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Abstract

We consider the problem of image recognition via two-dimensional ran-
dom projection and nearest constrained subspace. First, image features are
extracted by a two-dimensional random projection. The two-dimensional
random projection for feature extraction is an extension of the 1D compres-
sive sampling technique to 2D and is computationally more efficient than
its 1D counterpart and 2D reconstruction is guaranteed. Second, we design
a new classifier called NCSC (Nearest Constrained Subspace Classifier) and
apply it to image recognition with the 2D features. The proposed classifier is
a generalized version of NN (Nearest Neighbor) and NFL (Nearest Feature
Line), and it has a close relationship to NS (Nearest Subspace). For large
datasets, a fast NCSC, called NCSC-II, is proposed. Experiments on several
publicly available image sets show that when well-tuned, NCSC/NCSC-II
outperforms its rivals including NN, NFL, NS and the orthonormal `2-norm
classifier. NCSC/NCSC-II with the 2D random features also shows good
classification performance in noisy environment.
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1. Introduction

For most practical pattern recognition scenarios, feature extraction and clas-
sification methods are equally important. Feature extraction should retain most
if not all of the useful information in the data while keeping the dimension of the
features as low as possible. A careful choice of features is required to achieve low
complexity in the classifier and a high accuracy in classification.

1.1 Compressive Sampling

Recent developments of compressive sampling (CS) theory give us clues for new
methods of feature extraction. Namely, if the sparsity of the data is appropriately
harnessed, then the data can be highly compressed by an underdetermined random
projection (defined by a full rank random matrix whose row number is less than
its column number), to achieve a sampling rate even lower than the classical
Nyquist rate without any information loss. The original data can be exactly
recovered from the highly compressed measurements by the `1-norm minimization
techniques [1–9].

More specifically, let x ∈ RD be a κ-sparse (κ < D) vector, i.e., x has at most κ
nonzero entries, and let Φ ∈ Rd×D (d < D) be a matrix, whose entries are Gaus-
sian distributed (or more generally, Restricted Isometry Property compatible).
Then x can be compressed as follows.

x̂ = Φx (1)

where x̂ ∈ Rd is the vector of CS measurements.
Given x̂ and Φ, there are an infinite number of vectors x that satisfy Equation

(1). However, it has been proved that if d > O(κ log(D
κ

)), then with overwhelming
high probability

p > 1− expO(−d) (2)

x can be exactly recovered from x̂ by minimizing the `0-norm of x as follows [1,2].

x∗ = argmin
x∈RD

‖x‖0 subject to x̂ = Φx (3)

where x∗ is the recovered version of x.
Because the optimization problem of Equation (3) is NP-hard, the recovery of

x is equivalently reformulated as the `1-norm minimization problem as follows.

x∗ = argmin
x∈RD

‖x‖1 subject to x̂ = Φx (4)

This problem can be solved by algorithms such as Basis Pursuit [10] or Or-
thogonal Matching Pursuit [11].

Since the data dimension can be efficiently reduced without significant infor-
mation loss, the above mentioned projection technique serves as a tool for feature
extraction. Mathematical analyses show that compressive recognition, detection
and other processings in compression domain Rd are feasible [12–20].
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Note that the above mentioned projection technique is applied to vectors. For
image data which are naturally represented by matrices, the 1D representation
discards structural information about the image.

Due to this concern, different 2D (matrix) representations are exploited for
feature extraction. For example, the 2D representation methods include 2DPCA
[21] and its variants [22–24], 2DLDA [25], bilinear subspace learning [26,27], tensor
analysis [28–31], and the recent common interest in 2D random projection [32–34].

Among the 2D representations, either supervised or unsupervised, 2DPCA,
2DLDA and bilinear subspace learning, etc., are obtained by deterministic two-
dimensional projection. Another category of 2D representation include those ob-
tained by random linear projection [32–34]. Both categories are actually the
order-two tensor analyses, which exploit the correlations among image pixels with
different dimensions and in this sense is believe to lead to good classification
performance for different applications such as image recognition and human gait
recognition [28–31].

1.2 NN, NFL and NS

Besides the feature extraction, classifier design is equally important. Classi-
cal but still popular subspace-based classifiers include NN (Nearest Neighbor),
NFL (Nearest Feature Line, proposed by Stan Z. Li et al [35]) and NS (Nearest
Subspace).

NN, NFL and NS share some common traits and can be summarized in a
generalized way — given a query sample y and n training samples belonging to
K classes, NN, NFL and NS all use on the same strategy to determine the class
of y as follows. {

ri(y) = minx∈Mi
‖y − x‖2, ∀i = 1, · · · , K

class(y) = argmini∈{1,··· ,K} ri(y)
(5)

where ri(y) is the distance of y to class i and Mi is a classifier-specific dataset
defined by training set i.

Denoting the i-th training set by Xi =
{

x
(1)
i , · · · ,x(ni)

i

}
, in NN, Mi is the i-th

training set itself, namely
Mi = Xi (6)

In NFL, Mi is a set of feature lines defined by Xi, namely,

Mi =
{
αx(a) + (1− α)x(b)| α ∈ R, x(a),x(b) ∈ Xi

}
(7)

In NS, Mi is the linear subspace spanned by x
(1)
i , · · · ,x(ni)

i . Denote the matrix
whos columns are the training samples of the i-th class by

Ai =
[
x
(1)
i , · · · ,x(ni)

i

]
(8)

then, in NS, Mi can be written as follows.

Mi = {Aiα| α ∈ Rni} (9)
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It follows from Equations (6)–(9) that in all cases we have Xi ⊆ Mi. For
notation convenience, we respectively denote the training superset Mi of NN,
NFL and NS as MNN

i , MNFL
i and MNS

i . It is not difficult to see that MNN
i ⊂

MNFL
i ⊂ MNS

i . Since MNS
i is a linear subspace and MNN

i and MNFL
i are just the

appropriate subsets of it, we call MNN
i and MNFL

i the constrained subspaces for the
i-th class.

