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Abstract Visual surveillance using multiple cameras has attracted increasing interest in recent years. Correspondence 
between multiple cameras is one of the most important and basic problems which visual surveillance using multiple 
cameras brings. In this paper, we propose a simple and robust method, based on principal axes of people, to match 
people across multiple cameras. The correspondence likelihood reflecting the similarity of principal axis pairs is 
constructed according to the relationship between “ground-points” detected in each camera view and the intersections of 
principal axes detected in different camera views and transformed to the same view. Our method has the following 
desirable properties: (1) Camera calibration is not needed. (2) Accurate motion detection and segmentation are less 
critical due to the robustness of the principal axis-based feature to noise. (3) Based on the fused data derived from 
correspondence results, positions of people in each camera view can be accurately located even when the people are 
partially occluded in all views. The experimental results on several real video sequences from outdoor environments 
have demonstrated the effectiveness, efficiency and robustness of our method. 
Keywords: Correspondence between multiple cameras, Principal axes, People tracking. 

1. Introduction 
In recent years, visual surveillance [33] using multiple cameras has attracted much attention in the 

computer vision community. This is because by using multiple cameras the area of surveillance is 
expanded and information from multiple views is extremely helpful to handle many issues such as 
occlusion etc. However, visual surveillance using multiple cameras also brings a number of problems 
such as camera installation [26], calibration of multiple cameras [13, 27], correspondence between 
multiple cameras [1-11], automated camera switching [9], and data fusion [28-31], etc. In this paper, we 
focus on correspondence between multiple cameras. Correspondence between multiple cameras involves 
at the same time instant finding correspondences between objects in the different image sequences. Only 
after correspondence between multiple cameras is well constructed, can the information from multiple 
cameras be fused. So, it is one of the most important and basic problems in visual surveillance using 
multiple cameras. As people activities are of key interest in monitored scenes, in this paper we mainly 
consider correspondence between multiple cameras for tracking people, and improving the tracking of 
people when the people are within the common ground plane of the multiple views. 

Although correspondence of multiple cameras is a newly emergent research topic, in recent years 
some attempts have been made to investigate this problem. The existing methods for establishing 
correspondences can be classified [1, 2], according to the types of employed features, whether the 
cameras are calibrated or not, and whether the correspondences are region-based or point-based. The 
following sections describe existing methods in order to provide the context for our own work. 

1.1. Region-based methods 
Region-based methods generally regard people as regions and use the features of the regions to 

match people in multiple views. Color is a popular region cue to generate correspondence across views. 
Orwell et al. [3] and Krumm et al. [4] use color histograms to match people in different views. Mittal et 
al. [5] apply Gaussian color models to solve the problem of correspondence across multiple cameras. 
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Change et al. [1] establish cross camera correspondence by combining epipolar geometry, landmarks, 
height and color mapping between two cameras. 

It is natural and simple to use color information to construct correspondence between multiple 
cameras. However, color-based correspondence across multiple cameras is highly unreliable. For one 
thing, it greatly relies on the colors of people’s clothes. When different people have similarly colored 
clothes, this method may produce wrong correspondence. For another, viewpoint difference and lighting 
variations may cause the same person to be observed with different colors in different cameras. If a 
person’s clothing is white at the front and black at the back, then the observations of the person in two 
views may be regarded as arising from two different people. 

1.2. Point-based methods 
A more applicable scheme for constructing multiple camera correspondence may be to match 

feature points of objects in each view based on geometric constraints. Feature point-based 
correspondence methods can be further divided into two sub-classes: 3D and 2D methods, according to 
the types of geometric constraints which are used. 

(1) 3D methods 
There are two strategies in 3D methods to establish correspondence: 
● One is to transform all feature points into the same 3D space, and then match the feature points 

based on the principle that corresponding feature points in different views are projections of the 
same 3D point. In [6, 7], object centroids are taken as feature points and correspondence is 
established by estimating the corresponding 3D centroids in the world coordinate system. In [8], 
all cameras are calibrated and the 3D environment model is known beforehand. Correspondence 
across views is achieved for people who have similar estimated 3D locations. 

● The second strategy uses 3D epipolar constraints for matching. In [9], only the relative 
calibration between neighboring cameras is used to derive epipolar constraints, and 
correspondence is established by matching a set of feature points along the midline of the upper 
part of a human body, based on the epipolar constraints. 

The above strategies both need prior calibration of the cameras. Furthermore, feature points of a 
person extracted from different views do not always correspond to the same physical 3D point. This may 
make the correspondence of feature point pairs ambiguous. 

