. Finally, these two distance matrices are combined in a maximum margin

distance learning framework. Action classification is achieved by using a KNN classifier.

• We propose to combine LDSs and cuboids for human action recognition in a maximum margin

distance learning framework. The LDSs and cuboids capture not only local visual information of

action appearance, but also global dynamic information of human movements. To the best of our

knowledge, there is no other work which considers this approach to recognize human actions.

• We introduce a simple yet efficient robust LDS learning algorithm to describe action sequence

dynamics. A suboptimal solution is achieved by iteratively checking stability criteria and gen-

erating new constraints. The process is repeated until it finds a stable solution. We show that

sequences evolved with robust LDS share the same dynamic characteristics as the training data.

This is essential for our proposed shift invariant distance metric.

• We develop a shift invariant distance metric which is robust to the initial conditions of the LDS,

thus is insensitive to the starting frame of the action sequences. This is based on the considerations

that the classification of an action sequence should be independent of the frame that it begins

with. The state-of-the-art methods do not achieve this purpose.

• We carry out extensive experiments on eight public datasets. We evaluate the robust LDS on the

selection of model parameters, and compare to the traditional LDS as well as three other temporal

methods, namely MEMM [32], CRF [13] and switching LDS [19] to quantify the improvement in

recognition rates. Furthermore, we evaluate the performance achieved with LDSs and cuboids

alone, as well as the combination of these two components. We compare to current state-of-the-art

results and show the significant potential of our method.
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1.3 Organization

Section 2 reviews related work on appearance-based and motion-based methods for human action

recognition. Section 3 firstly introduces LDS and describes how LDS parameters are learned in the

literature. Then a robust LDS learning algorithm is introduced and analyzed in detail. Finally a shift

invariant distance metric is proposed to measure the distance between LDSs. Section 4 briefly outlines

the recognition pipeline of bag-of-words and shows how dense curved spatio-temporal cuboids are

constructed and described in our work. Section 5 presents the maximum margin distance learning

algorithm and illustrates how LDSs-based distance and cuboids-based distance are combined for

human action recognition. Section 6 shows the experimental results including comparisons with

competing methods for learning human actions. Section 7 gives the conclusions plus some ideas

for further work.

2 RELATED WORK

In Section 1, we briefly reviewed the work on motion representation in order to make clear the

motivation for this paper. In this section, we review in detail the human action recognition methods

in order to put our work into context. For clarity, we divide the existing work into two categories:

appearance-based methods and motion-based methods.

2.1 Appearance-based Methods

Appearance-based methods usually extract local or global visual features from video data for human

motion analysis. Local approaches involve detecting and describing spatio-temporal interest points

to represent human activity. Laptev [3] extends the Harris detector to video in both spatial and

temporal domains. However, this detector only finds a small number of stable interest points, which

are usually insufficient for motion analysis and classification. Dollár et al. [4] improve the 3D Harris

detector by applying Gabor filtering in the spatial and temporal dimensions separately. By choosing

proper spatial and temporal scales, the detector can yield a large number of cuboids. Oikonomopoulos

et al. [33] present a saliency detector based on a computed entropy of each cuboid. The cuboids with

the local maximum entropy value are selected as salient points. Willems et al. [34] identify saliency

with the determinant of a 3D Hessian matrix, which can be calculated efficiently using the integral

videos. Seo and Milanfar [35] use space-time local steering kernels to capture the underlying geometric

structures of action sequences. They show good performance with only one training example. Mathe

and Sminchisescu [36] propose saliency map prediction models, which are learned from human eye

fixated regions for action recognition. They illustrate comparable results to those obtained using dense

sampling with sparse uniform sampling. These methods treat space and time in the same manner.

However, action videos normally show different characteristics in space and time. It is therefore

more suitable to handle space and time differently, rather than to treat them in a joint 3D space.

Wong and Cipolla [37] detect interest points separately on subspace images and coefficient vectors by

decomposing the sequence using the non-negative matrix factorization algorithm. Shabani et al. [38]
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address this problem by designing a novel anisotropic filter in the temporal dimension and applying

an isotropic Gaussian filter in the spatial domain. Wang et al. [10] handle space and time differently

by tracking densely sampled interest points through video sequences. The resulting trajectories and

the aligned space-time volumes are used to represent the videos. To describe spatio-temporal points,

feature descriptors are calculated in the neighborhoods of selected points using image measurements

such as spatial or spatio-temporal gradients. Schüldt et al. [39] calculate normalized derivatives in

both space and time. Dollár et al. [4] experiment with image brightness, gradient and optical flow

information. Scovanner et al. [5] extend the popular SIFT descriptor [40] to the space-time domain

and develop a 3D SIFT. Willems et al. [34] generalize the SURF descriptor [41] by computing a

weighted sum of space-time Haar-wavelets in grid cells. Wang et al. [10] combine local HOG, HOF and

MBH descriptors to achieve state-of-the-art results. Local methods have shown many encouraging

results because of their reliability in the presence of background noise, geometric variation and

occlusion. However, there exists a limitation for these approaches in that they do not incorporate

global information and ignore the temporal variations of human actions.

Global approaches generally use global features such as optical flow and silhouettes to capture

the motion information in action sequences. Efros et al. [7] use blurred optical flow histograms to

match actions in sport videos. Ali and Shah [42] derive kinematic features from optical flows. PCA

is applied to determine the dominant kinematic modes. Action recognition is performed by using

multiple instance learning approach. Wang et al. [10] introduce a descriptor by tracking dense points

based on the optical flow field. Instead of extracting optical flow, the silhouette of a person in the

image is used for recognition. Bobick and Davis [43] extract silhouettes and use temporal templates

for the representation and recognition of aerobics actions. Wang and Suter [44] project silhouette

sequences into a low-dimensional subspace to characterize the space-time properties of human actions.

However, optical flow and silhouettes are very sensitive to background noise, viewpoint variation as

well as occlusions. To address these issues, Tran et al. [8] divide the silhouettes and optical flow fields

into rectangular grids. A motion descriptor is developed by combining both horizontal and vertical

components of optical flow as well as the silhouette of person. Gorelick et al. [45] stack silhouettes over

time to form a space-time volume. Local space-time saliency and orientation features are derived by

solving a Poisson equation. Global approaches perform well because they encode much of the motion

information. However, they depend strongly on the recording conditions, in order to realize accurate

localization, background subtraction or tracking. In addition, these approaches also do not model the

temporal dynamics of global features.

2.2 Motion-based Methods

Motion-based methods usually model the action sequences with temporal state-space methods such

as HMMs, conditional random fields (CRFs) or dynamical systems. Brand et al. [12] propose a coupled

HMM to represent the interaction between subjects. Caillette et al. [46] use a variable length Markov

model (VLMM) to describe the observations and 3D poses for each action. Hongeng and Nevatia [47]

incorporate domain knowledge as an a priori probability for state duration into the HMM framework,
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resulting in a hidden semi-Markov model (semi-HMM) to achieve event detection. HMMs are efficient

for modeling time series data. However, their application is restricted due to the assumptions of

conditionally independent observations and Markov property for the sequence of hidden states. CRFs,

on the other hand, avoid these two assumptions and allow non-local dependencies between states and

observations. Sminchisescu et al. [13] use CRFs for human motion recognition. They show that CRFs

outperform both HMMs and maximum entropy Markov model (MEMM) when a longer observation

history is taken into account. Vail et al. [14] compare CRFs and HMMs in detail and conclude that

CRFs perform as well as or better than HMMs. Natarajan and Nevatia [48] propose a two-layer

model and use CRFs to encode actions and viewpoint-specific poses. However, despite that HMMs

and CRFs model action sequence as a time-varying series, they do not model the motion dynamics

in an explicit way.