1.3 NM and its Relationship to NN, NFL, NS

In NM (Nearest Manifold), it is assumed that the data of a class lie on or
near to a manifold, and that the dimension of the manifold is much less than the
dimension of the feature space.

NM uses the same strategy of Equation (5) to classify y with

Mi =Mi, i = 1, · · · , K. (10)

where Mi is the data manifold of the i-th class.
If suitable manifolds for all i = 1, · · · , K can be found, then NM has a high

classification accuracy.
Note that Mi in Equations (6), (7) and (9) can be viewed as different approx-

imations to Mi for the i-th class. From this perspective, we contend that NN,
NFL and NS are all approximations to NM and propose later a novel classifier,
called NCSC (Nearest Constrained Subspace Classifier), and show by experiments
that NCSC is a better approximation to NM than NN, NFL and NS.

1.4 Contributions of This Study

Based on our previous work [34], we discuss the technique of 2DCS (two-
dimensional compressive sampling), which is inspired by 1DCS (traditional com-
pressive sampling) and 2DPCA [21]. The 2D (matrix based) approach is com-
putationally less complex than the 1D (vector based) approach to image data.
The reconstruction of the original data is still guaranteed with a high probability.
In this sense, 2DCS is more efficient than 1DCS for feature extraction. Our ex-
periments show that when 2DCS features are exploited by some state-of-the-art
classifiers, the performance of image recognition is improved.

This interest is somehow shared almost at the same time by A. Eftekhari et
al [32] and L. Leng et al [33]. Although addressing the same problem, the focuses
of A. Eftekhari, L. Leng et al. [32,33] and ours are different. Besides the theoretical
analysis of 2D random projection and the assumption that 2D signal is sparse, A.
Eftekhari et al. reported a reconstruction algorithm of 2D sparse signal based on
smoothed `0-norm minimization. A reconstruction method of natural images (not
explicitly sparse) and the problem of designing a cutting-edge classifier exploiting
the 2D random projection features were not addressed in [32]. On the other hand,
in [33], 2D random projection and its variations combined with PCA, LDA etc,
were studied and compared with other feature extractors but without mention of
the problems of 2D reconstruction and classifier design.
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In our work, we propose a two-steps (including row processing and column
processing) 2DCS reconstruction scheme for natural images via TV minimization.
We also propose a classifier called NCSC (Nearest Constrained Subspace Classi-
fier) and its fast version called NCSC-II, in which the subspace associated with
the target class is constrainedly spanned by training samples. The constrained
subspace is a union of a series of affine hulls.

We prove that NCSC is a generalized version of NN (Nearest Neighbor), NFL
(Nearest Feature Line) and has a close relationship with NS (Nearest Subspace).
Employing the intrinsic dimension as a freedom degree parameter, the constrained
subspace, rather than the unconstrained one, is believed to be a more accurate
approximation to the data manifold. The intrinsic dimension of the constrained
subspace in NCSC is defined by a `0-norm sparse representation, and NCSC itself
is in fact an approximation to the conceptual NM (Nearest Manifold) classifier,
which is believed to be the optimal classifier using the nearest distance as the
proximity measurement.

2. 2DCS: Two-Dimensional Compressive Sampling

In 1DCS, images are first recast as vectors and then projected to a lower
dimensional space, namely image x ∈ RM×N is represented by vector x1D ∈ RMN .

Alternatively, we propose that the matrix x ∈ RM×N can be projected by a
column-wise approach using a matrix Φ1 ∈ Rm×M (m < M) as follows [34].

z = Φ1x (11)

After Equation (11), the row number of z is reduced to m. In the context of
2DCS, we call Equation (11) the step of “row compression”.

Similarly, the right multiplication of z by Φ2 ∈ RN×n (n < N) leads to
“column compression”, yielding a matrix y ∈ Rm×n as follows.

y = Φ1xΦ2. (12)

Due to its similarity to 1DCS, we call Equation (12) 2DCS (two-dimensional
compressive sampling). As a kind of stepwise implementation of 1DCS, 2DCS re-
duces feature extraction to a series of subtasks. Thus, the computational complex-
ity of 2DCS is significantly less than that of 1DCS, which is superlinear function
of the input scale.

If the sparsity of x is appropriately harnessed, the reconstruction of x from y
is guaranteed.

The 2DCS reconstruction requires two steps of reconstructions, i.e., the column
reconstruction and row reconstruction as follows.

(S1) Column reconstruction

z∗row,i = argminzrow,i∈R1×N ‖Ψ(zrow,i)‖1
subject to yi = zrow,iΦ2 ∀i = 1, 2, · · · ,m. (13)

where z∗row,i is the i-th recovered row of z
.
= Φ1x, yi is the i-th row of y and Ψ(·)

is a sparsifying transformation, which transforms a target vector or matrix (not
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explicitly sparse) to sparse one. For image data, Ψ could be TV (Total Variation)
transform. If the target vector x is already sparse itself, then Ψ is the identity
transformation.

After the above step, z
.
= Φ1x is recovered.

(S2) Row reconstruction

x∗j = argminxj∈RM ‖Ψ(xj)‖1
subject to zcol,j = Φ1xj ∀j = 1, 2, · · · , N. (14)

where xj
∗ is the recovered j-th column of x and zcol,j is the j-th column of z.