(2) 2D methods 
To overcome the disadvantages of 3D methods, some methods using 2D information have been 

presented to establish correspondence between multiple cameras. Khan et al. [2, 10] use the points 
located on feet to match people in multiple views, based on the homography constraint defined by the 
ground plane. However, in real applications, the points of people’s feet may not be robustly or accurately 
detected or even are invisible due to occlusions. 

Black et al. [11] provide the transfer error, based on a homography constraint, for the 
correspondence between the centroids in different views. The performance of this method deteriorates if 
only part of a person is visible or detected. 

The current point-based methods aforementioned, either 3D or 2D, are easily influenced by noise. 
Accurate motion detection is required for these methods. If the motion is not well segmented or only part 
of a person is visible due to occlusion, the feature points may be unreliable and thus the performance of 
the correspondence is degraded. 
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1.3. Our method 
In this paper, we propose a simple and robust method to match people in multiple views. In our 

method, the principal axis of each person, i.e. the symmetric axis of the human body, is detected in image 
planes and used to match people across views. Our method has the following main contributions: 

● We use principal axes of people as features for the correspondence. Estimation of principal axes 
does not rely on accurate motion detection, because the influence of the error of motion detection 
is counteracted by the symmetrical distributions of the error along the principal axis. 

● We propose a Least Median of Squares-based algorithm to detect principal axes of people under 
three situations: “isolated”, “in a group”, and “occluded”. 

● We find that the intersection of the principal axis of a person in a view and the line acquired by 
transforming the principal axis of this person from another view to the first view using a 
homography, corresponds the “ground-point” of this person in the first view. This “ground-point’ 
is the intersection point of the principal axis and the ground plane in the first view. 

● Based on the above property, we define the correspondence likelihood reflecting the 
correspondence similarity of principal axis pairs. Accordingly, the algorithm for matching 
between multiple cameras is presented. 

● Correspondence results are further used to improve the tracking results when the “ground 
points” of the tracked people are within the common ground plane of the multiple views. 
This fusion of data makes it is possible to robustly find and track the positions of people in 
different views, even when the people are partially occluded in all views. 

The remainder of this paper is organized as follows. Section 2 gives an overview of our method. 
Section 3 describes detection of principal axes and “ground-points” under different situations. Section 4 
presents how principal axes are used to construct correspondence of people across multiple cameras. 
Section 5 covers how the information from multiple cameras is fused. Section 6 shows experimental 
results. The last section summarizes the paper. 

2. Overview of Our Method 
The motivation of this paper is to construct a robust method to match people across multiple cameras. 

We select principal axes of people as the feature for this matching. As foreground pixels corresponding 
to a person are symmetrically distributed along the principal axis, the errors of motion segmentation are 
distributed symmetrically. This reduces the influence of these errors on the detection of the principal axis 
of the person. So the principal axis feature is robust to noise. 
    As mentioned in Introduction, we find that the intersection of the principal axis of a person in a 
camera view and the line obtained by transforming, using the homography, the principal axis of the same 
person from another view to the first view is the “ground-point” of the person in the first view. So we can 
use the distance between the “ground-point” of a principal axis in a view and the intersection between 
this principal axis and the line obtained by transforming a principal axis from another view to the first 
view, to evaluate the degree of matching between these two principal axes in the two views. 

Fig. 1 shows the process of detecting principal axes of people in a single camera. Based on the 
segmented foreground regions, people are distinguished from others, and are further classified into three 
categories: isolated people, a group of people, and people under occlusion. Principal axes are detected in 
these three situations. The tracking of people is based on their “ground-points’. In the detection of 
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“ground points” of people in a group or under occlusion, the results of prediction in the tracking module 
are employed. 

Fig. 2 shows the process of people 
correspondence between multiple cameras. 
The correspondence between multiple 
cameras is based on the detection of 
principal axes of people and tracking of 
people in each single camera. In the 
matching of principal axes, a homography 
rather than camera calibration is used as the geometrical constraint. The correspondence depends on the 
intersection of a principal axis in a view and the line obtained by transforming a principal axis from 
another view to the first view. The 
correspondence results are fed back to 
the single camera tracking module, i.e. 
the intersection of the principal axis of 
a person in one view and the line 
obtained by transforming the 
principal axis of the person from 
another view to the first view is used to update the “ground-point” of this person in the first view. 
Such feedback makes the tracking and correspondence robust (see Section 5 for more details). 

