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Abstract

Facial age estimation from a face image is an important
yet very challenging task in computer vision, since humans
with different races and/or genders, exhibit quite different
patterns in their facial aging processes. To deal with the
influence of race and gender, previous methods perform age
estimation within each population separately. In practice,
however, it is often very difficult to collect and label suf-
ficient data for each population. Therefore, it would be
helpful to exploit an existing large labeled dataset of one
(source) population to improve the age estimation perfor-
mance on another (target) population with only a small la-
beled dataset available. In this work, we propose a Deep
Cross-Population (DCP) age estimation model to achieve
this goal. In particular, our DCP model develops a two-
stage training strategy. First, a novel cost-sensitive multi-
task loss function is designed to learn transferable aging
features by training on the source population. Second, a
novel order-preserving pair-wise loss function is designed
to align the aging features of the two populations. By doing
so, our DCP model can transfer the knowledge encoded in
the source population to the target population. Extensive
experiments on the two of the largest benchmark datasets
show that our DCP model outperforms several strong base-
line methods and many state-of-the-art methods.

1. Introduction

Facial age estimation, i.e., automatically predicting the
age from a face image, is a very important yet difficult
problem in computer vision. It has many applications
such as human-computer interaction [8], age-based face re-
trieval [22], intelligent surveillance [34], and precision ad-
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vertising [30], etc. Despite decades of studies [20, 21, 7, 37,
9, 12, 10, 26, 2, 23, 15, 28, 1, 24, 36, 3], it still remains a
very challenging problem due to many varied factors from
face pose, expression, race, gender, image illumination, and
noise, to name a few [5].

Roughly speaking, the factors that make age estimation
difficult can be divided into two groups. The first group
of factors comes from the extrinsic appearance variations
of the face images, e.g., face pose, expression, and image
illumination [14]. The other group is determined by intrin-
sic human genes associated with race and gender [12]. A
large portion of previous work focusses on the first group
of factors, while the other group of intrinsic factors receives
relatively little attention.

Since different populations, e.g., African and Caucasian,
females and males, exhibit quite different aging patterns, it
is very challenging to design an age estimator which can
generalize to faces from different populations. Some pre-
vious works suggest performing age estimation within each
population separately [11, 10, 14]. However, training a sep-
arate model for each population also has its own limitations
since it is difficult and expensive to collect and label suffi-
cient training data for each population. Based on the above
considerations, instead of resorting to labeling more data, it
is better to exploit the existing large sized training data of
one (source) population to improve the age estimation per-
formance on another (target) population for which only a
small sized set of training data is available.

As discussed above, we are interested in this cross-
population age estimation problem (Figure 1). The set-
ting of this new problem is that a large set of training data
is available for the source population but only a small set
of training data is available for the target population. The
training data of the source population is used to improve the
age estimation performance on the target population with-
out collecting more data for it. In this work, we propose
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Figure 1. The cross-population age estimation problem. The
source and target populations may differ in race and/or gender,
and they may have very different aging patterns.

a Deep Cross-Population (DCP) age estimation model to
achieve this goal. Instead of manually designing aging fea-
tures, the DCP age estimation model is based on a Convolu-
tional Neural Network (CNN) which automatically extracts
aging features from the input face images. The features are
more discriminative and robust to facial appearance varia-
tions than the commonly used handcrafted aging features.
To obtain high performance on the target population, the
DCP model uses a two-stage training strategy:

• In the first stage, age estimation is formulated as a
ranking problem because it can take account of the
correlations between the age labels. We also design
a novel cost-sensitive multi-task loss function for this
ranking problem and obtain a model Nets by training it
on the source population. We then create a model Nett

for the target population by copying all the parame-
ters from Nets. Since CNN can capture useful low-
level features independent of the training data [39, 31],
the main purpose of this stage is to extract useful and
transferable low-level aging features from the large
sized source population and then transfer them to the
target population.

• In the second stage, Nets and Nett are fine-tuned. To
this end, pair-wise labels (i.e., same age or not) are
generated from the source population and the target
population. A novel order-preserving pair-wise loss
function is designed to bridge the large gaps between
aging patterns by aligning the high-level aging features
of two populations. After this second-stage training,
the DCP model effectively transfers the knowledge en-
coded in the source population to the target popula-
tion, and thus improve the age estimation performance
on the target population even though it has only small
sized training data.