After the two steps, x is recovered.
To be more specific, given (column) vector u, which is not explicitly sparse

(e.g., u is a vector from image data), and its measurements b = Du, the recon-
struction of u via b, D can be implemented via TV (Total Variation) minimiza-
tion [36]. TV minimization is defined as follows.

u∗ = argmin
u

∑
i
‖∆i(u)‖1 subject to Du = b (15)

where ∆i(u) is the discrete gradient vector of u at position i.
Hereinafter, given projection matrix D and vector b, we denote the solution of

Equation (15) by TV(D,b). Thus, we summarize our algorithm of 2DCS image
reconstruction via TV minimization as Algorithm 1.

Algorithm 1 2DCS Image Reconstruction via TV minimization

Input: Projection matrices Φ1 ∈ Rm×M , Φ2 ∈ RN×n and y ∈ Rm×n.
Output: Reconstructed x ∈ RM×N .

1: Y ← yT , D← ΦT
2 ;

2: for i← 1 to m do . Column Reconstruction
3: b← Y(i); . Y(i) is the i-th column of matrix Y
4: U(i)← TV(D,b); . U(i) is the i-th column of matrix U
5: end for
6: z ← UT ; . Column Reconstruction Completed
7: D← Φ1;
8: for i← 1 to N do . Row Reconstruction
9: b ← z(i); . z(i) is the i-th column of matrix z

10: x(i) ← TV(D,b); . x(i) is the i-th column of matrix x
11: end for
12: return x; . Row Reconstruction Completed

3. NCSC: Nearest Constrained Subspace Classifier

In this section, we extend NN, NFL and NS to a unified classifier called NCSC
(Nearest Constrained Subspace Classifier), in which, the employed constrained
subspaces with the tuned intrinsic dimension parameter are better approximations
to the data manifolds than those of NN, NFL and NS.
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3.1 Manifold Perspective and Manifold Approximation

From the geometric point of view, the vectors representing the natural images
of the same class generally reside on (or near to) a low dimensional geometric
structure known as manifold, embedded in the high dimensional feature space
[37–39]. If the data manifolds for all the classes can be learned, then it would be
possible to design more effective classifiers. The concept of manifold has long been
a powerful analytical tool for understanding image classes, for example images of
human face or handwritten digits [40–42].

In the last decade, some well-known manifold learning algorithms have emerged,
such as ISOMAP [37], LLE (Local Linear Embedding) [38], Laplacian Eigenmap
[39], Hessian Eigenmaps (HLLE) [43], Maximum Variance Unfolding (MVU) [44]
and Local Tangent Space Alignment (LTSA) [45]. However they are not designed
to solve the problem of classifying new images. Although there are some works
which attempt to deal with this problem [46–48], the algorithms are all unsu-
pervised and designed for a single manifold, not for multiple manifolds. These
algorithms are unsuitable for supervised multi-class classification, in which each
class is modeled by a manifold.

As discussed in Section 1.3, NM (Nearest Manifold), with the nearest distance
criterion, is believed to be optimal in terms of classification accuracy. But due to
the unavailability of NM, we argue that some approximation strategies should be
exploited. Since the training data are the points on manifolds, if there are enough
well-distributed training data, then the manifold can be accurately approximated.

From this viewpoint, we argue, to achieve an accurate manifold approxima-
tion, it is necessary to make the intrinsic dimension of Mi equal to the intrinsic
dimension of manifold Mi (∀i = 1, · · · , K, given K classes). Otherwise the ac-
curacy of the approximation to the manifold can not be guaranteed. We call this
criterion the dimension equality.

3.2 Nearest Constrained Subspace Classifier

We call the subspace generated with the dimension equality constraint the
constrained subspace and the corresponding classifier with the nearest distance
criterion the Nearest Constrained Subspace Classifier (NCSC). Here, we discuss
the concepts of constrained subspace and NCSC in detail as follows.

Denoting the i-th training set by matrix Ai =
[
x
(1)
i ,x

(2)
i , · · · ,x(ni)

i

]
, the points

in the constrained subspace are given by Aiα (where α ∈ Rni) with some con-
straints imposed on α.

The first constraint is
1Tα = 1 (16)

This constraint, preventing the vector rotation and rescaling effect, means each
training data point x

(1)
i , · · · ,x(ni)

i serves as a descriptor of Aiα.
We also contend that α should be sparse in order to make the intrinsic di-

mension of the constrained subspace equal to that of the manifold. We use the
`0-norm of α to model this sparsity, namely, ‖α‖0 6 κ, where κ is a sparsity
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parameter and defines the intrinsic dimension (freedom degree) of the constrained
subspace.

Based on the above two constraints on α, in NCSC, r(y) is written as follows.

ri(y) = min
α
‖y −Aiα‖2 subject to 1Tα = 1 and ‖α‖0 6 κ 6 ni (17)

The constraint ‖α‖0 6 κ ensures that at most κ columns in Ai at the same
time contribute to point Aiα. Sinceα has ni entries, there are

(
ni
κ

)
κ-combinations

of the training vectors of class i. Given the training set of class i denoted by{
x
(1)
i , · · · ,x(ni)

i

}
, for the j-th κ-combination, we define the base matrix as follows.

Wi,j =
[
w

(1)
i,j , · · · ,w

(κ)
i,j

]
(18)

where
{

w
(1)
i,j , · · · ,w

(κ)
i,j

}
is the j-th κ-combination of the training vectors of class

i.
Then, the subproblem of Equation (17) for Wi,j can be written as follows.

r
(j)
i (y) = min

β∈Rκ
‖y −Wi,jβ‖2 subject to 1Tβ = 1 (19)

There are very mature algorithms for solving Equation (19). Interested readers
are referred to [49–51] for more details.

After calculating Equation (19) for all j = 1, · · · ,
(
ni
κ

)
, ri(y) is defined by

ri(y) = min
j
r
(j)
i (y) (20)

Based on the above discussion, we summarize NCSC as Algorithm 2.

Algorithm 2 NCSC: Nearest Constrained Subspace Classifier

Input: A query sample y, training vectors partitioned to K classes and parameter
κ.