Dynamical system methods capture the temporal variations by decoupling the action sequence

into subspace poses and latent dynamics. Bregler [17] proposes a multi-level framework for learning

and recognizing human dynamics. LDSs are used to describe the mid-level simple movements, while

HMMs are learned to represent the high level complex behaviors. Blake et al. [18] represent the

multi-class motion sequence with a mixed auto-regressive process. Model parameters are learned

by combining the expectation maximization (EM) with the Condensation algorithm. Pavlovic and

Rehg [19] model the nonlinear dynamics in human motion with switching LDSs, whereas model

learning and inference are based on a variational technique. Turaga et al. [20] model an action sequence

as a cascade of LDSs. They simultaneously segment the sequence in the temporal dimension and learn

an LDS for each segment. Wang et al. [49] explore the nonlinearity of motion sequences with Gaussian

process dynamical models. Model parameters are marginalized out in closed form rather than being

estimated. This results in a nonparametric model for dynamical systems. Though dynamical system

approaches are powerful for describing the motion sequence dynamics, they usually require detailed

statistical modeling and parameter learning. In addition, exact inference is generally intractable and

approximation methods have to be developed.

Recent work reported in the system identification literature makes the comparison between dy-

namical systems straightforward by directly defining distance or kernel metrics in the model space.

Martin [23] defines a metric for stable ARMA models based on a comparison of their cepstrum

coefficients. De Cock and De Moor [24] extend the concept and propose to compare stable ARMA

models by using the subspace angles between two systems. Chan and Vasconcelos [25] derive a

probabilistic kernel based on Kullback-Leibler divergence and use it for dynamic texture classification.

Vishwanathan et al. [26] present a generic similarity metric for dynamic scene analysis based on the

Binet-Cauchy theorem. Since most of the work is designed for dynamic textures, few attempts have

been made for human motion recognition. Bissacco et al. [50] extend the work in [26] and define a

novel kernel-based distance on LDSs for human gait recognition. Chaudhry et al. [9] encode each

frame of an action sequence using a histogram of oriented optical flow (HOOF) and employ Binet-

Cauchy kernels [26] to describe the HOOF sequence. In this paper, we argue that previous work for

learning dynamical systems mostly ignores the model stability, and the similarity metrics are sensitive
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Fig. 3. Graphical model representation of LDS. The grey element yi designates the observable feature

or image. The white element xi represents the unseen or latent state variable. The parameter A

indicates the dynamic matrix, while parameter C indicates the subspace mapping matrix.

to the initial conditions. To address these issues, we introduce a robust LDS learning algorithm and

develop a shift invariant distance metric. We demonstrate encouraging recognition results on both

short clips datasets and long continuous datasets.

3 RECOGNITION WITH ROBUST LDSS

Dynamical system methods have been studied extensively in fields ranging from control engineer-

ing to visual process. Among all the methods, LDS is used broadly because of its simplicity and

efficiency. For instance, many dynamic texture recognition methods represent the texture’s temporal

variation as an LDS [27], [28]. From the graphical model’s perspective, as illustrated in Fig. 3, LDS

is indeed a generative state-space model with Gaussian observations and Markov states. For human

action sequences, many inherent nonlinearities such as phase transition, turbulence and delay can be

eliminated by choosing proper coordinates or mapping into high-dimensional spaces [50]. Therefore

in this paper, we focus on how to model the human motion dynamics with LDS.

3.1 Linear Dynamical Systems

Let A ∈ Rn×n denote the system dynamic matrix, and C ∈ Rp×n denote the subspace mapping matrix.

Here p and n are the dimensions of the observation space and the state space, respectively. Then a

stationary LDS can be represented by the parameter tuple M = (A,C) and evolves in time according

to the following equations  xt+1 = Axt + vt

yt = Cxt + wt

(1)

where xt ∈ Rn is the state or latent variable, yt ∈ Rp is the observed random variable or feature, vt and

wt are the system noise and observation noise, respectively. If we assume the noises are zero-mean

i.i.d Gaussian processes, then we have vt ∼ N (0, Q) and wt ∼ N (0, R). Here Q and R are covariant

matrices of multivariate Gaussian distributions.

In (1) the hidden state is modeled as a first-order Gauss-Markov process, where xt+1 is determined

by the previous state xt. The output yt depends linearly on the current state xt. Given a video sequence

y1:τ , learning the intrinsic dynamics amounts to identifying the model parameter M. This is a typical

system identification problem and it is generally solved by using the least squares estimation [27].
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Fig. 4. State sequences (n = 3) of 10 different actions performed by one subject from the Weizmann

dataset. (a) bend, (b) jack, (c) jump, (d) pjump, (e) run, (f) side, (g) skip, (h) walk, (i) wave1, (j) wave2.

Let column matrix Y1:τ = [y1, y2, ..., yτ ] and X1:τ = [x1, x2, ..., xτ ] represent the observation sequence

and state sequence, respectively. In order to get a closed form estimate of the model parameter

M, the observation matrix is firstly decomposed with the singular value decomposition (SVD), i.e.

Y1:τ = UΣV T , where U , V are orthogonal and Σ is a rectangular diagonal matrix with non-negative

real numbers on the leading diagonal. An estimate of the subspace mapping matrix and the underlying

state sequence is obtained by setting

Ĉ = U, X̂1:τ = ΣV T (2)

The model dimension n is determined by retaining the singular values which exceed a given threshold.

Then the least squares estimation of A is

Â = argmin
A

∥AX̂1:τ−1 − X̂2:τ∥2F = X̂2:τ X̂
+
1:τ−1 (3)

where ∥ · ∥F denotes the Frobenius norm and + denotes the Moore-Penrose inverse. Given the above

estimates of Â and Ĉ, the covariance matrices Q̂ and R̂ can be estimated directly from residuals.

According to Eq. (2), LDS implicitly models the observation Y1:τ with a subspace mapping matrix

C and its corresponding coefficients X1:τ . In human action recognition task, as shown in Fig. 1, the

subspace matrix C describes the action components, while matrix A, which is derived from X1:τ ,

represents the motion dynamics. Thus we can use M = (A,C) to represent the motion sequence

descriptor. Such a descriptor captures both the dynamics and the embedding components of an action

sequence, and is thus very different from the local spatio-temporal gradient descriptors. In Fig. 4, we

show the state trajectories of ten action classes from the Weizmann dataset, from which we can see

that the trajectories behave very differently among different actions. This makes it possible to classify

and recognize them by exploring the dynamics.

However, there exist two problems when using M as the descriptor. The first one is that the

traditional LDS solvers ignore the stability of dynamical systems. This may result in a degenerate

LDS model. The second one is that the descriptor is represented using the tuple M = (A,C), which

lives in a non-Euclidean space and is in non-vector form. There is no straightforward way to compute

the non-vector descriptor distance in a non-Euclidean space, let alone find distance metrics which are

invariant to initial conditions.
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Fig. 5. State sequence X1:τ learned with a jumping jack video from the Weizmann dataset. The

sequence has total 89 frames with three cycles. A robust LDS is learned with the state dimension

n = 3. The three state components are figured as blue, red and green curves, respectively. The sample

images corresponding to the key periodic frames are also demonstrated.

3.2 Learning Robust LDS

Stability is a very important property for LDSs and it has been intensively studied in the system

identification literature. An unstable LDS may fail to generate long sequences which share the same

characteristics as the original data. However, we find that most of the previous work [9], [26], [27], [29]

has omitted this problem. This may cause the failure of distance computations between descriptors

because the distance or kernel metrics for dynamical systems are mostly defined on stable models [23],

[24], [26]. We show in Section 3.3 that generating consistent data is critical for our proposed shift

invariant distance metric.

Let {λ1, λ2, ..., λn} denote the eigenvalues of dynamic matrix A in decreasing order of magnitude.

The system spectral radius is defined as ρ(A) ≡ |λ1|. An LDS is called stable if and only if ρ(A) ≤ 1.