To summarize, the main contributions of this work are
three-fold:

• We propose a novel Deep Cross Population (DCP) age
estimation model. To the best of our knowledge, this
DCP model is the first deep model has been designed
to solve the challenging cross-population age estima-
tion problem.

• We propose a novel two-stage transfer learning strat-
egy to train this DCP age estimation model with cost-
sensitive feature learning and order-preserving feature
alignment.

• Our DCP age estimation model exhibits very good
performance and outperforms several strong baseline
methods as well as many state-of-the-art methods on
two of the largest benchmark datasets.

2. Notations and Problem Definition
We first introduce some notation used throughout this pa-

per, and clarify the definition of the problem to solve in this
work.

2.1. Notations

We use boldface lowercase letters like z to denote vec-
tors. The i-th item of z is denoted as z(i). Boldface upper-
case letters like Z are used to denote matrices. The trans-
pose of Z is denoted as ZT, and the k-th column of Z is
denoted as Z(k). The notation ‖·‖F is used to denote the
Frobenius norm of a vector or matrix, and notation tr(·) is
used for the trace of a matrix.

2.2. Problem definition

In the setting of cross-population age estimation, sup-
pose that there are Ns source population training face im-
ages X s = {Xs

i , y
s
i }N

s

i=1, y
s
i ∈ {1, 2, . . . ,K}, where Xs

i

denotes the i-th face image, ysi denotes its age label, and
K is the total number of different ages. Suppose also
that there are N t target population training face images
X t = {Xt

i, y
t
i}N

t

i=1, y
t
i ∈ {1, 2, . . . ,K}. The number of

training images from the source population is usually larger
than that from the target population, i.e., Ns > N t. Our
aim is to train an age estimation model that performs well
on testing face images from the target population. It is worth
noting that training a good age estimation model usually re-
quires a large amount of training data, whilst only a limited
amount of target population training data is available. To
overcome this problem, we need to design a new age es-
timation model which can transfer the knowledge encoded
in the source population to the target population in order to
obtain satisfactory age estimation performance on the target
population.

3. Deep Cross-Population Age Estimation
Since the face images in the target population training set

exhibit very different visual patterns in the raw image space
to those exhibited by the source population training set, it is
not feasible to use directly all the training samples to train
a face estimation model for the target population. Inspired
by the great success of CNN on learning hierarchical fea-
ture representations, our proposed Deep Cross-Population



(DCP) age estimation model deals with this problem by us-
ing a new two-stage learning framework, which first learns
transferable low-level feature presentation in a novel cost-
sensitive feature learning stage, and then learns to align
high-level feature presentations across two populations in
a novel order-preserving feature alignment stage. In the fol-
lowing, these two stages are explained in detail.

3.1. Cost-sensitive feature learning stage

At this stage a deep model Nets is trained on the source
population training data X s. The main purpose of this stage
is to extract useful and transferable low-level aging features
from the large sized source population training data X s. In
order to obtain Nets, it is necessary to choose the appro-
priate problem formulation for age estimation, design the
network architecture, and design the loss function.

3.1.1 Problem formulation

Age estimation can be naturally formulated as a multi-class
classification problem. In this formulation, different ages
are assumed to be independent of one another. However,
age labels have very strong interrelationships since they
form a well-ordered set [24, 36]. On the other hand, regres-
sion based methods treat the age labels as numerical values
and thus capture the order information for age estimation.
However, regression based methods are apt to over-fit the
training data as manifested in [2, 27].

In this paper, age estimation is formulated as a rank-
ing problem. There are two main reasons for this choice.
First, this ranking formulation is more suitable for charac-
terizing the correlations among different ages [38]. Sec-
ond, ranking based methods are able to learn more trans-
ferable aging features [19] which is desirable for our cross-
population age estimation problem. In this ranking based
formulation, each age label y ∈ {1, 2, . . . ,K} is treated
as a rank. To directly utilize the well-studied classification
algorithms, following the reduction framework proposed
in [25], the ranking problem is transformed to a series of
binary classification problems. In particular, given a train-
ing set X = {Xi, yi}Ni=1, yi ∈ {1, 2, . . . ,K}. For a given
rank (age) k (1 ≤ k < K), X is divided into two subsets,
X+
k and X−k , as follows:{

X+
k = {(Xi, 1)|yi > k}
X−k = {(Xi, 0)|yi ≤ k}.