Output: Class ID of y.
1: for i← 1 to K do
2: for i← 1 to

(
ni
κ

)
do

3: Obtain Wi,j as in Equation (18);

4: Calculate r
(j)
i (y) as in Equation (19);

5: end for
6: end for
7: return class(y)← argmini ri(y);

Note the `0-norm sparse representation employed by NCSC is closely associ-
ated with the intrinsic dimension of manifold and we discuss this issue in detail
in Section 3.4.
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3.3 Union of Affine Hulls

In NCSC, each constrained subspace is a union of affine hulls. Here we give
the explanation of this claim.

Given K classes, there are K constrained subspaces. The i-th constrained
subspace MNCSC

i is written as follows.

MNCSC
i =

{
Aiα| α ∈ Rni , ‖α‖0 6 κ 6 ni and 1Tα = 1

}
(21)

Since the solution of Equation (17) can be divided into the
(
ni
κ

)
solutions of

Equation (19), it is not difficult to see that MNCSC
i can be rewritten as follows.{

MNCSC
i =

⋃(niκ )
j=1 Hi,j

Hi,j =
{
Wi,jβ| β ∈ Rκ and 1Tβ = 1

} (22)

where Hi,j is the affine hull of the column vectors in Wi,j.
Note that affine hull (also known as affine subspace) is also referred to as

“linear manifold”. This means that MNCSC
i can be viewed as an approximation to

Mi by a series of linear manifolds.
It is also worth noticing that when κ = 1, MNCSC

i becomes MNN
i , whose intrinsic

dimension is 0. When κ = 2, MNCSC
i becomes MNFL

i , whose intrinsic dimension is
1. Thus, NN and NFL are just two low-dimensional special cases of NCSC.

In NN (i.e., NCSC with κ = 1), the constrained subspace for a specific class
(e.g., class i) is a vector set, i.e., the training set of that class. In NFL (i.e., NCSC
with κ = 2), for a specific class, the constrained subspace is a set of feature lines,
where each feature line is interpolated and extrapolated from a pair of training
samples. When κ = 3, the constrained subspace for a specific class is a set of
feature planes spanned by any triplet of the training samples. From this sense,
NCSC with κ = 3 can be called NFP (Nearest Feature Plane).

Figure 1 gives the constrained subspace interpretations of NN, NFL and NFP.
Without losing generality and for demonstration convenience, in Figure 1, we set
ni = 3. The intrinsic dimensions of the constrained subspaces in Figure 1(a)–
Figure 1(c) are respectively 0, 1 and 2.

3.4 Intrinsic Dimension

Based on the above discussions, it is easy to find that if the training samples
x
(1)
i , · · · ,x(ni)

i of class i are linearly independent, the intrinsic dimension of MNCSC
i

is given by
Dim(MNCSC

i ) = κ− 1 > 0, ∀i = 1, · · · , K (23)

The linear independence of x
(1)
i , · · · ,x(ni)

i is satisfied in many pattern recog-
nition problems if the feature dimension D is large enough. Hereinafter, unless
otherwise stated, we assume that the training samples of each class are linear
independent.

As mentioned in Section 3.1, in order to make MNCSC
i a more accurate approx-

imation to Mi, at least their intrinsic dimensions should be equal, namely,

Dim(MNCSC
i ) = Dim(Mi) (24)
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r
(1)
i

y

r
(3)
i

r
(2)
i

ri(y) = r
(1)
i (y)

x
(3)
i

x
(2)
i

x
(1)
i

(a) NN, i.e., NCSC with κ = 1

x
(3)
i

x
(2)
i

xi

r
(2 y

(1)

r
(1
i

)

)
i r

(3)
i

(b) NFL, i.e., NCSC with κ = 2

x
(3)
ixi

(1)
ir

y

(1)

ri(y) = r
(1)
i x

(2)
i

(c) NCSC with κ = 3

Figure 1: Constrained subspaces respectively with κ = 1, 2, 3 for class i where ni = 3 for
demonstration convenience. The blue point stands for a query sample, the red points are the
training samples of class i and ri(y) is the distance from the query point to that class. (a)
The NN (Nearest Neighbor) case is intrinsically zero-dimensional and equivalent to the NCSC
case where no data interpolation and extrapolation is employed. (b) The NFL (Nearest Feature
Line) case is actually the one-dimensional NCSC case with κ = 2. The green line segments
are from the data interpolations of the training samples. The red segments are from the data
extrapolations. (c) The NCSC case with κ = 3 is intrinsically two-dimensional. The interpolated
points are confined inside the green borders of the feature point triplets.

In this study, we focus on the scenario in which the intrinsic dimensions of
all classes are identical, i.e., Dim(M1) = Dim(M2) = · · · = Dim(MK) for all K
classes. We call the corresponding dataset homogeneous and denote the identical
intrinsic dimension as Dm.

Thus, the optimal parameter κ in Algorithm 2 is given as follows.

κ = Dm + 1 6 ni (25)

where Dm can be estimated in advance from the dataset by other algorithms
[52–57].

Based on Equation (25), we argue that for effectiveness of NCSC or even other
classifiers, the number of training samples of a class should not be less than the
intrinsic manifold dimension Dm. More concretely, the condition

ni > Dim(Mi) ∀i = 1, · · · , K (26)

should be satisfied for effective classifications. Otherwise, the training samples
are not sufficient to capture the critical manifold properties and the classification
accuracy are not guaranteed.
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On the other hand, in NS, all subspaces are unconstrained. The intrinsic
dimension of MNS

i is given by

Dim(MNS
i ) = ni (27)

For convenience, in this study we assume n1 = n2 = · · · = nK = N and denote
the intrinsic dimension of subspaces in NS by Ds. Then, we have Ds = N , which
is the highest and closely related with the highest dimensional extreme of NCSC
in which the constrained subspaces are (N − 1) dimensional. We argue that NS
is generally not optimal in terms of classification accuracy because the intrinsic
subspace dimension is unnecessarily high, especially when training set is large.