If ρ(A) = 1, the system is said to be marginally stable. Marginally stable systems are very useful as

they generate sustained oscillations in the output, which in our case describes the periodic patterns in

motion sequences. In Fig. 5, we show an example of a periodic action sequence from the Weizmann

dataset. By learning the robust LDS, we obtain a state sequence which varies periodically with

the observation sequence. This means that robust LDS captures the intrinsic dynamics of cycle

movements. However, traditional LDS learning methods such as (3) do not enforce this stability

criterion. This may cause the solution to be unstable even if the true system is stable.

Some robust techniques in the literature have been developed based on searching through a full

feasible set of dynamic matrices [31] or on improving the least squares objective function with

regularization terms [30]. The N4SID method [21] achieves optimal solutions in the sense of maximum

likelihood. However, it is computationally expensive to obtain the optimal solutions for these methods.

In our case of human action recognition, we do not require precisely optimal results. We prefer

an efficient approximation solution, provided it satisfies the stability criterion. Here we introduce a

constraint generation method [51], which achieves a stable result efficiently by iteratively checking

the stability criterion and generating new constraints. The main idea of this approach lies in formu-

lating the least squares problem in (3) as a quadratic program with linear constraints. These linear

constraints, which are initially void, are inferred iteratively using the stability criterion. The optimal

process stops once it finds a stable solution.
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(a) (b)

Fig. 6. Generation comparison between robust LDS and traditional LDS. The red trajectories in (a)

and (b) illustrate the state sequences learned with robust LDS (a), and traditional LDS (b) respectively,

using the same walking video in each case. The green trajectories are generated by evolving the red

sequences 28 steps ahead with their respective LDS, from which we see that the unstable LDS (b)

cannot generate new data consistent with the given data.

The least squares problem in (3) can be reformulated by expanding the right hand side as

Â = argmin
a

{aTPa− 2qTa+ r} (4)

where a = vec(A), q = vec(X̂1:τ−1X̂
T
2:τ ), P = In ⊗ (X̂1:τ−1X̂

T
1:τ−1), and r = tr(X̂T

2:τ X̂2:τ ). Here vec(·)

is a linear operator which flattens the matrix to vector in column order.

The linear constraints are obtained by decomposing Â using SVD Σ̂ = ÛT ÂV̂ and inferring as

λ̃1 = ũT
1 Âṽ1 = tr(ṽ1ũ

T
1 Â) = gT â ≤ 1 (5)

where g = vec(ũ1ṽ
T
1 ), â = vec(Â), ũ1 and ṽ1 are the singular vectors corresponding to λ̃1.

Therefore, the quadratic program can be written as

minimize aTPa− 2qTa+ r

subject to gTa ≤ 1
(6)

This quadratic program is repeatedly invoked until the stability criterion is satisfied. At each

iteration, a new linear constraint is calculated with (5). Considering that g depends on a, it is

therefore an approximation solution to hold g fixed. In Fig. 6, we compare the generation capability

between robust LDS and traditional LDS, from which we can see that the robust LDS generates new

data illustrating the same dynamic characteristics as the training sequence, while the traditional one

generates cluttered data which are very different from the original data.

3.3 Shift Invariant Distance Metric for LDS

Given an action sequence, we use the robust LDS model parameter M = (A,C) as a motion sequence

descriptor, with the dynamic matrix A ∈ GL(n), where GL(n) is the group of all n × n invertible

matrices, and with the mapping matrix C ∈ ST(p, n), where ST(p, n) is the Stiefel manifold. Since the

model space has a non-Euclidean structure and the descriptor is in non-vector form, this naturally

raises the issue of how to measure the similarity between two descriptors. In one of the first papers

to address this issue, Martin [23] defines a metric for stable ARMA models based on a comparison of
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their cepstrum coefficients. De Cock and De Moor [24] improve Martin’s work by using the subspace

angles between two LDSs. The subspace angles are defined as the principal angles between the

column spaces of infinite observability matrices O∞(Mi) = [CT
i (CiAi)

T (CiA
2
i )

T . . .]T ∈ R∞×n

for i = 1, 2.

Let M1 = (A1, C1) and M2 = (A2, C2) denote the two motion sequence descriptors. The computa-

tion of subspace angles is obtained by solving the Lyapunov equation

Q = ATQA+ CTC (7)

for Q, where Q =

 Q11 Q12

Q21 Q22

 ∈ R2n×2n, A =

 A1 0

0 A2

 ∈ R2n×2n, C = (C1 C2) ∈ Rp×2n.

The solution of (7) is guaranteed to exist when M1 and M2 are stable. The cosines of the subspace

angles cos2 θi are calculated as eigenvalues of matrix Q−1
11 Q12Q

−1
22 Q21, where Qkl = O∞(Mk)

TO∞(Ml)

for k, l = 1, 2.

The subspace angles distance is defined as

dLDS(M1,M2)
2 = − log

n∏
i=1

cos2 θi (8)

Vishwanathan et al. [26] present a generic kernel metric for dynamical systems based on the Binet-

Cauchy Theorem. For two LDSs M1 and M2 which evolve with independent noise realization, the

Binet-Cauchy kernel is computed by firstly solving a Sylvester equation

S = e−λAT
1 SA2 + CT

1 C2 (9)

for S, where e−λ is an exponential discounting term with λ > 0.

The above Sylvester equation can be solved efficiently by rewriting it as

vec(S) = vec(e−λAT
1 SA2) + vec(CT

1 C2)

= (AT
2 ⊗ e−λAT

1 )vec(S) + vec(CT
1 C2)

(10)

Thus we have

vec(S) = (I−AT
2 ⊗ e−λAT

1 )
−1vec(CT

1 C2) (11)

After reshaping vec(S) into matrix S, the Binet-Cauchy kernel is defined as

kLDS(M1,M2) = x1(0)
TSx2(0) (12)

on condition that e−λ∥A1∥ ∥A2∥ < 1. Here x1(0), x2(0) are the initial states of M1 and M2, respectively.

From (12), we see that the Binet-Cauchy kernel depends directly on the initial conditions. Exper-

iments also show that subspace angles distances and Binet-Cauchy kernels vary greatly when two

sequences differ by only a temporal shift (see Fig. 7, blue square). In our case of human action

recognition, we require a distance measure that is insensitive to the initial state. In other words, two

walking sequences should be classified into the same category no matter what frame they begin with.

Hence we develop an offset alignment strategy by evolving each sequence for a number of steps such

that the distance between them is minimized. That is

d(M1,M2) = min
τ1,τ2∈N

dLDS(M1(τ1),M2(τ2)) (13)
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or

k(M1,M2) = max
τ1,τ2∈N

kLDS(M1(τ1),M2(τ2)) (14)

where M(τ) denotes the model parameter of evolved sequence which is generated by shifting the

original sequence τ steps ahead. We notice that a robust LDS model must be learned to ensure that

the evolved sequences have the same characteristics as the original sequence. This is why model

stability is especially important for our algorithm.

It is unfortunate that there is no an explicit way to obtain the solutions of (13) and (14). However

in many applications, the periods of most motion patterns are short. Thus we can solve this problem

by searching through all the combinations of τ1 and τ2 exhaustively. If T is an upper bound for the

shift, then the complexity of this problem is O(T 2). In practice, we can speed up the computation by

caching both the original M and its T shifted versions M(τ) for τ = 1, ..., T . The detail of the shift

invariant distance metric algorithm is presented in Algorithm 1.