(1)

Next, X+
k and X−k are used to train a binary classifier fk.

Since 1 ≤ k < K, K − 1 binary classifiers {fk}K−1
k=1 are

obtained in total. For a given testing face image X̃, its age
ỹ is predicted by aggregating the K − 1 decision results as
follows,

ỹ = 1 +

K−1∑
k=1

fk(X̃), (2)
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Figure 2. The network architecture for age estimation under the
ranking based formulation.

where fk(X̃) ∈ {0, 1} is the classification result of the k-th
binary classifier fk for X̃.

3.1.2 Network architecture

The architecture of this ranking based age estimation net-
work is shown in Figure 2. There are three convolutional
layers, three max pooling layers, and two fully-connected
layers. Our choice of this network architecture is motivated
by the previous work [23], which employed a similar archi-
tecture to perform age group classification and obtained sat-
isfactory performance. It is worth noting that other modern
CNN architectures such as ZFNet [40], VGGNet [32] and
GoogLeNet [35] can also be used for age estimation, but a
comparison of different network architectures is not the fo-
cus of this work. The network branches into K− 1 outputs,
where the k-th output corresponds to the binary classifier
fk. Since each binary classification can be treated as one
task, we name the network in Figure 2 as Multi-Task Net-
work (MTNet).

3.1.3 Loss function

Given the original training set X = {Xi, yi}Ni=1, yi ∈
{1, 2, . . . ,K}, the age label yi of Xi corresponds to a vector
yi ∈ RK−1 under the ranking based formulation according
to Eqn. (1). More specifically, yi is defined as follows:

y
(k)
i =

{
1, k < yi
0, k ≥ yi

, k ∈ {1, . . . ,K − 1}. (3)

As a result, the training set now becomesX = {Xi,yi}Ni=1.
It’s worth noting that age estimation is inherently a cost-
sensitive problem. For example, when a person’s age is yi,
misclassifying yi as yi + 10 is a more serious mistake than
misclassifying yi as yi + 1. To take this cost sensitivity into
consideration, given a training face image Xi and its age
yi, we use costk(yi) to denote the cost of misclassifying it
in the k-th binary classification problem. More specifically,
costk(yi) is designed as follows:

costk(yi) =

{
k − yi + 1, yi ≤ k

yi − k, yi > k
, k ∈ {1, . . . ,K−1}.

(4)



We use Θ to collectively denote the parameters of the
three convolutional layers. Suppose that there is a total
of M convolutional filters in MTNet, then Θ = {θj}Mj=1,
where θj is the vectorization of the j-th filter. Two matrices
WFC1 and WFC2 are used to denote the parameters of two
fully-connected layers respectively. The matrix W is used
to denote the parameters of the K − 1 outputs and each
column of W corresponds to the parameters of one output.
The vector xi denotes the output of the FC2 layer in MTNet
for the given input face image Xi. The sigmoid function is
denoted as σ(x), i.e., σ(x) = 1/(1 + exp(−x)).

The term costk(yi) in Eqn. (4) is used as an importance
weight to rescale the training data Xi for the k-th output of
the MTNet. As a result, the loss function is:

argmin
Ω

N∑
i=1

K−1∑
k=1

{
− costk(yi)

(
y

(k)
i log σ(W(k) Txi)

+ (1− y
(k)
i ) log

(
1− σ(W(k) Txi)

))}
+

M∑
j=1

θT
jθj

+

K−1∑
k=1

W(k) TW(k) + tr(WFC1W
T
FC1) + tr(WFC2W

T
FC2),

(5)

where Ω = {Θ,WFC1,WFC2,W}. The terms in the curly
brackets correspond to the cost-sensitive multi-task loss,
while the remaining terms represent the weight decay [18]
of the MTNet’s parameters. Weight decay is commonly
used in deep learning to reduce overfitting. Even though
the loss function in Eqn. (5) is a highly nonlinear function
defined over the training data and the parameters of the MT-
Net, it can be efficiently solved in practice by the stochastic
gradient descent algorithm [17].