For simplicity, we assume that people move in an upright pose and that the camera is oriented such 
that a vertical line in the scene projects to a line which is approximately vertical in the image. Thus, we 
only need to consider the case in which the principal axes are vertical in image planes. This assumption is 
reasonable in most surveillance applications and has been widely used [18, 19]. 

3. Detection of Principal Axes in a Single Camera 
In this section, motion segmentation, object classification, detection of principal axes of people, 

tracking of people, and determination of “ground-points” in a single camera are described. 

3.1. Motion segmentation and object classification 
In this paper a simple background subtraction algorithm taken from [14] is used to extract 

foreground regions corresponding to moving objects. Other more adaptive and complex background 
subtraction methods [15-17] may be implemented to obtain better results. However, to verify the 
robustness of our method, we just use the simple algorithm. 

Objects other than people, such as vehicles, may move in a monitored scene. It is necessary to use a 
simple classifier to distinguish people from other objects. We only consider the classification of people 
and vehicles. Based on the fact that a person’s shape can be represented by its projection histogram [20], 
we propose a vertical projection histogram-based algorithm to distinguish people from vehicles. The 
vertical projection histogram is acquired by projecting foreground pixels onto the horizontal coordinate 
of the image. Let I(x,y) be a binary image which represents a detected motion region, where x and y are 
respectively the horizontal and vertical coordinates. Let “height” and “width” be respectively the height 
and width of this motion region. The vertical projection histogram h is given by: ∑ =

=
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],1[ widthx∈ . The Y-coordinate of the vertical projection histogram is the total number of pixels with the 

Fig. 1. Overview of principal axis detection in a single camera

Fig. 2. Overview of people correspondence between multiple 
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same horizontal coordinate. 
We define the spread of a vertical projection histogram: 
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It is obvious that the vertical projection histogram of an isolated person is steeper than that of a 
vehicle, so the spread of an isolated person is higher than that of a vehicle. As the edge of the region 
of foreground pixels of a vehicle is smoother than that of a group of people, so the spread of a 
group of people is also higher than that of a vehicle. 

If a foreground region is classified as people, we need to further decide whether it is an isolated 
person or a group of people by analyzing the number of significant peaks in its vertical projection 
histogram. This is detailed in Section 3.2.2. 

3.2. Detection of principal axes 
According to real applications, we consider detection of principal axes under 

three situations: “isolated”, “in a group”, and “under occlusion”. 
3.2.1. Principal axis of an isolated person 

In this paper, we use the Least Median of Squares [21] to determine the principal 
axis of an isolated person, based on the global shape constraint that a human body is 
typically close to symmetrical around the principal axis. The principal axis is 
determined by minimizing the median of squared perpendicular distances between the 
foreground pixels and a vertical axis. Let D(Xi,l) be the perpendicular distance 
between ith foreground pixel Xi and an axis l to be determined, as shown in Fig. 3. The principal axis L is 
estimated with: }),({minarg 2lXDmedianL iil

= . 

3.2.2. Principal axes of people in a group 
Two or more people, whose image motion regions overlap each other producing one 

foreground region, are regarded as a group. Determination of the principal axes of people in a group 
includes the following two stages: 

● The whole region of a group is segmented into sub-regions, each of which corresponds an 
individual. 

● The principal axis of each individual is determined. 
The principal axis of a segmented individual 

can be determined as the same way as detecting the 
principal axis of an isolated person. So 
segmentation of individuals is critical in 
determination of principal axes of people in a group. 
Referring to  [22], we use the vertical projection 
histogram which has been introduced in Section 3.1 
to segment individuals, based on the fact a distinct 
peak region between two major valleys in the 
histogram corresponds to an individual. A distinct 
peak region should satisfy two conditions: 

● All peaks within the distinct peak region 

Fig. 3. Principal axis 
of an isolated person

Fig. 4. Detection of principal axes of people in a group: (a) Input 
image. (b) Detected foreground region. (c) Vertical projection 
histogram. (d) Segmented individuals. (e) Principal axes. 
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are above a peak threshold (PT) 
● Two valleys of the distinct peak region must be lower than a valley threshold (CT). 