Algorithm 1 Shift Invariant Distance Metric Algorithm
Input: Given two sequences Y1 and Y2;

1: Learn robust LDS M1 = (A1, C1) and M2 = (A2, C2) according to (6);

2: for τ=1:T do

3: % Subroutine to evolve Y1 and Y2 for τ steps respectively

4: Initialize x0 as the last state of the learned state sequence;

5: for i = 0 : τ − 1 do

6: xi+1 = A ∗ xi +mvnrnd(0, Q)

7: yi+1 = C ∗ xi+1 +mvnrnd(0, R)

8: end for

9: Learn robust LDS M1(τ) and M2(τ) based on evolved sequences Y1(τ) and Y2(τ);

10: end for

11: Compute all pairwise distance metrics between M1(τ1) and M2(τ2) according to (8) or (12);

12: Compute the shift invariant distance metric based on (13) or (14);

Output: Shift invariant distance metric d(M1,M2) or k(M1,M2);

We show in Fig. 7 that our shift invariant distance metric outperforms the standard metrics in two

aspects. First, the aligned distance/kernel exhibits a better similarity measure than the original sub-

space angles distance and Binet-Cauchy kernel. This results in better recognition results as illustrated

in Fig. 9a. Second, the aligned distance/kernel is more stable with respect to frame offset, whereas

the subspace angles distance shows sudden changes in some conditions and the Binet-Cauchy kernel

exhibits periodic variations with the periodic change of the starting frame. In addition, in Fig. 7a, we

compare the aligned distance and subspace angles distance between different action classes, i.e. walk

vs. skip. We see that although the aligned distances between different classes are reduced (red triangle

vs. blue triangle), the separation between the intra-class and inter-class distances (red square vs. red

triangle) is very clear. On the other hand, this separation is not so clear for the original subspace

angles distances (blue square vs. blue triangle). Specifically, we choose the maximum walk vs. walk

subspace angles distance as the baseline, and show that the walk vs. skip subspace angles distances
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Fig. 7. Comparison of subspace versus aligned distances (a), and Binet-Cauchy versus aligned

kernels (b). The ’square’ distances/kernels are computed between a model learned from a walking

sequence and the set of models learned from the same sequences with different starting frames. The

’triangle’ distances are computed in the same way between the walking sequence and shifted skipping

sequences. The baseline is chosen as the maximum walk vs. walk subspace angles distance. The

’blue’ distances between different classes, say walk vs. skip, which are below the baseline may cause

misclassification.

which are below the baseline may cause misclassification.

4 RECOGNITION WITH CURVED SPATIO-TEMPORAL CUBOIDS

Local spatio-temporal appearance features are successful for many visual tasks. They capture char-

acteristic shape, texture and local motion in video sequences. These characteristics are good com-

plements to the global dynamics. In Section 2, we reviewed the state-of-the-art local approaches. In

this paper, we use the dense curved spatio-temporal cuboids [10] as local appearance features and

describe them with HOG descriptors. This is based on the consideration that the dense sampling

method has proved its effectiveness and achieves state-of-the-art recognition results on a wide range

of human action datasets.

Given an action sequence, we first densely sample interest points on a grid in each frame. Then

these points are tracked based on the dense optical flow field to form dense trajectories. The curved

spatio-temporal cuboids are constructed as the local space-time volumes along the trajectories. The

size of the cuboid is N ∗ N pixels and L frames long. Since the trajectories are curves in space-

time domain, we call these space-time volumes ’curved cuboids’, to differentiate from the traditional

’straight cuboids’ [4].

To describe the curved spatio-temporal cuboids, we subdivide each cuboid into a spatio-temporal

grid of size Nσ ∗Nσ ∗Nτ . We compute HOG in each cell of the grid to create a sub-histogram, and

concatenate all the sub-histograms to obtain the final descriptor.

Once we obtain all the HOG descriptors on the dataset, we quantize them into visual words by k-

means clustering. Then we represent each sequence as the frequency histogram over the visual words.

Let H1 and H2 denote the histograms of two sequences. They are compared using the Chi-Squared
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(X 2) distance

dSTC(H1, H2) =
1

2

∑
i

(H1(i)−H2(i))
2

H1(i) +H2(i)
(15)

5 COMBINING LDSS AND CUBOIDS BY MAXIMUM MARGIN DISTANCE LEARNING

In this section, we combine LDSs-based distance dLDS and cuboids-based distance dSTC in a maxi-

mum margin learning framework. The final distance between two sequences is computed as a linear

combination of dLDS and dSTC . The weights for the linear combination are learned with the maximum

margin distance learning algorithm [29] in such a way that the action classes are maximally separated.

Let a set of training sequences be given with class labels in c = {1, ..., N} and let li be the label of

sequence i. The global dynamic distance from sequence j to i is denoted as dLDS(ij), and the local

appearance distance is dSTC(ij). Then the combined distance from sequence j to i is defined as

D(ij) = ω1(li)dLDS(ij) + ω2(li)dSTC(ij) = ω(li)
Td(ij) (16)

where ω(li) is the vector of class dependent weights that characterize the corresponding distance for

class li. Similarly, we define the class independent distance by dropping the class label li from (16).

In order to maximally separate the classes of sequences, we define a representative set R(i) of

sequence i as its k-nearest neighbors within its class, and a comparative set C(i) as all other sequences

outside its class. We assume that a sequence is closer to the sequences in its representative set than

to those in its comparative set. That is, for all i ̸= j, j ∈ R(i) and k ∈ C(i), we have the following

distance constraints

D(ij) ≤ D(ik) ⇒ ω(li)
T △ d(i) ≥ 0 (17)

where △d(i) = d(ik) − d(ij) is the distance difference vector from the sequence in the comparative

set to the sequence in the representative set.

In the class dependent case, the total number of such constraints in class c is L =
∑

li=c |R(i)||C(i)|.

By embedding these constraints in a maximum margin framework, ω(c) can be found by minimizing

min
ω(c)

λ

2
∥ω(c)∥2 + 1

L

L∑
i=1

max(0, 1− ω(c)T △ d(i)) (18)

where λ is the regularization parameter. This problem is similar to the problem of learning a support

vector machine (SVM). It can be efficiently solved with the Pegasos algorithm [52].

After obtaining ω(c) for each class, a test sequence is classified as the class which satisfies the most

number of distance constraints generated by the test sequence.

6 EXPERIMENTS

To evaluate the performance of our proposed method for human action recognition, we carry out

detailed experiments on the state-of-the-art datasets. We first briefly introduce the experimental setup,

and then describe the experiments and results.
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Optical flow Motion boundary X, YOriginal frame

Fig. 8. Illustration of raw, optical flow and MBH (x, y) images of two action sequences from the KTH

dataset (top) and the UCF sports dataset (bottom), respectively. For the optical flow and MBH images,

gradient/flow orientation is indicated by color (hue) and magnitude by saturation.

6.1 Experimental Setup

6.1.1 Feature Extraction

To compute robust LDS, we extract sequential features from all the videos. Our proposed method can

be used with different types of features, including even raw pixels, provided that the features form

a time series. Silhouettes or shape features [44] are useful, but they are difficult to obtain in uncon-

strained environments. In this paper, we use the motion boundary histograms [53] to characterize the

action profile. The MBH encodes the relative motion between pixels by computing gradients of the x

and y optical flow components separately. It suppresses most of the camera motion and background

texture, and thus highlights the foreground subject. Some examples are illustrated in Fig. 8.

As suggested in [53], we resize the sequences into 64 × 128 pixels. The MBH is computed by

quantizing the orientations into 9 bins with 2×2 blocks of 8×8 pixel cells. To improve the performance,

block overlap (0.5) is also incorporated. Thus we obtain a total of 7 × 15 blocks, where each block

is described by a 4 × 9 histogram. The final histogram size is 3780 for both x and y components of

MBH (i.e., 7× 15× 36).

For local appearance, we take the same parameters as used in [10]. The size of the curved cuboid is

32×32 pixels and 15 frames long. Each cuboid is divided into 2×2×3 cells, and each cell is described

with a 8-bin histogram. Thus the final HOG descriptor size for each curved cuboid is 96. We randomly

choose 100, 000 training cuboids to form a codebook of 4, 000 visual words with k-means. The resulting

frequency histograms over the visual words are used as sequences representation.

6.1.2 Robust LDS

There are two parameters related with robust LDS: model dimension n and upper bound of temporal

shift T . We evaluate the performance for different values of these parameters in Section 6.3.1 and 6.3.2.

We choose n = 3 and T = 16 as default parameters in our experiments by considering the balance

of recognition performance and computational cost.