In summary, at this cost-sensitive feature learning stage,
age estimation is formulated as a ranking problem as it cap-
tures the correlations among age labels and learns more
transferable aging features. An MTNet architecture (c.f .
Figure 2) for age estimation is designed under this rank-
ing based formulation. We then discuss the loss function of
this MTNet and derive a cost-sensitive multi-task loss func-
tion (c.f . Eqn. (5)) for it. Based on the above knowledge,
An MTNet Nets is trained on the source population training
data X s. We then create an MTNet Nett for the target pop-
ulation by copying all parameters from Nets. After this first
stage, useful and transferable low-level aging features are
extracted from the large sized source population data and
then directly transferred to the target population. This di-
rect feature transfer from the source to the target population
exploits the ability of deep learning to capture hierarchi-
cal features independently of the training data, particularly
from the lower layers [39, 31].

Order-preserving 
feature alignment

Same age

5 years age gap

10 years age gap

Blue：source Population data
Green：target population data

Figure 3. The key idea of the order-preserving feature alignment
stage. There are four face images in this figure. The green one is
from the target population, and the blue ones are from the source
population. We can use these four images to construct three cross-
population pairs. After this order-preserving feature alignment,
the distance of the pair with the same age (the green and blue
squares) becomes smaller, and those distances of the pairs with
different ages become larger. Moreover, the pair with larger age
gap (the green square and the blue star) has larger distance than
that with smaller age gap (the green square and the blue circle).
This figure is best viewed in color.

3.2. Order-preserving feature alignment stage

At this stage, we fine-tune both the source MTNet Nets

and the target MTNet Nett obtained at stage one to transfer
cross-population pair-wise information and perform incre-
mental learning on the target population. The key idea is
to align the high-level aging features from source and target
populations to a population-invariant space which can cap-
ture the order characteristics of human ages. More specifi-
cally, in this population-invariant space, distances between
face pairs with the same age are small, and those between
pairs with different ages are large. Moreover, the pairs
with larger age gap have larger distance than those with
smaller age gap. In the following, we introduce our order-
preserving feature alignment to achieve this goal.

Given a face image Xs
i with age label ysi from the

source population training data X s, and another face im-
age Xt

j with age label ytj from the target population train-
ing data X t, a cross-population pair (Xs

i ,X
t
j , y

s
i , y

t
j , lij) is

constructed, where lij is set to 1 if ysi = ytj and −1 other-
wise. The goal of our order-preserving feature alignment is
to minimize the following objective function:

Ns∑
i=1

Nt∑
j=1

{1− lij(η − d(x̂si , x̂
t
j)) · ω(ysi , y

t
j)}. (6)

Here x̂si and x̂tj are the high-level aging features (i.e., the
vectorised feature maps of the Pool3 layer in Figure 2) ex-
tracted by Nets and Nett respectively. d(x̂si , x̂

t
j) = ‖x̂si −

x̂tj‖2F is the squared Euclidean distance between the high-
level aging features, η is a pre-specified threshold param-
eter and is set to 2 experimentally. ω(ysi , y

t
j) denotes the
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Figure 4. Order-preserving feature alignment stage. At this stage,
both the source MTNet Nets and the target MTNet Nett are fine-
tuned using cross-population face pairs, the relations of which are
useful in bridging the population gap by transferring knowledge
encoded in the source population to the target population which
has only a small amount of training data. After this stage, the
MTNet Nett is ready to be deployed on the target population.

weighing function, which is computed as follows:

ω(ysi , y
t
j) =

{
1− exp(− |y

s
i−y

t
j |

τ ), if ysi 6= ytj
1, otherwise,

(7)

where τ is a empirical pre-specified parameter which is set
to 10 in the experiments. The rationales of Eqns. (6) and (7)
are as follows (c.f . Figure 3).