3.5 Computational Complexity of NCSC and Fast NCSC

As mentioned in Section 3.2 and Section 3.3, given ni training samples of the
i-th class, the solution of Equation (17) is divided into

(
ni
κ

)
solutions of Equation

(19). When ni is large and κ ' ni
2

,
(
ni
κ

)
can be huge. This makes Algorithm 2

computationally intractable.
To reduce the computational complexity, one strategy is to replace

(
ni
κ

)
with

a smaller number. We observe that from the viewpoint of local manifold approxi-
mation, many of the κ-combinations of training samples are not necessary. Thus,
some of the combinations can be removed. To do this, we assume that a target
sample xj and its nearest (κ − 1) neighbors in the same class together define a
local linear manifold. This neighborhood assumption is also employed in [52, 55]
to estimate the intrinsic dimension of a dataset.

Via this assumption, we define the base matrix, whose columns are xj and its
(κ− 1) nearest neighbors in the same class, as follows.

A(xj) = [v1, · · · ,vκ] (28)

where xj ∈ {v1, · · · ,vκ} and {v1, · · · ,vκ} \ {xj} is the neighborhood set, con-
taining the (κ− 1) nearest neighbors of xj in the same class.

Based on Equation (28), we summarize fast NCSC, called NCSC-II, as Algo-
rithm 3.

Algorithm 3 NCSC-II: fast NCSC via neighborhood representation

Input: A query sample y, training vectors {x1, . . . ,xn} partitioned to K classes
and parameter κ.

Output: Class ID of y.
1: for i← 1 to n do
2: Obtain A(xj) as in Equation (28);
3: r(y,xj)← min

β∈Rκ
‖y −A(xj)β‖2 subject to 1Tβ = 1;

4: end for
5: return class(y)← class(xm);
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By the neighborhood representation, the computational complexity of Algo-
rithm 3 is reduced to O(n). But the properties/definitions (23), (24), (25) and
(26) of NCSC still holds in NCSC-II.1

As mentioned before — given parameter κ and training samples x
(1)
i , · · · ,x(ni)

i

of class i, MNCSC
i is formulated as the union of

(
ni
κ

)
affine hulls. In NCSC-II, most

of the affine hulls are removed and the remaining ones define the constrained
subspace MNCSC-II

i as follows.MNCSC-II
i =

⋃ni
j=1Hi,j

Hi,j =
{

A(x
(j)
i )β| β ∈ Rκ and 1Tβ = 1

} (29)

Since most of the affine hulls in MNCSC
i are removed to obtain MNCSC-II

i ,
MNCSC-II

i is a sparse representation of MNCSC
i . Thus, NCSC-II is a sparse ver-

sion of NCSC.
Moreover, note that in Algorithm 2 and Algorithm 3, there is only one pa-

rameter κ. This ensures that all constrained subspaces in NCSC/NCSC-II have
the same intrinsic dimension. We call Algorithm 2/Algorithm 3 homogeneous
NCSC/NCSC-II. It is possible to extend homogeneous NCSC/NCSC-II to inho-
mogeneous NCSC/NCSC-II by adopting multiple parameters for all classes or
even by varying κ for different data samples. But in this work, we focus on homo-
geneous NCSC/NCSC-II and leave inhomogeneous NCSC/NCSC-II to a future
investigation.

For homogeneous NCSC and NCSC-II, we contend that their classification
accuracy is a function of the intrinsic dimension Dc of constrained subspaces
where Dc is defined as follows.

Dc = κ− 1 (30)

If denoting the classification accuracy function by f(Dc), then we have a em-
pirical scheme for estimating Dm of a labeled data set as follows.

Dm = argmax
Dc

f(Dc) (31)

Equation (31) gives rise to two observations. First, given a labeled data set,
Dm can be estimated by NCSC/NSCS-II. The second is that when Dm is learned,
we have a tuned NCSC/NCSC-II, which yields a high classification accuracy.

4. Intrinsic Dimension Estimator

Although intrinsic dimension can be estimated by NCSC/NCSC-II as in Equa-
tion (31) on a training set, there are more sophisticated estimators available.
These estimators can be broadly divided into two categories: eigen projection

1More specifically, in Equations (23) and (24), if replacing MNCSC
i with MNCSC-II

i , the corre-
sponding properties and definitions still hold.
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methods [58, 59] and geometric methods [52–57]. Eigen projection methods esti-
mate intrinsic dimension from the eigen decomposition of the covariance matrix
of the give data. Their estimates are given as the number of eigenvalues not less
than a predefined threshold. Geometric methods, including Corr.Dim (Correla-
tion Dimension) [53, 54], MLE (Maximum Likelihood Estimate) [52] and their
variations [55–57], exploit the intrinsic geometry of the dataset and are more
sophisticated than their eigen projection counterparts [52].

4.1 Correlation Dimension Estimator

Given a data set {x1, · · · ,xn}, the correlation integral function of the Corr.Dim
estimator is defined as the following.

C(r) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

H(r − ‖xi − xj‖2) (32)

where H(·) is a unit step function satisfying if x > 0, then H(x) = 1, otherwise,
H(x) = 0.

The intrinsic dimension estimate by Corr.Dim is given by plotting lnC(r)

against ln r and calculating the slope ∂ lnC(r)
∂ ln r

of its linear part [53, 54]. If there is
no prominent linear part in the curve of lnC(r) as a function of ln r, we use the
following estimate D̂m.