6.1.3 Baseline Temporal Models

To quantify the improvement obtained with the robust LDS, we compare to the traditional LDS as well

as three other temporal methods, namely MEMM [32], CRF [13] and switching LDS [19]. Details are
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presented in the following. For all these models, we use the same MBH sequences as input features.

We implement the traditional LDS via least squares estimation according to Eq. (2) and (3). We

use the same setup as for the robust LDS, except that the stability criterion is not incorporated. We

compute LDS with model dimension n = 3 and use subspace angles distance to define the pairwise

distance.

We learn linear models of MEMM and CRF, where every action class has a corresponding label.

For CRF, we fix the context window size to 3. At testing, marginal probabilities are computed for

each label and each frame using belief propagation. The frame label is selected as the label with the

highest marginal probability. The sequence label is selected as the majority among all its frame labels.

We train three-state first order switching LDS models for each action class, where the underlying

LDS dimension is set to n = 3. Testing sequence is classified into an action category by means of

MAP estimation.

6.1.4 Maximum Margin Distance Learning

The regularization parameter of the combined distances is set to λ = 0.05 empirically. Both class

dependent and independent weights are learned. Component distance matrices are normalized by

their respective µ+ 3σ as did in [29], where µ is the mean and σ the standard deviation.

6.1.5 Baseline Combination Scheme

We fix combination weights ω = [1, 1] as a baseline fusing strategy to evaluate the contributions

of maximum margin distance learning framework. Component distance matrices are normalized by

their corresponding mean values. This is in fact the same scheme used in [10].

6.2 Datasets

Our experiments are conducted on five short clips datasets, namely Weizmann, KTH, UCF sports,

Hollywood2 and UCF50, and three long continuous datasets, namely VIRAT, ADL and CRIM13.

The Weizmann dataset [45] consists of 93 video sequences from nine different people, each per-

forming ten natural actions. These actions are either periodic or non-periodic, include bending,

jumping jack, jumping-forward, jumping-in-place, running, galloping-sideways, skipping, walking,

waving-one-hand, and waving-two-hands. Following the original experimental setup, we compute

the recognition accuracy using the leave-one-out cross-validation method. We report the average

accuracy over all classes as recognition performance.

The KTH dataset [39] consists of six human action classes: boxing, hand clapping, hand waving,

jogging, running and walking. Each action class is performed several times by 25 subjects in four

different scenarios: outdoors, outdoors with scale variation, outdoors with different clothes and

indoors. In total, the data consists of 2391 video samples. We follow the original experimental setup

by dividing the sequences into a test set (subject 2, 3, 5, 6, 7, 8, 9, 10, and 22) and a training set (the

remaining subjects). Average results over all classes are reported as performance measures.

The UCF sports dataset [54] contains 150 video sequences of ten human actions collected from

various sports: diving, golf swinging, kicking, lifting, horse-riding, running, skating, swinging on
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bench, swinging on high bar, and walking. These action sequences are challenging because they

are recorded in unconstrained environments and show large intra-class variabilities. Similar to the

Weizmann dataset, we use the leave-one-out cross-validation method and report average accuracy

over all classes as performance.

The Hollywood2 dataset [55] collects 1707 video clips from 69 Hollywood movies which are

classified into 12 action classes: answering the phone, driving car, eating food, fighting person, getting

out of car, hand shaking, hugging person, kissing, running, sitting down, sitting up, and standing

up. The sequences are divided into a training set (823 sequences) and a test set (884 sequences).

Training and test sequences come from different movies, to ensure that the background and subject

matter both change. This dataset is very challenging because it provides many different realistic

scenarios for human action recognition. We follow the the original experimental setup and evaluate

the performance by computing the average precision (AP) for each action class and reporting the

mean AP over all classes (mAP).

The UCF50 dataset [56] contains 6618 video clips, 50 action categories collected from the Youtube

website. The actions range from general sports to daily life exercises. Considering that previous

datasets are mostly staged by actors, UCF50 directly takes realistic videos uploaded by the users

on the Youtube. This poses challenges because of the large variations in camera motion, object

appearance, scale, viewpoint, background, and illumination conditions. All the sequences are split

into 25 groups, such that each group consists of at least four clips. The clips in the same group

share similar background and subject because they are obtained from the same long video. Thus

we evaluate the performance by using the leave-one-group-out cross-validation method and report

average accuracy over all classes as suggested by the authors [56].

The VIRAT dataset [57] is a still developing large-scale surveillance video dataset collected from

both stationary ground cameras and moving aerial vehicles. It consists of 23 activity types occurring

naturally in realistic outdoor scenes throughout 29 hours of video. It involves single person activities,

as well as interactions between multiple persons, vehicles and facilities. The data is fully annotated

with bounding boxes for both moving object tracks and localized spatio-temporal activities. This

dataset is more challenging than the above datasets in terms of its resolution, background clutter,

diversity in scenes and viewpoints. In order for comparison, we evaluate the performance on two

subsets as used in [58] and [59]. We use the leave-one-scene-out cross-validation method and report

average accuracy for the pre-segmented setting and mAP for the continuous setting.

The ADL dataset [60] consists of 1 million frames of 10 hours of video collected from 20 people

performing 18 types of unscripted, natural everyday activities in diverse indoor environments. These

naturally occurring activities are often related to hygiene or food preparation of daily living. The

dataset provides detailed annotations which include activity labels, object tracks, hand positions and

interaction events. The ADL is challenging because of its long-scale temporal structure and complex

object interactions. We follow the original experimental setup and evaluate the performance by using

the leave-one-out cross-validation method. We report average accuracy over all classes as performance.

The CRIM13 dataset [16] consists of 237 annotated videos of pairs of mice engaging in social
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Fig. 9. Evaluation of robust LDS dimension n (a), and upper bound of temporal shift T (b). The

performance of shift invariant and standard distance metrics is illustrated for comparison.

behaviors, which are categorized into 13 different actions. Each scene is recorded both from top-view

and side-view using two fixed, synchronized cameras. Each video lasts about 10 minutes, for a total

of over 88 hours of video and 8 million frames. We follow the original experimental setup by using

104 videos for training and 133 for test. We report average accuracy over all classes as performance.

6.3 Experiments on Short Clips Datasets

6.3.1 Evaluation of Robust LDS Dimension

In Fig. 9a, we examine the relationship between the correct classification rate (CCR) and the model

dimension n up to 20 using only global dynamics on the Weizmann dataset. We also evaluate the

performance of our proposed shift invariant distance metric compared with the standard subspace

angles distance and the Binet-Cauchy kernel. The kernel distance is computed as

d(M1,M2) = k(M1,M1) + k(M2,M2)− 2k(M1,M2)

We see that: 1) the recognition rate does not improve much with the increase of model dimension n

for the shift invariant and standard subspace angles distance (see Fig. 9a ’triangle’ data). This means

that we can choose a comparatively small model dimension, say n = 3, to gain a large saving of com-

putation expense with only a small reduction in the recognition rate; 2) the recognition rate even drops

with the increase of model dimension n for the shift invariant and standard Binet-Cauchy kernel (see

Fig. 9a ’square’ data). This indicates that the Binet-Cauchy kernel is not suitable for high-dimensional

linear dynamical models; 3) the proposed shift invariant distance/kernel always performs better than

the standard subspace angles distance and the Binet-Cauchy kernel (see Fig. 9a, red vs. blue). The

shift invariant/standard subspace angles distance performs better than the shift invariant/standard

Binet-Cauchy kernel (see Fig. 9a, triangle vs. square); 4) the proposed shift invariant subspace angles

distance outperforms the other three distance metrics and achieves a best recognition result of 95.70%

with n = 3. So in the following experiments, we use the shift invariant subspace angles distance as

default metric for LDS unless otherwise specified.