Thresholds PT and CT are selected empirically. 
Fig. 4 shows an example of detection of principal axes of people in a group. The input image, the 

detected foreground region, and the corresponding vertical histogram are shown respectively in (a), (b), 
and (c). In (c), a sign “+” represents a peak, a sign “o” a valley, the solid line the peak threshold (PT), and 
the dashed line the valley threshold (CT). In this histogram, there are three distinct peak regions. 
According to these regions, three individuals are segmented as shown in (d) and their principal axes are 
correctly detected as shown in (e). 
3.2.3. Principal axes of people under occlusion 

To accurately detect the principal axis of an occluded person, it is necessary to segment the 
foreground pixels corresponding to the person from the whole foreground region. The methods for color 
pixel classification for segmenting objects in general include appearance template-based ones [23], 
color histogram-based ones [34], and Kernel density-based ones [35]. The color template-based 
methods record the spatial color information of each pixel of each human body, and thus have high 
reliability in classifying foreground pixels, although there is a large amount of redundant 
information in the template. Considering the reliability, we select the color template-based method 
used in [23] to segment people under occlusion. The color model (Mi) of object i consists of a color 
variable Ci(X), which records the rgb color of each pixel X of object i, and an associated probability mask 
P[Mi(X)], which records the likelihood of object i being observed at pixel X. A color model is initialized 
when a new object is tracked, and then updated in each new frame. The coordinates of pixel X are 
normalized to the current object position in image coordinates. The color of each pixel of the moving 
object is approximated with a Gaussian distribution. Let I(X) be the observed color at pixel X. The 
probability density of I(X) under the distribution in color model i (p[I(X)|Mi(X)]) is then acquired. During 
occlusion, segmentation of foreground pixels is formulated as a classification problem which is to 
determine the model to which each foreground pixel belongs. Using the Bayesian rule, the probability 
P[Mi(X)|I(X)] of model i, given that I(X) is observed, is determined. Pixel X is classified to the model m, 
if the probability of model m given pixel X is maximal. 

After occluded people are segmented, their principal axes are determined as the same way as 
detecting principal axes of “isolated” persons. 
3.2.4. Distinguishing between the three situations 

In Sections 3.2.1, 3.2.2, and 3.2.3, we describe the methods for detecting principal axes of people 
under three situations: “isolated”, “in a group”, and “under occlusion”. The remaining question is how to 
distinguish between these three situations. These situations can be distinguished by object 
correspondence relationships between consecutive frames in the tracking process. An object tracked in 
previous frames is defined as a “tracked object”, and a motion region detected in the current frame is 
defined as a “detected object”. The three situations are distinguished using the following principles: 

(1) If only one “tracked object” which is a person in the previous frame corresponds to a “detected 
object”, and only one significant peak region is detected in the vertical histogram of the “detected object”, 
the “detected object” is classified as an isolated person. 

(2) When more than one “tracked objects”, each of which is a person, in the previous frame, 
correspond to a “detected object” in the current frame, the “detected object” is potentially a group of 
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people. In this case, we first use the method in Section 3.2.2 to segment the “detected object”. If the 
method fails, we classify the case as “under occlusion” and use the method in Section 3.2.3 to detect the 
principal axes of the people under occlusion. 

(3) If more than one “tracked objects” correspond to a “detected object” and these “tracked objects” 
include not only people but also objects other than people, we treat this case as “under occlusion”. 

3.3 Tracking 
    In Section 3.2.4, “tracked objects” and “detected objects” are defined. Tracking is in fact the 
construction of correspondence relationships between “tracked objects” in previous frames and “detected 
objects” in the current frame. A filter is used to predict the states of “tracked objects” in the current frame 
according to the states of the “tracked objects” in previous frames. Then, the predicted states are 
compared with the observations of the “detected objects”, and the “detected object” corresponding to 
each “tracked object” is found. The states of the “tracked objects” in the current frame are updated using 
the corresponding “detected objects”. 

In this paper, the Kalman filter [32] is used to track people. The state of a person is (x,y,vx,vy) where 
(x,y) is the position of the person in the image plane and (vx,vy) is the velocity of the person. The 
observation of a person is its position (x,y). The position of an individual in a frame is evaluated with its 
“ground-point” on the image plane. 

3.4. Detection of “ground-points” 
In our method, the segmented foreground regions corresponding to individuals and the results of 

prediction in the tracking process are used to estimate the “ground-points” of detected principal axes. 
For a detected principal axis, we find the intersection of the principal axis and the bottom line of the 

bounding box which contains the foreground pixels of the corresponding individual. If the distance 
between this intersection and the predicted position of this individual is small, this intersection is taken as 
the observation of the “ground-point” of the principal axis. Otherwise, the intersection of the principal 
axis and the vertical line from the predicted position to the principal axis is taken as the “ground-point”. 