D̂m =
lnC(r2)− lnC(r1)

ln r2 − ln r1
r1 = mini,j∈{1,··· ,n},i 6=j ‖xi − xj‖2
r2 = maxi,j∈{1,··· ,n},i 6=j ‖xi − xj‖2

(33)

Estimate D̂m is actually an average of the slopes of the curve of lnC(r) against
lnC(r) at different locations.

4.2 Maximum Likelihood Estimator

Another estimator, MLE, estimates the intrinsic dimension under the assump-
tion that the closest k neighbors to a given point xi ∈ {x1, · · · ,xn} lie on the
same manifold (where k is a fixed number and k > 2). Estimate D̂m is given as
follows [52].


D̂m =

1

(k2 − k1 + 1)n

n∑
i=1

k2∑
k=k1

Ĉk(xi)

Ĉk(xi) =

[
1

k − 2

k−1∑
j=1

ln
Tk(xi)

Tj(xi)

]−1 (34)

where Tk(xi) is the distance from xi to its k-th nearest neighbor. Ĉk(xi) is the
local dimension estimate at xi using parameter k. D̂m is the average of Ĉk(xi) for
k ∈ {k1, · · · , k2} (where k1 6 k2) on samples x1, · · · ,xn.

13



There are many other estimators, but a comprehensive comparison of their
performance is still an open problem. We focus on the Corr.Dim estimator and
the MLE estimator and make a brief comparison of their effects on NCSC/NCSC-
II.

5. Experimental Verifications and Discussions

In this section, we present our experimental results for a range of classifiers
and features, on several publicly available datasets.

5.1 Experiments on NCSC/NCSC-II

First, we evaluate whether NCSC with Dc = Dm outperforms its rivals includ-
ing NN, NFL and NS. In order to evaluate NCSC/NCSC-II without biases due
to complexities in the features, we keep the features simple. More specifically, in
the following experiments on NCSC/NCSC-II, we subtract the means from each
vectorized image (by concatenating the columns of the target image) and nor-
malize the image vectors to have a unit `2-norm. Unless otherwise stated, the
zero-mean vectors with a unit `2-norm are taken as the image features for the
following classification experiments.

5.1.1 Evaluation of NCSC/NCSC-II for Face Recognition

First, we evaluate NCSC/NCSC-II on the PICS/PES dataset [60] and the
ORL dataset [61] for face recognition. The PICS/PES dataset is relatively small
and contains 84 cropped facial images from 12 subjects (7 images/subject × 12
subjects). The image size is 241× 181 pixels. Figure 2 shows the image samples
of two subjects from the PICS/PES dataset.

Figure 2: Image examples of two subjects in the PICS/PES dataset.

The ORL dataset contains 400 facial images from 40 subjects (10 images/subject
× 40 subjects). The image size is 112 × 92 pixels. Figure 3 shows the image ex-
amples of one subject from the ORL data set.

In order to have a significant number of queries to obtain the classification
accuracy, the experiment contains multiple classification rounds. In each round,
ni images are randomly chosen from each subject as the training samples, the
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Figure 3: Image examples of a subject in the ORL dataset.

remaining images are chosen as query samples. In order to obtain sufficient in-
formation about the data manifold, we keep the training set as large as possible.
More specifically, ni = 6 for the PICS/PES dataset, namely, the training set con-
tains 72 images (6 images/subject × 12 subjects). The remaining 12 images (1
image/subject × 12 subjects) are query images. For the ORL dataset, ni = 9,
namely, the training set contains 360 random images (9 images/subject × 40 sub-
jects), the remaining 40 images (1 image/subject × 40 subjects) are query images.
After a classification round, we randomly select the training samples and query
samples again for another round. After enough rounds, the classification accuracy
f(Dc) is given as follows.

f(Dc) =
w

W
(35)

where w is the number of the correctly classification query samples and W is the
total number of query samples in all classification rounds.

For a fair comparison and to avoid unnecessary classification accuracy per-
turbation, the random selections of training set and query set are preserved and
repeated for different classifiers. For the PICS data set, W = 6000 (i.e., 12
samples/round × 500 rounds) and for the ORL data set, W = 8000 (i.e., 40
samples/round × 200 rounds).

Figure 4 gives the classification accuracies of NN, NFL, NCSC, NCSC-II and
NS on the PICS and ORL data set. It is evident that NCSC and NCSC-II with
Dc = 5 estimated by MLE (Corr.Dim gives the same estimate of Dc) outperform
NN, NFL and NS in terms of classification accuracy. The classification accuracies
of NCSC and NCSC-II are comparably the highest.

5.1.2 Evaluation of NCSC-II for Digit Recognition

In the following experiment, we compare the classification accuracies of dif-
ferent classifiers on the MNIST dataset [62] with a large training set for digit
recognition. The MNIST dataset of handwritten digits contains 60000 training
images and 10000 test images from 10 classes. Each of the images has been size-
normalized and centered. The image size is 28 × 28 pixels. Figure 5 shows some
samples of the MNIST dataset.
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(a) Classification accuracies of different classifiers on the PICS dataset
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(b) Classification accuracies of different classifiers on the ORL dataset

Figure 4: Classification accuracies for different classifiers on the PICS and ORL dataset. Clas-
sifier with index from 1 to 5 is respectively NN, NFL, NCSC (Dc = 5), NCSC-II (Dc = 5) and
NS.

The MNIST dataset has a large number of training samples. Due to the con-
cern of computational complexity, we use NCSC-II rather than NCSC to classify
the query samples. We use the first 10% samples of the MNIST dataset for classi-
fier evaluations. More specifically, the training set contains the first 6000 images
(600 images/class × 10 classes) and the query set contains the first 1000 images
(100 images/class × 10 classes).

A variety of classifiers are evaluated for classifying not only the above men-
tioned 1000 query images, but also their corrupted versions under different noise
levels ρ = 0.1, 0.2 and 0.3.