6.3.2 Evaluation of Upper Bound of Shift

In Fig. 9b, we evaluate the recognition performance with respect to upper bound of temporal shift

T from T = 1 to T = 30. We see that increasing T improves the performance up to T = 16. Further
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TABLE 1

Comparison of different temporal models (%)

Weizm. KTH U. sports Hollywood2 UCF50

Rb-LDS 95.70 91.67 81.33 52.72 77.82

T-LDS 91.40 87.47 76.81 46.28 68.15

MEMM 89.25 81.36 74.84 43.54 55.73

CRF 92.47 89.50 80.98 48.58 74.34

SLDS 93.55 89.55 81.30 53.66 76.56

increasing of temporal shift does not yield better results. In addition, with the increase in T , the

computational cost increases dramatically. Considering that most of the concerned sequences are

non-periodic or have only short periods, we choose T = 16 in all the experiments.

6.3.3 Comparison of Different Temporal Models

The different temporal models are compared in Table 1. We see that robust LDS (Rb-LDS) consistently

outperforms the other models on all the datasets except switching LDS (SLDS) on the Hollywood2

dataset.

Rb-LDS gives an average 3%-9% improvement over the traditional LDS (T-LDS). This indicates

that the stability criterion of dynamical systems plays an important role in the results. For T-LDS, the

computation of the shift invariant distance metric may fail if the LDS is degenerate. This is especially

clear on the realistic datasets, e.g., UCF sports, Hollywood2 and UCF50, because they contain many

more disturbance factors.

Notwithstanding all these disadvantages, T-LDS outperforms MEMM by nearly 2%-12% because

it captures the global dynamics. CRF gives much better results than both T-LDS and MEMM. This

is probably because CRF considers the temporal context. It is interesting to notice that the temporal

context is especially useful to discriminate actions with a similar motion style, e.g., walk vs. jog in

the KTH dataset. However, training CRF with a long window of observations is much more time

consuming than for T-LDS and MEMM.

SLDS achieves a recognition performance almost as good as Rb-LDS. These two methods both use

LDS to describe the sequence dynamics. SLDS further builds a stochastic model on top of a set of

LDSs. The switching or transition among the set of LDSs describes the nonlinear dynamics. This is

why SLDS gives a slightly better result on the more complex dataset, e.g., Hollywood2, in which many

clips include multiple primitive actions. However, Rb-LDS consistently performs better than SLDS on

the other datasets, because Rb-LDS specifically considers the stability of the LDS and temporal shifts

of the action sequence. In addition, learning SLDS involves many more parameters and exact inference

is generally not possible. On the other hand, training Rb-LDS is simple and efficient. Classification is

achieved by directly defining a distance metric on the LDS space. This makes it straightforward to

compare two action sequences. More importantly, Rb-LDS yields a pairwise distance matrix, which

can be embedded into the maximum margin distance learning framework. This embedding cannot

be achieved with SLDS.
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A closely related LDS-based activity clustering method is proposed by Turaga et al. [20], who

consider the same tools as ours and SLDS. They segment a long video sequence into meaningful

subsequences by searching for action boundaries with a suboptimal algorithm. Then they fit LDSs

to each segment and cluster them by building a distance metric on LDSs. Each clustering center

represents an action component, and each LDS is assigned the label to its nearest center. The sequence

is finally modeled as a cascade of LDSs (CLDS). CLDS differs with SLDS in two ways. First, CLDS

assumes as given the number of clustering centers to model action components, while SLDS assumes

the number of hidden states. Second, CLDS maintains the temporal structure of LDSs using an

n-grams model, while SLDS maintains the temporal structure with a state transition matrix. The

similarity between Rb-LDS and CLDS is that they both use LDS to describe motion dynamics and

define a distance metric on LDSs. However, CLDS differs with Rb-LDS in that it is designed to

mine repetitive patterns from long sequences which may contain multiple activities. To define and

search for a stable segmentation boundary in long sequences is indeed not so straightforward. The

success of the search largely depends on the definition of action components and the expected

segmentation granularity. The proposed reconstruction error based algorithm [20] indeed produces

many uncertainties in the segmentation. These uncertainties can be eliminated or alleviated by our

proposed aligned distance metric.

6.3.4 Recognition Performance of Proposed Framework

In Fig. 10, we compare confusion matrices with respect to different distance measures: LDSs, cuboids

and combined distances with both class independent and class dependent weights on three action

datasets, namely Weizmann, KTH and UCF sports. For Hollywood2, binary classification is carried

out for each action class as all the clips are labeled with 1 or -1, indicating whether the clip contains

a specific action class or not. For this reason, we only conduct class independent combination for

each action class separately and show the results in Table 2, accompanied with the learned class

independent weights for each class. The class dependent combination is not applicable for this dataset.

For UCF50, since it contains 50 action classes, we only show the average results in Table 3 due to

limited space. We also give the class independent weights in Table 4 and class dependent weights in

Fig. 11 on all the datasets.

We see that LDSs give fairly good results by themselves, and outperform cuboids on all the datasets

except the UCF sports. It is worth noting that the recognition rates achieved by LDSs are nearly 10%

better than those obtained by cuboids on Hollywood2 and UCF50. This indicates that LDSs are

more discriminative than cuboids on complex datasets which contain large temporal variations. The

UCF sports dataset involves many specific environments and items of equipment. Local cuboids are

designed to capture this information, and thus achieve better results on this dataset.

We observe that the combination of LDSs and cuboids significantly improves the final performance

for both class independent and class dependent modes on all the datasets. In general, the class

dependent combinations achieve better results than the class independent combinations. This is

intuitively plausible because the class dependent combinations specifically consider the differences



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 22

LDSs Cuboids
Combined, 

class independent

Combined, 

class dependent

.89 .00 .00 .00 .00 .00 .00 .00 .11 .00

.00 1.0 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 1.0 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .67 .00 .00 .00 .00 .33 .00

.00 .00 .00 .00 1.0 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 1.0 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 1.0 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 1.0 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 1.0 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 1.0

bend

jack

jump

pjmp

run

side

skip

walk

wave1

wave2

bend
jack

jum
p
pjm
p
run

side
skip

walk
wave1

wave2

1.0 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 1.0 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .89 .00 .11 .00 .00 .00 .00 .00

.00 .00 .00 1.0 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .80 .00 .20 .00 .00 .00

.00 .00 .00 .00 .00 1.0 .00 .00 .00 .00

.00 .00 .00 .00 .10 .00 .90 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 1.0 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 1.0 .00

.00 .00 .00 .00 .00 .00 .00 .00 .11 .89

bend

jack

jump

pjmp

run

side

skip

walk

wave1

wave2

bend
jack

jum
p
pjm
p
run

side
skip

walk
wave1

wave2

1.0 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 1.0 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .89 .00 .11 .00 .00 .00 .00 .00

.00 .00 .00 1.0 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 1.0 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 1.0 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 1.0 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 1.0 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 1.0 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 1.0

bend

jack

jump

pjmp

run

side

skip

walk

wave1

wave2

bend
jack

jum
p
pjm
p
run

side
skip

walk
wave1

wave2

1.0 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 1.0 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .89 .00 .11 .00 .00 .00 .00 .00