• If a cross-population face image pair Xs
i and Xt

j have
the same age, by the definition of Eqn. 6, the distance
between them is expected to be as small as possible.
Otherwise, the distance between them is expected to
be as large as possible. As a result, the margin be-
tween pairs with the same age and pairs with different
ages is maximized and discriminative aging feature is
obtained in the aligned feature space.

• The larger the difference between ysi and ytj , the larger
the weight ω(ysi , y

t
j) is assigned according to Eqn. (7).

Then, by Eqn. (6), pairs with large age gaps are ex-
pected to have larger distances than pairs with smaller
age gaps. As a result, the order characteristics of hu-
man ages are preserved in the aligned feature space.

Figure 4 shows the training details at this order-
preserving feature alignment stage. During training, we use
a mini-batch of cross-population pairs. For simplicity, only
one cross-population pair (Xs

i ,X
t
j , y

s
i , y

t
j , lij) is shown in

Figure 4. We feed Xs
i and Xt

j to Nets and Nett respectively.
The objective function of the order-preserving feature align-
ment in Eqn. (6) is used to align the aging features to a
population-invariant space which captures the order charac-
teristics of human ages. This alignment is useful in bridg-
ing the large population gap, so Nett benefits from the large

size source population data. Concurrently, the cost-sensitive
multi-task loss function in Eqn. (5) is also used to fine-tune
Nett by using the target population training data (Xt

j , y
t
j).

In summary, in the cross-population age estimation set-
ting, the aim is to optimize the MTNet Nett for the target
population. This is achieved during model training by learn-
ing a source MTNet Nets with a cost-sensitive multi-task
loss function on the large sized source population for trans-
ferring low-level aging features (Section 3.1), followed by
an order-preserving feature alignment stage for transferring
cross-population pairing knowledge and adapting the Nett

to data from the target population (Section 3.2). Now, Nett

can be used for age estimation for faces from the target pop-
ulation.

4. Experiments
In this section, the experimental settings are described

in detail. Then, we conduct extensive experiments to vali-
date the effectiveness of the proposed DCP age estimation
model, with comparisons with the state-of-the-art and with
a set of ablative studies.

4.1. Experimental settings

4.1.1 Datasets

There are many datasets for age estimation in the litera-
ture [21, 6, 4]. However, most of these datasets are rela-
tively small. In order to obtain statistically meaningful re-
sults, we conduct experiments on two of the largest age es-
timation benchmark datasets, i.e., the Morph II [29] and the
WebFace [33] datasets in this work.

Morph II dataset: The Morph II dataset contains about
55, 000 face images of more than 13, 000 subjects with ages
ranging from 16 to 77 years old. Morph II is a multi-ethnic
dataset. It has about 77% Black faces and 19% White faces,
while the remaining 4% are other races, e.g., Hispanic, In-
dian, Asian. We followed the first cross-population age es-
timation study [13], and assembled a database of 21, 060
face images. More specifically, there are 7, 960 White
Male (WM), 7, 960 Black Male (BM), 2, 570 White Female
(WF), and 2, 570 Black Female (BF) face images in this
assembled database. We treat WM/BM as the source pop-
ulation and WF/BF as the target population, which agrees
with our cross-population age estimation setting in that the
source population has more training data than the target
population. The data of the target population (WF/BF) is
randomly divided into two subsets with an equal size. One
subset together with all of the source population data is used
for training, while the other subset is used for testing.

WebFace dataset: The WebFace dataset contains
59, 930 face images with ages ranging from 1 to 80 years
old. This dataset is also a multi-ethnic dataset, and most of
the images are White or Yellow faces. In contrast with the



Morph II dataset which contains mug-shot face images, this
dataset is compiled from face images captured in the wild.
The images contain large pose and expression variations,
which make this dataset much more challenging. In or-
der to conduct cross-population age estimation experiments,
we assembled a database of 34, 000 face images. Specifi-
cally, there are 14, 000 White Male (WM), 14, 000 White
Female (WF), 3, 000 Yellow Male (YM), and 3, 000 Yel-
low Female (YF) face images in this assembled database.
Similarly, we treat WM/WF as the source population and
YM/YF as the target population. The data of the target pop-
ulation (YM/BF) is also randomly divided into two subsets
with an equal size. One is used for training, while the other
for testing.