The corrupted pixels are randomly and uniformly chosen in a target query
image. The number of corrupted pixels is the round integer of 28 × 28 × ρ. The
corruption intensities are uniformly distributed in {imin, · · · , imax}, where imin and
imax respectively denote the minimum and maximum intensity of the uncorrupted
image.

Figure 6 gives some image samples and their corrupted versions.
Table 1 gives the classification accuracies of a variety of classifiers under noisy

environment. Since NFL is NCSC with κ = 2, the combination number of NFL is(
ni
κ

)
=
(
600
2

)
= 179700. This number is too large for classifying query samples in
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Figure 5: Examples of the MNIST dataset.

Figure 6: Some query samples and their corrupted versions. First row: uncorrupted samples.
Second row: corrupted samples with noise level ρ = 0.1. Third row: corrupted samples with
noise level ρ = 0.2. Bottom row: corrupted samples with noise level ρ = 0.3.

an acceptable time. Thus, alternatively, we evaluate NCSC-II with κ = 2, which is
actually the fast version of NFL and yields the third highest classification accuracy
(0.934) in Table 1.

Table 1: Comparison of classification accuracy of several subspace-based classifiers.

Noise Level 0% 10% 20% 30%

NN 0.923 0.922 0.920 0.919

NFL # —

NCSC-II
Dc = 1 † 0.934 0.932 0.927 0.920
Dc = 4 (Corr.Dim) 0.949 0.946 0.945 0.922
Dc = 7 (MLE) * 0.955 ‡ 0.948 0.947 0.923

NS 0.547 0.125 0.123 0.108

# Unable to obtain experimental results in an acceptable time.
† Corresponding to the fast NFL classifier, i.e., NCSC-II with κ = 2.
* Corresponding to the optimal classification performance, using Dc estimated by
MLE.
‡ The highest classification accuracy in this experiment.

The intrinsic dimension estimates on the MNIST dataset by Corr.Dim and
MLE are respectively 4 (by Corr.Dim) and 7 (by MLE). It is shown in Table 1
that with Dc = 4 (i.e., κ = 5) and 7 (i.e., κ = 8), NCSC-II yields better classifi-
cation accuracies than the other algorithms. The highest classification accuracy
is obtained by NCSC-II with Dc = 7. The classification accuracy of NCSC-II
(or NCSC) depends on the accuracy of the intrinsic dimension estimate. Intrinsic
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dimension estimates via Equations (33) and (34) are actually estimate averages.
Thus, we argue that the classification accuracy of NCSC-II with Dc = 7 is not
necessarily the upper-bound accuracy.

Also worth noticing is that with the large training training set (600 im-
ages/class × 10 classes), NS yields the worst results with its classification accura-
cies not larger than 0.547. We argue that it is primarily due to the unnecessary
high intrinsic dimensions of the spanned subspaces employed by NS. The sub-
spaces have nontrivial intersections which lead to poor classification accuracies.

5.1.3 Experiments on 2DCS Features

In this section, we evaluate the 2DCS features for image classification.
Figure 7 gives an example of 2DCS row and column compression. The row

and column numbers have both been halved. The compression ratio r = 25% is
defined as the ratio of the compressed size to the original size (i.e., r = mn

MN
).

(a) Original image (b) Row compression (c) 2DCS result

Figure 7: An example of 2DCS compression. (a) Original image, image size = M×N = 112×92
pixels (b) Result of row compression with r = 50% (c) Final 2DCS result with r = 25%

Table 2 gives the average run time of 1DCS and 2DCS projections of an ORL
image (112 × 92 pixels). Each time is an average of the times from 1000 indepen-
dent experiments.

The run time of 2DCS is much less than that of 1DCS. Our experiment also
shows that when r > 50%, 2DCS can be computed, but 1DCS needs a very large
projection matrix, which leads MATLAB throw an “out of memory” exception.2

Figure 8 shows an original image and a variety of its reconstructions for differ-
ent compression ratios r. Figure 8(a) is the original image and Figure 8(b)–Figure
8(f) are the reconstructions respectively with r equal to 10%, 30%, 50%, 70%, 90%.
It is evident that a larger yields a higher reconstruction quality.

2The environment for this experiment is MATLAB R2009a on a SAMSUNG x86 notebook
PC.
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Table 2: Time Comparison of 1DCS and 2DCS

Method
Times (ms)

r = 0.3% r = 0.5% r = 1.0% r = 1.5% r = 2.5% r = 10%

1DCS 16.41 30.51 63.69 117.97 226.49 837.74
2DCS 0.28 0.29 0.32 0.45 0.58 1.47

(a) (b) (c) (d) (e) (f)

Figure 8: 2DCS reconstructions with different r. The size of the 2DCS features is m × n.
(a) Original image with image size M × N = 112 × 92. (b) Reconstruction with r = 10%,
m × n = 35 × 29. (c) Reconstruction with r = 30%, m × n = 61 × 50. (d) Reconstruction
with r = 50%, m × n = 79 × 65. (e) Reconstruction with r = 70%, m × n = 94 × 77. (f)
Reconstruction with r = 90%, m× n = 104× 87.

5.2 Comparison with the Orthonormal `2-norm Method

Besides the above mentioned local least-squares approach employed by NS, we
are also particularly interested in a recently reported global least-squares classifier
called the orthonormal `2-norm method [63], whose formulation, similar to that
of NS, is written as follows.{

α∗ = argminα∈Rn ‖y −Aα‖2
class(y) = argmini∈{1,··· ,K} ‖y −Aiδi(α

∗)‖2
(36)

where
∑K

i=1 ni = n, A = [A1, · · · ,AK ] and δi : Rn → Rni . δi(α
∗) is a new

coefficient vector whose entries are associated with the ni training vectors of the
i-th class (i.e., the columns of Ai).