We explain two points: (1) In most situations, the detected bounding box of an individual (especially 
an “isolated” person) is accurate, so the intersection of the bottom line of the bounding box and the 
principal axis can correspond well to the “ground-point”. However, if the lower part of the individual is 
occluded or the color of the lower part of the individual is close to the background, the lower part of the 
individual may not be detected and this intersection cannot be regarded as the “ground-point”. We use the 
distance between the predicted position and this intersection to check the occurrence of this situation. (2) 
The finally determined “ground-points” of people in the previous frame are very accurate as the 
correspondence results are used to update the estimated “ground-points” (see Section 5). This makes the 
predicted positions in the current frame are very close to the real “ground-points”. So the estimated 
“ground-points” in the current frame are enough accurate even when the lower parts of people are 
occluded or cannot be segmented. (3) In practice, the prediction is not critical since the change of 
positions of a move object between two consecutive frames is small. In fact, the “ground point” of a 
person in the previous frame is near to that in the current frame. 

4. Correspondence Between Multiple Cameras 
In this section, we describe how detected principal axes are employed to establish the 

correspondence across multiple views given the homography constraint. 
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4.1. Homography recovery 
To ensure the existence of the homography, it is necessary to assume that different views share a 

common dominant ground plane. This assumption is easily satisfied in most monitored scenes. 

We define a 33×  matrix: 
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The homography H can be recovered from a set of static [12] or dynamic [13] correspondence points. In 
the paper, the ground plane homography is computed using several landmarks on the ground plane. 

4.2. Geometrical relationship and correspondence likelihood 
Before the correspondence likelihood function for evaluating the similarity of principal axis pairs 

across views is defined, the geometrical relationship of principal axis pairs across views is illustrated. 
In Fig. 5, i

sL  is the principal axis of person s in view i and i
sX  is the “ground-point” of i

sL . sL  is 

the principal axis of person s in 3D space, and sX  is the “ground-point” of sL . i
sg  is the line acquired 

by projecting sL  onto the ground plane in 3D space from the direction of the view of camera i. 

Obviously, i
sL  is also the projection of i

sg  on image plane i. For person k in camera j, j
kL , j

kX , and j
kg  

are similarly defined. Let ijH  be the ground plane 
homography from image plane i to image plane j. Let 

ij
sL  be the line in image plane j, obtained by 

transforming i
sL  from image plane i to image plane j 

using ijH . Obviously, ij
sL  is also the projection of 

i
sg  on image plane j. Let ij

skQ  be the intersection of 
ij
sL  and j

kL . It is obvious that if person s in camera 

i and person k in camera j correspond to the same 
person in 3D space, ij

skQ  corresponds to the 

“ground-point” of the principal axis of this person 
in image plane j. 

Thus, the distance between the detected value of “ground-point” j
kX  and the intersection ij

skQ  can 

be used to evaluate the correspondence likelihood for the pair of principal axes i
sL  and j

kL . The less the 

distance is, the more likely the principal axes are matched. 
In the same way, we can acquire the intersection ji

ksQ  in image plane i. The distance between the 

observation of “ground-point” i
sX  and the intersection ji

ksQ  also contributes to evaluate the 

correspondence likelihood between i
sL  and j

kL . So, the function of correspondence likelihood between 
i
sL  and j

kL  is defined as: 

)|()|(),( ij
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Fig. 5. Geometrical relationship between principal axes
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To specify the likelihood values )|( ji
ks

i
s QXp  and )|( ij
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j

k QXp , without loss of generality, Gaussian 

distributions are assumed, as we think that the noise in the detection is approximated to the Gaussian 
distributions. Since ji
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skQ  are close to the true values of “ground-points” in image planes, and 
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where i
sΣ  and j

kΣ  are two covariance matrixes. Since coordinates x and y are independent, i
sΣ  is a 

diagonal matrix with two components 2)( i
xsσ  and 2)( i

ysσ , and j
kΣ  is diagonal with components 2)( j
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and 2)( j
ykσ . 

The parameters of i
sΣ  and j

kΣ  are estimated with the mean of each distance between the 

observation of the “ground-point” and the corresponding intersection in each frame. In practice, i
sΣ  and 

j
kΣ  can be regarded as independent of image positions, i.e. ii

s ∑=∑  and jj
k ∑=∑ . 

To simplify the computation, we define the correspondence distance for principal axis pairs 
( ij

skD ) according to (3), (4), and (5): 
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The less ij
skD , the more likely the pair of principal axes ),( j

k
i
s LL  matches to each other. 

4.3. Correspondence between multiple cameras 
In this section, the defined correspondence distance is used to match people across multiple cameras. 