4.1.2 Evaluation metric

To evaluate the performance of different age estimation al-
gorithms, we use the popular Mean Absolute Error (MAE)
as the evaluation metric. The MAE is calculated based on
the average absolute error between the estimated age and
the ground truth age, which is defined as follows,

MAE =
1

N

N∑
i=1

|ỹi − yi| , (8)

where N is the number of testing face images, yi is the
ground-truth age of the i-th face image, and ỹi is the pre-
dicted age for it. Smaller MAE values mean better age esti-
mation performance.

4.1.3 Parameter settings

The face images in both datasets are preprocessed following
standard processing pipeline, i.e., the faces in the images are
detected, aligned, and then cropped to 256× 256 pixels. In
all the following experiments, we use the Caffe [16] tool-
box, which is a flexible deep learning framework to develop
new models, and makes our work easy to reproduce. We
train all the networks using stochastic gradient descent with
momentum (0.9) and weight decay (5×10−4). The dropout
ratio is set to 0.5. The data augmentation strategy is similar
to [17], i.e., randomly cropping of 227×227 pixels from the
256×256 input face image, then randomly flipping it before
feeding it to the network. The initial learning rate is 10−3

which is divided by 10 when the training curve reaches a
plateau. We found that all networks converge well under
these settings, so we use the same hyper-parameters for dif-
ferent models to make fair comparisons.

4.1.4 Compared methods

We compare the DCP age estimation model with two state-
of-the-art models and five deep baseline models. Since the

cross-population age estimation is a relatively new prob-
lem, to the best of our knowledge, there are only two pre-
vious works which focus specifically on this problem: 1)
Cross-population Discriminant Analysis (CpDA) [13], and
2) Joint Metric Learning (JML) [1].

Since the DCP model is the first deep learning based
model for cross-population age estimation. In order to show
its effectiveness, we design five deep baseline models for
comparisons: 1) No Adaptation (NA). We train an MT-
Net using the source population data and directly deploy
it for the target population testing data. This direct transfer
scheme shows some success due to the generalization abil-
ity of deep models; 2) Direct Training (DT). We train an
MTNet on the target population training data directly and
then test it on the target population testing data; 3) United
Populations (UP). We train an MTNet on the union of the
source and target population training data. Compared with
DT, more data are used for model training so that the perfor-
mance may be improved; 4) Fine-tune based Transfer (FT).
We first train an MTNet on the source population data, then
fine-tune the fully-connected layers of it on the target popu-
lation training data. This transfer learning strategy is widely
used in the deep learning literature; and 5) Deep Joint Met-
ric Learning (DJML). The aforementioned four deep base-
line models are not specific to the cross-population age esti-
mation problem. To get a stronger deep baseline mode, we
reimplement the JML model [1] by incorporating the metric
learning into the MTNet.

4.2. Comparison with the state-of-the-art models

We compare our DCP age estimation model with the
state-of-the-art methods, i.e., CpDA and JML. For fair com-
parison, we conduct experiments on the Morph II dataset,
since all of these three models are based on the same train-
ing and testing split protocol on this dataset. The results
are shown in Table 1. Compared with CpDA and JML, the
DCP age estimation model reduces the errors in each cross-
population case significantly. For example, in the first cross-
population case, the Black Male (BM) is used as the source
population and the Black Female (BF) is used as the target
population. The CpDA has a MAE of 7.73 years and the
JML has a MAE of 5.56 years. Our DCP model reduces the
MAE to 3.75 years which are 51.49% and 32.55% relative
improvements respectively. Compared with the state-of-
the-art methods which use handcrafted aging features and
optimize each component independently, our DCP age esti-
mation model can simultaneously learn aging features and
an age estimator in an end-to-end framework and thus ob-
tains superior performance.

4.3. Comparison with the deep baseline models

The DCP age estimation model is compared with the five
deep baseline models. The cross-population age estima-



Table 1. Comparison with the state-of-the-art cross-population age
estimation methods on the Morph II dataset.

Source Target CpDA [13] JML [1] DCP

BM
BF 7.73 5.56 3.75
WF 8.73 5.57 3.18

WM
BF 7.67 6.40 3.90
WF 6.70 5.00 3.13

Table 2. Comparison with the five deep baseline cross-population
age estimation models on the Morph II dataset.