.00 .00 .00 .89 .00 .00 .00 .00 .11 .00

.00 .00 .00 .00 .90 .00 .10 .00 .00 .00

.00 .00 .00 .00 .00 1.0 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 1.0 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 1.0 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 1.0 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 1.0

bend

jack

jump

pjmp

run

side

skip

walk

wave1

wave2

bend
jack

jum
p
pjm
p
run

side
skip

walk
wave1

wave2

1.0 .00 .00 .00 .00 .00

.00 1.0 .00 .00 .00 .00

.00 .00 1.0 .00 .00 .00

.00 .00 .00 .84 .07 .08

.00 .00 .00 .18 .77 .05

.00 .00 .00 .09 .02 .89

box

clap

wave

jog

run

walk

box
clap

wave
jog run

walk

.97 .00 .00 .00 .00 .03

.17 .83 .00 .00 .00 .00

.03 .03 .94 .00 .00 .00

.00 .00 .00 .67 .17 .17

.00 .00 .00 .11 .83 .06

.00 .00 .00 .06 .00 .94

box

clap

wave

jog

run

walk

box
clap

wave
jog run

walk

1.0 .00 .00 .00 .00 .00

.00 .97 .03 .00 .00 .00

.00 .00 1.0 .00 .00 .00

.00 .00 .00 .80 .16 .04

.00 .00 .00 .17 .83 .00

.00 .00 .00 .04 .00 .96

box

clap

wave

jog

run

walk

box
clap

wave
jog run

walk

1.0 .00 .00 .00 .00 .00

.00 1.0 .00 .00 .00 .00

.00 .00 1.0 .00 .00 .00

.00 .00 .00 .94 .06 .00

.00 .00 .00 .06 .94 .00

.00 .00 .00 .00 .00 1.0

box

clap

wave

jog

run

walk

box
clap

wave
jog run

walk

.93 .00 .00 .00 .00 .00 .00 .00 .07 .00

.00 .89 .00 .00 .06 .00 .00 .00 .00 .06

.00 .05 .85 .00 .05 .00 .00 .00 .00 .05

.00 .00 .00 .83 .00 .00 .00 .00 .17 .00

.00 .08 .00 .00 .67 .17 .00 .08 .00 .00

.00 .08 .15 .00 .15 .62 .00 .00 .00 .00

.00 .08 .00 .00 .00 .00 .75 .00 .00 .17

.00 .05 .00 .00 .00 .00 .00 .85 .00 .10

.00 .00 .00 .08 .00 .00 .08 .00 .85 .00

.00 .14 .05 .00 .00 .00 .00 .00 .00 .82

Dive

Golf

Kick

Lift

Ride

Run

Skate

Swing1

Swing2

Walk

Dive
Golf

Kick
Lift

Ride
Run

Skate
Swing1

Swing2

W
alk

.93 .00 .00 .00 .00 .00 .00 .07 .00 .00

.00 .72 .00 .00 .06 .00 .00 .00 .00 .22

.00 .05 .65 .00 .10 .10 .05 .00 .00 .05

.00 .00 .00 1.0 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .75 .08 .00 .00 .00 .17

.00 .08 .00 .00 .08 .77 .00 .00 .00 .08

.00 .08 .00 .00 .00 .00 .75 .00 .00 .17

.00 .00 .00 .00 .00 .05 .00 .95 .00 .00

.00 .00 .00 .00 .00 .00 .00 .08 .92 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 1.0

Dive

Golf

Kick

Lift

Ride

Run

Skate

Swing1

Swing2

Walk

Dive
Golf

Kick
Lift

Ride
Run

Skate
Swing1

Swing2

W
alk

.97 .00 .00 .00 .00 .00 .00 .00 .02 .00

.00 .88 .00 .00 .00 .02 .10 .00 .00 .00

.00 .01 .83 .00 .16 .00 .00 .00 .00 .00

.00 .00 .00 1.0 .00 .00 .00 .00 .00 .00

.00 .00 .23 .00 .70 .08 .00 .00 .00 .00

.00 .05 .00 .00 .00 .95 .00 .00 .00 .00

.00 .02 .00 .00 .00 .00 .90 .00 .00 .07

.00 .00 .00 .00 .02 .02 .00 .95 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 1.0 .00

.00 .05 .00 .00 .00 .00 .00 .00 .00 .95

Dive

Golf

Kick

Lift

Ride

Run

Skate

Swing1

Swing2

Walk

Dive
Golf

Kick
Lift

Ride
Run

Skate
Swing1

Swing2

W
alk

1.0 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .89 .00 .00 .00 .00 .00 .00 .00 .11

.00 .00 1.0 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 1.0 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .83 .17 .00 .00 .00 .00

.00 .00 .00 .00 .00 1.0 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .83 .00 .00 .17

.00 .00 .00 .00 .08 .00 .00 .92 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 1.0 .00

.00 .08 .00 .00 .00 .00 .00 .00 .00 .92

Dive

Golf

Kick

Lift

Ride

Run

Skate

Swing1

Swing2

Walk

Dive
Golf

Kick
Lift

Ride
Run

Skate
Swing1

Swing2

W
alk

CCR: 95.70% CCR: 94.62% CCR: 98.92% CCR: 96.77%

CCR: 91.67% CCR:86.57% CCR: 92.72% CCR: 98.07%

CCR: 81.33% CCR:84.00% CCR: 90.77% CCR: 95.38%

Fig. 10. Confusion matrices for depicting the results of action recognition with respect to LDSs, cuboids,

combined distances with class independent and class dependent weights on three action datasets.

From top to bottom: Weizmann, KTH and UCF sports, respectively.

TABLE 2

Average precision of each action class for the Hollywood2 dataset (%)

LDSs Cuboids Combined (ω1, ω2)

AnswerPhone 52.80 25.93 49.46 (1.25, 0.68)

DriveCar 55.49 59.17 75.33 (1.58, 0.45)

Eat 41.68 41.48 53.50 (0.28, 2.19)

FightPerson 81.86 53.99 83.91 (2.04, 0.44)

GetOutCar 48.24 44.65 51.99 (1.41, 0.92)

HandShake 29.54 24.26 33.84 (1.52, 0.12)

HugPerson 30.89 35.21 38.05 (1.06, 0.96)

Kiss 61.19 42.05 67.60 (1.64, 0.46)

Run 71.19 53.82 73.31 (1.38, 0.56)

SitDown 65.72 42.61 64.11 (1.15, 0.82)

SitUp 14.11 20.63 28.94 (0.09, 1.46)

StandUp 79.95 45.39 83.23 (1.42, 0.52)

mAP 52.72 40.77 58.61
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TABLE 3

Recognition accuracy for the UCF50 dataset (%)

LDSs Cuboids
Combined,

class independent

Combined,

class dependent

CCR 77.82 67.06 80.11 84.74

TABLE 4

Class independent weights of LDSs and cuboids

Weizm. KTH U. sports Hollywood2 UCF50

LDSs 1.01 1.42 1.47 N/A 0.71

Cuboids 1.99 1.45 2.01 N/A 1.15

among all the action classes, and learn the weights required to reveal these differences. In Table 4,

we see that cuboids play the main role for class independent combinations on all the datasets. This

is probably because the class independent combinations consider the impact on all the action classes

and give trade-off results. For the Hollywood2, the class independent weights for the whole dataset

are not applicable. We give the weights for each action class in Table 2. In Fig. 11, we observe a more

coherent result in that LDSs play the dominant role on most of the action classes.

In Fig. 10, we see how LDSs and cuboids contribute to the combination result. Taking the UCF

sports dataset as example, we see that LDSs tend to misclassify the actions ’ride’, ’run’ and ’skate’,

while cuboids tend to misclassify the actions ’golf’, ’kick’, ’ride’, ’run’ and ’skate’. We also observe that

cuboids give perfect performance for the actions ’lift’ and ’walk’. After combining LDSs and cuboids,

the perfect performance for the actions ’lift’ and ’walk’ is kept, and the poor performance for the

actions ’golf’, ’kick’, ’ride’, ’run’ and ’skate’ is greatly improved. We achieve average recognition

rates of 81.33% for LDSs, 84.00% for cuboids, 90.77% for the class independent combination and

95.38% for the class dependent combination. From Fig. 11c, we see that for actions ’dive’, ’golf’,

’kick’, ’ride’, ’run’, ’skate’, ’swing1’ and ’walk’, LDSs play the dominant role, while for actions ’lift’

and ’swing2’, the cuboids are more dominant. Putting this all together, we conclude that LDSs and

cuboids compensate for each other in describing different aspects of the actions and thus can be

combined to improve the recognition performance. In addition, we obtain that the weightings of the

class dependent combination largely depend on the recognition results achieved by LDSs and cuboids

individually for the specific action classes. The method with the better recognition result is given the

higher weighting.