In the following, we first present the matching algorithm for two views, and then explain how the 
algorithm generalizes to more than two cameras. 

It is assumed that, at time t, M people with principal axes iL1 , iL2 ,…, i
ML  are observed from 

camera i, and N people with principal axes jL1 , jL2 ,…, j
NL  from camera j. Our correspondence 

algorithm is to find the pairs of axes where the sum of correspondence distance values of the pairs 
is minimum. In this way, the principal axes are matched as a whole to avoid the potential errors 
caused by simply choosing the pair with the minimum distance. 

The major steps of the correspondence algorithm are listed as follows: 
Step 1: People principal axes detected in two different views are combined pairwise. Without 

loss of generality, it is assumed that NM ≤ . All principal axes in View i pair any of M principal 
axes in View j. Then there are NM ×  combination modes. For each combination mode k, it is 
assumed that principal axes iL1 , iL2 ,…, i

ML  pair respectively off principal axes j
kL

1
, j
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2
,…, j

kM
L , 
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LLLLLL  is found. 

Step 2: For each pair },{ nm  in pair set kθ , its correspondence distance ij
mnD  is computed. 

Then, it is checked that whether pair },{ nm  satisfies the constraint T
ij
mn DD < , where TD  is a 

predefined threshold decided empirically to classify true and false correspondence pairs. If not so, 
pair },{ nm  is deleted from pair set kθ . Then, pair set kθ  contains pairs satisfying the constraint. 

Step 3: All pair sets with maximum number (l) of pairs are selected, and represented with  
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Step 4: for each pair set in pair sets Θ , we look for the pair set (λ ) with the minimum sum of 
correspondence distance values: ))((minarg

1
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=

l

w
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kkk ww
Dλ . All axis pairs in pair set λΘ  are the 

matched ones. 
Step 5: The pairs in pair set Θ  are labeled. 
For more than two cameras, cameras can be combined pairwise. Each pair of cameras, which 

have a common ground plane area, is corresponded using the above two camera correspondence 
algorithm. If there is inconsistency of correspondence between the camera pairs, the 
correspondence with less correspondence distance defined by (6) is selected. 

5. Fusion of Data from Multiple Cameras 
After all matched pairs are found, we can use the correspondence information to improve the 

tracking results in each single camera view when tracked people are within the common ground 
plane of the multiple views. As the principal axis of a person in each view can be detected robustly and 
accurately, for two cameras, the intersection of the principal axis of the person in one view and the line 
obtained by transforming the principal axis of the person from another view to the first view is robust and 
accurate to correspond to the real “ground-point” of this person in the first view. We use this intersection 
to update the former observation of the “ground-point” detected in the first camera. As shown in Fig. 5, 
on the condition that principal axes i

sL  and j
kL  correspond to the same person, the intersection 

ij
skQ  is used to more accurately estimate the “ground point” of j

kL . So even when the “ground 

point” of the person is invisible (occluded or not detected) in both of the views, the intersection can 
be found, and thus the “ground point” of the person and accurately located in both of the views. 

For more than two cameras, there may be two or more such intersections in the first view for 
the person. If so, the mean of these intersections is selected as the “ground point” of the person. 

The accuracy of the detected “ground-point” in the current frame insures that, if the person is 
occluded in the next frame, its “ground-point”, which is determined using the predicted position and the 
detected principal axis, is accurate enough to make the correspondence correct. 

Therefore, due to detection of principal axes, prediction, correspondence between multiple cameras 
and date fusion of multiple cameras, positions of people in different views can be robustly located and 
tracked, even if the people are “in a group” or “under occlusion”. 

6. Experiments 
To verify our method, we have performed a number of experiments on our own NLPR database and 

the open PETS2001 database1. Furthermore, some comparisons have been implemented. 
In our experiments, a tracked person is represented with a colored bounding box. Different persons 

are labeled with different colors. The vertical line within the bounding box of the person is the principal 
axis of the person, and the intersection of the principal axis and the bottom line of the bounding box is 
the “ground-point” of the person, which is updated by the corresponding “intersection”, as 
introduced in Section 5. Namely, the bottom edge line of the bounding box is determined by the 
“ground point” of the person, while the top, left, and right edge lines of the bounding box are 
determined by the foreground pixels of the person. 
                                                        
1 www.visualsurveillance.org/PETS2001 
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In our experiments, the spread threshold is selected to be 0.1. The valley threshold value (CT) 
is selected as the mean value of the entire histogram. The peak threshold value (PT) is selected as 
80% of the height of the foreground pixel region. Threshold DT for correspondence distance is 
empirically set to 5. 