Source Target NA DT UP FT DJML DCP

BM
BF 5.93 4.15 3.99 3.93 3.81 3.75
WF 6.79 3.69 3.51 3.48 3.30 3.18

WM
BF 6.71 4.15 4.10 4.05 4.00 3.90
WF 5.57 3.69 3.34 3.32 3.20 3.13

Table 3. Comparison with the five deep baseline cross-population
age estimation models on the WebFace dataset.

Source Target NA DT UP FT DJML DCP

WM
YM 6.78 5.45 5.24 4.75 4.73 4.61
YF 10.06 5.69 5.32 4.91 4.80 4.65

WF
YM 9.24 5.45 5.15 4.82 4.72 4.60
YF 7.41 5.69 4.55 4.49 4.40 4.33

tion results of these models on the Morph II and WebFace
datasets are show in Tables 2 and 3 respectively.

The No Adaptation (NA) model has the largest MAE in
each cross-population case. This is because different pop-
ulations have different aging patterns, so the model trained
on the source population can not perform well on the tar-
get population without any adaptations. From the results
of NA, we can also see that the MAE when both race and
gender are crossed is larger than the MAE when only race
or only gender are crossed. For example, on the Morph II
dataset, the cross-population case BM→BF has a MAE of
5.93 years, while BM→WF has a MAE of 6.79 years. This
is because the aging patterns differences of the populations
with different race and gender are larger than that of popu-
lations with either different race or different gender.

The Direct Training (DT) model performs better than NA
because DT directly uses the target population training data
for model training. From the results of DT, we can see that
the MAE of BF is larger than the MAE of WF on the Morph
II dataset. The main reason behind this is that it is easier to
detect the facial appearance changes of White people than
those of Black people. We can also see that the MAE of
YF is larger than the MAE of YM on the WebFace dataset.
This is because males and females have different face aging
patterns. Many female faces appear younger than the male
faces because of the use of makeup and accessories. This
fact makes it more difficult to estimate the age of females [5,
36].

When the additional source population training data
were utilised, the United Populations (UP) model has a bet-

Table 4. The age estimation results of the MTNet and MTNet (w/o
cost-sensitive) on the Morph II dataset.

Source MTNet MTNet (w/o cost-sensitive)
BM 3.37 3.39
WM 2.80 2.84

Table 5. The age estimation results of the MTNet and MTNet (w/o
cost-sensitive) on the WebFace dataset.

Source MTNet MTNet (w/o cost-sensitive)
WM 6.64 6.85
WF 6.90 7.17

ter age estimation performance than the DT model. This
supports the hypothesis that the source population data en-
codes useful knowledge which is beneficial for age estima-
tion on the target population. From the results of UP, we
can also observe that in most cross-population cases, the
more similar the source population and the target popula-
tion, the better the performance of the cross-population age
estimation. For example, on the WebFace dataset, the cross-
population case WF→YF has a MAE of 4.55 years which
is better than the case WF→YM with a MAE of 5.15 years.
The reason is that it is easier to transfer the knowledge en-
coded in the source population to the target population when
they are similar.

We can see that the Fine-tune based Transfer (FT) model
performs better than UP on both datasets and in each cross-
population case. This demonstrates that FT is a better trans-
fer strategy than UP for the cross-population problem. The
reason is that UP trains on the union of the source and tar-
get population data directly. It makes the network difficult
to learn since faces with the same age label may have differ-
ent aging patterns if they come from different populations.

The DJML and our DCP model are specifically designed
for the cross-population age estimation problem. We ob-
serve that they perform better than the previous four deep
baseline models. This is because both DJML and our
DCP model use the cross-population pair-wise information
to align the aging features which is critical for the cross-
population age estimation problem. We also see that our
DCP age estimation model obtains the best performance on
both datasets and in each cross-population case. This is
because the DJML does not take the order characteristics
of human ages into account, while the DCP model aligns
the aging features of the source and target populations to a
population-invariant space which captures the order charac-
teristics of human ages. All of these experimental results
and analyses demonstrate that the DCP model is effective
for the cross-population age estimation problem.