In Table 5, we compare class independent combination (CIC) to a baseline combination scheme with

the weights ω = [1, 1]. We see that the our proposed combination method outperforms the baseline

combination significantly on most of the datasets. The KTH dataset is an exception, but this is because

the learned weights are very close to [1, 1] (see Table 4). This indicates that LDSs and cuboids are

equally important for the KTH dataset. Furthermore, we observe that the baseline combination does
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Fig. 11. Class dependent weights of LDSs and cuboids for all the action class. (a) Weizmann, (b) KTH,

(c) UCF sports, (d) Hollywood2, (e) UCF50.
TABLE 5

Comparison to baseline combination scheme (%)

Weizm. KTH U. sports Hollywood2 UCF50

[1, 1] 93.55 92.47 82.12 47.81 70.86

CIC 98.92 92.72 90.77 58.61 80.11

not guarantee the improvement with respect to LDSs and cuboids. On the other hand, our proposed

combination method significantly outperforms LDSs and cuboids on all the datasets.

6.3.5 Comparison to State-of-the-art Results

In this section, we compare our results to the state of the art on all the datasets. We show in Table 6 the

most recent methods and compare our results with them. We demonstrate that our method performs

consistently and stably when comparing to the state-of-the-art methods, especially those evaluated

across most of the datasets.

On Weizmann, fairly high performance has been achieved by many methods, among which Wang

and Suter [44] obtains the highest recognition rate of 100%. Among the methods, [42] and [9] focus on

modeling and learning the motion information. Ali and Shah [42] extract a set of kinematic features

such as divergence, vorticity, etc., from the optical flow for human action recognition. They report

a best recognition rate of 95.75%. Chaudhry et al. [9] use the Binet-Cauchy kernels to capture the

nonlinear dynamics of HOOF sequences, and achieve a best recognition rate of 95.66%. Our approach

gives a similar recognition rate of 95.70% with single LDSs, and 98.92%, the second highest recognition

rate, with class independent combination.
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TABLE 6

Comparison of recognition performance to state-of-the-art results (%)

Weizmann KTH UCF sports

Gorelick et al. [45] 97.83 Gilbert et al. [61] 94.50 Rodriguez et al. [54] 69.20

Chaudhry et al. [9] 95.66 Kovashka and Grauman [62] 94.53 Kovashka and Grauman [62] 87.27

Ali and Shah [42] 95.75 Wang et al. [10] 95.30 Wang et al. [10] 89.10

Bregonzio et al. [63] 96.66 Le et al. [64] 93.90 Le et al. [64] 86.50

Wang and Suter [44] 100.00 Wu et al. [65] 94.50 Wu et al. [65] 91.30

Sadanand and Corso [66] 98.20 Sadanand and Corso [66] 95.00

LDSs alone 95.70 LDSs alone 91.67 LDSs alone 81.33

Cuboids alone 94.62 Cuboids alone 86.57 Cuboids alone 84.00

Combined, class independent 98.92 Combined, class independent 92.72 Combined, class independent 90.77

Combined, class dependent 96.77 Combined, class dependent 98.07 Combined, class dependent 95.38

Hollywood2 UCF50

Gilbert et al. [61] 50.90 Reddy and Shah [56] 76.90

Le et al. [64] 53.30 Sadanand and Corso [66] 57.90

Wang et al. [10] 59.90 Wang et al. [10] 85.60

LDSs alone 52.72 LDSs alone 77.82

Cuboids alone 40.77 Cuboids alone 67.06

Combined 58.61 Combined, class independent 80.11

Combined, class dependent 84.74

On KTH and UCF sports, we obtain results which are better than most of the recently proposed

methods and are close to the best reported in [66]. Sadanand and Corso [66] achieve their results

by exploring a large set of action detectors as bases to represent action semantics. However, their

method is time consuming in that it requires an average of 204 minutes to process a regular video,

while our method only requires 10 minutes or so. In addition, our method outperforms their method

significantly on UCF50 by nearly 20%. It is worth noting that Wu et al. [65] propose a similar

fusion framework to ours, namely multiple kernel learning, based on two types of complementary

appearance-based features. However, they report inferior results on both datasets.

On Hollywood2 and UCF50, we achieve results comparable to the best reported in [10]. Wang et

al. [10] achieve 58.20% on Hollywood2 and 84.50% on UCF50 by combining local HOG, HOF and

MBH. These results are slightly less than ours. However, they further improve their results by using

spatio-temporal pyramids. They report 59.90% on Hollywood2 and 85.60% on UCF50, which are

around 1% better than ours. On the other hand, our method outperforms theirs by nearly 3% on

KTH and 6% on UCF sports.

6.4 Experiments on Long Continuous Datasets

6.4.1 Recognition Performance of Pre-segmented Setting

In the pre-segmented setting, we segment the videos into short clips according to the ground-truth

annotations, so that each clip contains only one instance of the activities. Evaluation is carried out
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TABLE 7

Recognition performance of pre-segmented setting on long continuous datasets (%)

VIRAT ADL CRIM13

Amer and Todorovic [59] 76.20 Pirsiavash and Ramanan [60] 77.00 N/A

LDSs+Cuboids 84.49 LDSs+Cuboids 86.57 LDSs+Cuboids 88.35

TABLE 8

Recognition performance of continuous setting on long continuous datasets (%)

VIRAT ADL CRIM13

Chakraborty et al. [58] 11.53 Pirsiavash and Ramanan [60] 60.70 Artizzu et al. [16] 61.20

LDSs+Cuboids 26.55 LDSs+Cuboids 66.25 LDSs+Cuboids 68.83

on the resulting short clips datasets. We show in Table 7 the recognition rates on three datasets and

compare to the state-of-the-art results.

On VIRAT, Amer and Todorovic [59] propose to represent each activity by a sum-product network

and achieve a recognition rate of 76.20%. On ADL, Pirsiavash and Ramanan [60] achieve 77.00% by

combining temporal pyramids and object detectors. Our method outperforms their results by over 8%

on both datasets. On CRIM13, there is no existing result for comparison and we achieve 88.35%. We

see that in the pre-segmented setting, our combination method yields good results even on large-scale

datasets.

6.4.2 Recognition Performance of Continuous Setting

In the continuous setting, we test our method within temporal sliding windows, and assign the best

activity labels to the center frames. The performance is measured by the percentage of frames with

class agreement between the assigned labels and ground-truth annotations. We choose the sliding

window sizes empirically by considering the duration of activities in each dataset. In detail, we set

the window sizes to 4 seconds for the VIRAT dataset, and 10 seconds for the ADL and CRIM13

datasets, respectively. We show in Table 8 the recognition results and compare to the state-of-the-art

methods.

On VIRAT, we obtain the mean AP 26.55%, which is nearly 15% better than the state-of-the-art

result. This result is rather low mainly because of the small number of activity samples as discussed

in [58]. On ADL and CRIM13, our method outperforms the best results by nearly 6%. We see that with

no ground-truth segmentations, our method still obtains reasonable results, though the performance

decreases by nearly 20% compared with those obtained in the pre-segmented setting.

7 CONCLUSIONS

In the human action recognition community, the capture of both global dynamics and local appearance

features is a challenging problem. In this paper, we solve this problem by a simple yet effective ap-
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proach based on combining LDSs and cuboids in a maximum margin distance learning framework. We

firstly modeled the human action sequences dynamics with robust LDSs and proposed a shift invariant

distance metric to measure the distance between LDSs. We then described the local appearance with

HOG descriptors of the dense curved spatio-temporal cuboids. Finally we performed classification

using the maximum margin distance learning method by combining the LDSs-based distances and the

cuboids-based distances. We validated our method on the public human action datasets and achieved

encouraging results compared to the state-of-the-art methods.

The main limitation of our method is that it is currently not designed to handle long-time sequences.

Since the concerned sequences usually involve long-scale temporal variations, LDSs can not describe

the embedding nonlinear dynamics alone. A possible way is to develop an automatic segmentation

method to divide the long sequence into many short motion primitives, while these primitives are

modeled as LDSs. The whole sequence is described as a hierarchical model by connecting these LDSs

through Markov models or topic models. This is undoubtedly an interesting problem and we will

consider it in the further work.
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