6.1. Results on NLPR database 
Our NLPR video sequences are captured from outdoor environments, including Dataset 1 with two 

fixed cameras, and Dataset 2 with three fixed cameras. 
In Dataset 1, each video sequence consists of 8,000 frames. For this database, people are correctly 

detected, matched and tracked in two views in most cases, except the following two cases: 
● People in the image plane are too small to be detected; 
● Very serious occlusion exists and models of people cannot be acquired beforehand due to few 

frames in which the people have appeared. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 illustrates some frames of tracking and correspondence results from Frame 3280 to Frame 
3660. In this portion of video sequences, four people enter the field of the two camera views in 
succession and then leave. At Frame 3286, two people enter the second camera view so closely together 
that the method for detecting principal axes of people in a group fails to segment them apart. Furthermore, 
the duration that they have appeared in the view is too short to construct their models, and thus the 
method for detecting principal axes of occluded people is unusable. So they are tracked as an individual. 
However, they are successfully segmented and tracked after some frames when they are not so close but 
still in a group (see Frame 3297). From this figure, we can see that the principal axes of these people are 
successfully detected, people are matched correctly between the two cameras, and their positions in the 
image planes are exactly located. (Please see the supplemental video Example1.avi.) 

For Dataset 2, people are also correctly tracked and corresponded in all the three views. Fig. 7 
illustrates some frames of results from Frame 1 to 160. In this portion of sequences, four people 
enter the fields of the three camera views in succession and then leave. As shown in Frame 33, two 
people enter the third view so closely together that they cannot be segmented apart, so firstly they 
are tracked as an individual in the third view. However, they are successfully segmented and 

Camera 1           Camera 2 

Fig. 6. Tracking and correspondence of multiple
people with two cameras: From the top to the
bottom, the frame numbers are respectively 3286,
3297, and 3380. 

Camera 1            Camera 2            Camera 3 

Fig. 7. Tracking and correspondence of multiple people with
three cameras: From the top to the bottom, the frame numbers
are respectively 33, 54, and 133 
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tracked after some frames (see Frame 54). (Please see the supplemental video Example2.avi.) 

6.2. Results on PETS2001 database 
The PETS2001 database is the only open database available currently for the research of visual 

surveillance. Many algorithms [10, 11, 24, 25] have been evaluated on the database. We select dataset1 
in the database for testing. Dataset1 consists of two video sequences captured by two static cameras in 
outdoor environments. In the whole sequence, all people having appeared are correctly matched and 
tracked in the two camera views using our method. Below shows and explains results of tracking and 
correspondence under the situations of “in a group” and “under occlusion”. To illustrate the results of 
tracking clearly, only relevant parts of each image are displayed in the following figures. 

Fig. 8 illustrates some frames when a moving person and a moving vehicle occlude each other from 
Frame 555 to Frame 601. In this sequence, a person and a vehicle move towards each other, meet, and 
then separate. At Frame 560, the lower part of the person is occluded by the vehicle in View 1. After 
some time, occlusion also happens in View 2, but now the person occludes the vehicle. During these 
occlusions, features of centroids and colors are no longer reliable for tracking and matching. In contrast, 
this person is still well tracked and matched using our principal axis-based method. Furthermore, the 
location of this person in each view is still accurately estimated, even when the “ground-point” of the 
person is occluded by the vehicle for example in Frames 560 and 578. (Please see the supplemental 
video Example3.avi.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 shows an example of tracking and matching a group of people even through occlusion. In this 

example, a group of three people and a vehicle move towards, meet and occlude each other, and then 
continue forward. It is noted that two persons in the group are both dressed in similar black. This makes 
it difficult to decide which person in one view corresponds to which person in another view using only 
color information, e.g. color histogram [3]. Furthermore, people interact with each other. For example, in 
many frames, the base of one of them is occluded by another person along the vertical direction in 
View 2, and in View 1 the bases of all of them are simultaneously occluded by a vehicle. This 
introduces extra difficulty for the processes of segmentation, tracking, and matching. In this case, 

Camera 1              Camera 2 

Fig. 9. Tracking and correspondence of a group 
of people through occlusion: From the top to the 
bottom, the frame numbers are respectively 878, 
908, and 940. 

Camera 1            Camera 2

Fig. 8. Tracking and correspondence of a person
occluded by a vehicle with two cameras: From the
top to the bottom, the frame numbers are
respectively 560, 578, and 590. 
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traditional feature points are very difficult to extract and not reliable for matching. However, using our 
principal axis-based method, individuals in the group are correctly segmented, tracked, and matched. 
(Please see the supplemental video Example4.avi.) 