It was reported that in some circumstances the orthonormal `2-norm classifier
even outperforms a state-of-the-art classifier known as standard SRC , which is
based on the `1-norm minimization criterion [19,63].

The superiority of the orthonormal `2-norm classifier over the standard SRC
is primarily due to that the latter is essentially designed for an underdetermined
linear system rather than an overdetermined one. Thus, for the small training set
scenario, the feature dimension employed by the standard SRC had to be sub-
stantially reduced to make its linear model underdetermined. The substantially
reduced feature dimension inevitably causes classification accuracy lose. But this
dilemma can be gracefully alleviated by the extended SRC, which gives an im-
pressive classification accuracy (especially on corrupted images) even in the small
training set scenario, but is on the expense of a substantially increased com-
putational complexity [19]. But a comprehensive comparison of `2-norm based
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classifiers and `1-norm based ones is beyond the focus of this paper. We leave it
as a possible future work.

In this section, we focus our interest on NCSC-II and the orthonormal `2-norm
(hereinafter referred to as Global-L2 for short) classifier and evaluate them on the
ORL dataset.

The evaluation is conducted in 20 classification rounds on corrupted images
(query images). In each round, we randomly choose 40 query images (1 im-
age/subject × 40 subjects) and 360 training images (9 images/subject × 40 sub-
jects). Thus, 800 query images (40 images/rounds × 20 rounds) are classified.

The corruption of query images is set as follows. The corrupted pixels are
uniformly distributed in a given image. For a noise level β, the number of cor-
rupted pixels is a rounded integer of M ×N × β. For the ORL dataset, M = 112
and N = 92. The intensities of corrupted pixels are uniformly distributed in
{0, · · · , 255}.

The classification accuracies of NCSC-II (with κ = 6) and Global-L2 respec-
tively using the 1DCS features and 2DCS features are given in Figure 9.

Figure 9(a), Figure 9(c) and Figure 9(e) (i.e. the first column) give the classifi-
cation accuracies of using the 1DCS features. Figure 9(b), Figure 9(d) and Figure
9(f) (i.e. the second column) give the classification accuracies of using the 2DCS
features.

In Figure 9(a) and Figure 9(b), the 1DCS dimension and the 2DCS dimension
are both equal to 644 (r = 644

112×92 = 6.25%). In Figure 9(c) and Figure 9(d), the

employed 1DCS and 2DCS dimensions are 2576 ( r = 2576
112×92 = 25%) . In Figure

9(e) and Figure 9(f), the employed dimensions are 10304 (r = 10304
112×92 = 100%). 3

It shows that, on the ORL dataset and using the same features, the tuned
NCSC-II generally outperforms Global-L2 in terms of classification accuracy, and
when the feature dimensions of the 1DCS features and 2DCS features are equal,
the classification accuracies of NCSC-II and Global-L2 are comparable.

6. Conclusions and Future Work

In this paper, a two-dimensional random projection technique for image fea-
ture extraction, called 2DCS (two dimensional compressive sampling), is pro-
posed. The proposed 2DCS is more efficient than 1DCS. The proposed 2DCS is
a two-stage implementation of 1DCS by manipulating image rows and columns
separately. The 2DCS reconstruction via TV (Total Variation) minimization is
also demonstrated.

For image recognition, the 2DCS features are used with our proposed subspace-
based classifier called NCSC (Nearest Constrained Subspace Classifier). The
NCSC employs the techniques of constrained least-squares and `0-norm sparse
representation. The NCSC classifier includes as its low dimensional special cases

3Due to the complexity complexity, 10304-dimensional 1DCS features can not be directly
obtained without trouble. Thus, we use a piecewise strategy to generate several segments of
1DCS data and then piece them together to get the 10304 dimensions.
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Figure 9: Classification accuracy comparison of NCSC-II and Global-L2 on the ORL dataset.
First column: results by using the 1DCS features; Second column: results by using the 2DCS
features; (a)-(b) Results respectively using 644-dimensional 1DCS and 2DCS features; (c)-(d)
Results respectively using 2576-dimensional 1DCS and 2DCS features; (e)-(f) Results respec-
tively using 10304-dimensional 1DCS and 2DCS features.

the classical classifiers NN (Near Neighbor) and NFL (Near Feature Line) and is
also closely related to the NS (Nearest Subspace) classifier.

In order to reduce the computational complexity of NCSC, we further propose
a fast version of NCSC, called NCSC-II. Under the assumption that the nearest
neighbors of a target data point can capture the local intrinsic dimension, NCSC-II
employs a κ-neighbors representation to formulate the local linear manifold. Us-
ing the κ-neighbors representation, the computational complexity is significantly
reduced.

In NCSC/NCSC-II, we contend that with a well-tuned intrinsic subspace di-
mension, equal to the intrinsic dimension of the data manifold, NCSC/NCSC-II
outperforms a variety of algorithms including NN, NFL and NS. Our experi-
ments also suggest that, using the same random features (1DCS or 2DCS), NCSC
outperforms the recently-reported orthonormal `2-norm method (another least-

21



squares-based classifier), which was reported that in some situations outperforms
the state-of-the-art SRC method [63].

Since the constrained subspaces employed by NCSC/NCSC-II have the same
intrinsic dimension, we call them homogeneous NCSC/NCSC-II. It is possible
to extend homogeneous NCSC/NCSC-II to inhomogeneous NCSC/NCSC-II by
adopting multiple parameters for all classes or even varying intrinsic dimension
parameter(s) for different data samples. We leave the investigation of inhomo-
geneous NCSC/NCSC-II as well as the possibility of simultaneous image align-
ment/transformation and sparse representation [64,65] to our future research.

Another future research is to compare the SRC method, which is a global `1-
norm based method, and our proposed NCSC-II, which is a local `2-norm based
method, for their effectiveness and efficiency, and probably exploit their strengths
for designing a new classifier.
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