4.4. Ablation Experiments

At last of this section, we conduct some ablative stud-
ies to further verify the effectiveness of each component



Table 6. The cross-population age estimation results of DCP and
DCP− on the Morph II dataset in each cross-population case.

Source Target DCP DCP−

BM
BF 3.75 3.87
WF 3.18 3.30

WM
BF 3.90 3.98
WF 3.13 3.23

of the DCP age estimation model. More specifically, we
show the effects of the cost-sensitive feature learning, the
order-preserving feature alignment, and the target popula-
tion training data size.

Effects of the cost-sensitive feature learning. The ef-
fects of the cost-sensitive learning defined in Equations 4
and 5 are evaluated. We conduct experiments on the source
population data since it is relatively large in size. Specif-
ically, we randomly divide the source population data into
two subsets with an equal size. One is used for training,
while the other for testing. Tables 4 and 5 show the exper-
imental results on the Morph II and WebFace datasets re-
spectively. It can be seen that the MTNet with cost-sensitive
learning obtains better performance on both datasets. These
experimental results demonstrate that incorporating the in-
herent cost sensitivity of age estimation into model training
improves the age estimation performance.

Effects of the order-preserving feature alignment.
The effects of the order-preserving feature alignment de-
fined in Equations 6 and 7 are evaluated. In order to show
the effectiveness of the alignment, we make a comparison
with DCP− which does not take the order characteristics of
human ages into consideration. More specifically, in DCP−,
the weighing function defined in Eqn. 7 always equals to 1.
The experimental results of these two models on the Morph
II and WebFace datasets are shown in Tables 6 and 7 re-
spectively. The DCP outperforms DCP− on both datasets
and in every cross-population case. This is because DCP−

separates pairs with different ages equally without taking
into consideration the difference in their ages. For exam-
ple, two pairs of face images with the ages (20, 50) and
(20, 21) are pushed apart equally which is unsatisfactory
since faces with neighbouring ages are generally more sim-
ilar in appearance than faces with widely separated ages.
In contrast, in the order-preserving feature alignment of our
DCP model, the pair with a larger age gap is expected to
have larger distance than that with smaller age gap. As a
result, the order characteristics of human ages is preserved
and thus better performance is obtained.

Effects of the target population training data size.
The cross-population age estimation performance of the
DCP model is evaluated for a range of target population
training data sizes. The purpose of this experiment is to
answer if a smaller number of face images in the target
population can be sufficient for learning. To this end, we re-

Table 7. The cross-population age estimation results of DCP and
DCP− on the WebFace dataset in each cross-population case.

Source Target DCP DCP−

WM
YM 4.61 4.72
YF 4.65 4.75

WF
YM 4.60 4.74
YF 4.33 4.43
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Figure 5. The cross-population age estimation results w.r.t. the
percentage of the training data in the target population.

duce the number of target population training face images to
{90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%} of the
full training set. The results are shown in Figure 5. As ex-
pected, the performance of our DCP age estimation model
degrades when target population training data are removed.
But, we also observe that a small amount of the target popu-
lation training data is sufficient to learn our DCP model with
a good performance. For example, about 30% of the target
population training data is enough to obtain a MAE which
is within one year difference from the 100% training data.
This is very useful in practice, because only a small amount
of target training data is required to obtain satisfactory age
estimation performance.

5. Conclusions and Future Work

In this paper, we have proposed a DCP model for the
challenging cross-population age estimation problem. The
model includes two training stages. In the first stage, age
estimation is formulated as a ranking problem and a novel
cost-sensitive multi-task loss function is designed, to learn
transferable low-level aging features on the source popula-
tion. In the second stage, a novel order-preserving feature
alignment procedure is designed to align the high-level ag-
ing features, and simultaneously include the target popula-
tion data in the training process. After this two-stage train-
ing, the DCP model effectively transfers the knowledge en-



coded in the source population to the target population. The
DCP model has been evaluated on the two of the largest age
estimation datasets. The experimental results show that the
DCP model is more accurate than two state-of-the-art meth-
ods and five deep baseline models. In the future work, we
plan to study the cross-population age estimation problem
when there are no labeled data in the target population.
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