6.3. Comparison 
As discussed in Introduction, the existing methods for correspondence between multiple cameras 

can be classified into region-based ones and point-based ones. Color is the typical feature in region-based 
correspondence. As color is highly unreliable for correspondence, it is seldom used alone, but associated 
with other features. So we only compare our method with point-based correspondence method. 

It is difficult to directly compare point-based methods with our method with respect to 
correspondence results, as different methods have different geometric constraints and applications. 
Although correspondence algorithms differ, the output of most tracking methods is motion trajectories of 
objects. Thus, we take the object trajectories as the basis of a comparison between our method and 
point-based tracking. We use centroids (i. e. centers of the foreground regions corresponding to 
individuals or isolated persons) as the chosen points because centroids are the most popular feature 
points. The algorithm that we are comparing with is derived from [11], since the geometrical 
constraint in [11] is similar to ours. We compare the trajectories in the image plane. Since there is 
no principle to directly determine which trajectory 
is more accurate, we compare the centroid 
trajectory with the truth centroid trajectory 
obtained manually, and compare the “ground 
point” trajectory with the truth “ground point” 
trajectory obtained manually too. We measure 
the error of the centroid trajectory with the 
mean of the distance between the estimated 
centroid and the true centroid in each frame, 
and the error of the “ground point” trajectory 
with that between the estimated “ground point” and the true “ground point”. 

A comparison is implemented 
on the sequence of the PETS2001 
dataset 1 from Frame 2127 to 
Frame 2150. In this sequence a 
person walks along a road in two 
views. The trajectories in the two 
views are shown in Fig. 10. We 
select the comparison results in 
Camera 1, shown in Fig.11, for 
illustration. The results of 
comparison in Camera 2 are similar to those in Camera 1. The results shown in (a) are the comparison 
between the trajectory obtained using our method and the true “ground-point” data. The trajectory error 
for our method is 3.2 pixels. The results shown in (b) are the comparison between the trajectory acquired 
by tracking centroids and the true centroid data. The trajectory error for the centroid trajectory is 5.8 
pixels. From Fig.11, we can see that the trajectory acquired using our method is more accurate than the 

(a) E=3.2 (b) E=5.8 

Fig. 11. Comparison: (a) Trajectory acquired using our method and true data. (b) 
Centroid trajectory and true data. 

(a)                            (b) 
Fig. 10. Trajectories for comparison (the red ones are acquired using
our method, and the blue ones are centroid trajectories): (a) Trajectories
in View 1. (b) Trajectories in View 2. 
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centroid trajectory. In addition, the trajectory acquired using our method is much smoother than the 
centroid trajectory. 

A Similar comparison is implemented on the sequence of the PETS2001 dataset 1 from Frame 
250 to Frame 625. This sequence covers the 
sequence shown in Fig. 8. There exists 
occlusion between a person and a vehicle. The 
acquired trajectories in the two views are 
shown in Fig. 12. Fig. 13 shows the comparison 
result. As shown in (a), the trajectory error for 
our method is 3.3 pixels. As shown in (b), the 
trajectory error for the centroid trajectory is 
4.9 pixels. From Fig 13, we can see that, 
when the person is occluded, estimated 
centroids are far apart from the true 
centoids, however the estimated “ground 
points” are near to the true “ground 
points. 

Both of the above examples show 
that our principal axis-based method is 
more robust and efficient than the 
centroid-based one. 

7. Conclusions 
In this paper, we have proposed a novel principal axis-based method for matching people across 

multiple cameras. In our method, camera calibration is not needed and there is less sensitivity to errors in 
motion detection. Principal axes and “ground-points” of people in each single camera view can be well 
detected even when the people are “in a group” or “under occlusion”. Our algorithm for correspondence 
between multiple cameras is based on the fact that the intersection of the principal axis of a person in a 
view and the transformed principal axis of this person from another view corresponds to the 
“ground-point” of this person in the first view. This intersection is used to update this person’s 
“ground-point” detected in the single view. This makes it possible to locate people accurately in the 
image plane even when they are partially occluded in all views. Our method has been tested on several 
real video sequences from the NLPR database and the PETS 2001 database. The experimental results 
have demonstrated the effectiveness, efficiency and robustness of our method. 

In the future work, we will consider non-planar ground surfaces and make use of appearance 
information to pair up nearby people which could be confused. 
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