
Software and Programming I

Week 9 Lab -
Use of Classes
and Inheritance

1
SP1-Lab9-20.pdf

Tobi Brodie (Tobi@dcs.bbk.ac.uk)
12th March 2020

Lab 9: Objectives

Exercise 1 – Student & StudentTest classes

1. Reinforce Code Writing
i. Class structure
ii. Accessor (getter) / mutator (setter) methods.

2. Override a method
3. Use of array to create multiple objects
4. Use of the Enhanced For Loop / String comparison

Exercise 2 – Person, Tutor, Student & Test classes
1. Class Inheritance
2. Code Revision / Refactoring

2

Coursework

You need to have completed, and have shown to a lab
demonstrator all six marked exercises to be entered for
the in-class-test in Week 11, 26th March. The exercises are
as follows:

3

1. LeapYear
Lab 2 Marked Exercise 1

4. ArrayExercises.repeat
Lab 4 Marked Exercise 4

2. Powers
Lab 3 Marked Exercise 2 5. CashRegisterP816

Lab 7 Marked Exercise 5

6. Team/Game/GameTest
Lab 8 Marked Exercise 6

(at least 0.5 should be recorded by 26 March)

3. BalancedParentheses
Lab 3 Marked Exercise 3

Exercise 1:
Classes Student and StudentTest

Implement a class Student
The class requires the following attributes: name, year of
birth and programme of study

1. Write the class declaration
2. Declare variables
3. Create constructor
4. Write three new methods: String getName(),

int getYear() and String getProgramme()
5. Override the method String toString()

from the class Object (a superclass of any class)

Note: as there are no mutator methods, the data for instances must
be supplied on creation (through the constructor). 4

Exercise 1:
Classes Student and StudentTest (2)

Implement a test class StudentTest
The class StudentTest is required to:

1. Create an array of 10 Students.
2. Create instances and receive user input to provide

data to each Student object
Hint: Use a loop and a Scanner object

3. Once data input is complete, print out the names of
students of the programme "BSc ISM" only. Use an
enhanced for loop for this.

5

Structure of Student Class

6

/** Student class **/
public class Student
{

/* private data */
private String name;
private int year;
private String programme;

/* Constructor */
public Student(String name, int year,

String programme)
{

/* to do: assign values to instance variables
on object instantiation */

}

Structure of Student Class (2)

7

/* methods (public interface) */
public String getName()
{
/* to do: write the code to return name */

}

public int getYear()
{
/* to do: write the code to return year */

}

public String getProgramme()
{
/* to do: write the code to return programme */
}

Structure of Student Class (3)

8

public String toString()
{

return "Student " + name +
" programme " + programme;

}
} // end of class Student

Testing Student Class

9

import java.util.Scanner;

public class StudentTest
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
/* to do: Write code to:
1. Declare and create an array of 10 Students.
2. Fill up the array by creating 10 instances
of students where the name, year of birth and
programme of study are entered at the
keyboard.
*/

Testing Student Class (2)

10

/* to do: Write more code to use an enhanced

for loop to print out names of students of the

programme “BSc ISM” only.

*/

} // end of method main

} // end of class StudentTest

Note: an example of the enhanced for loop can be found on slide 19
of the ‘Inheritance & Subclasses’ lecture slides in Week 8.

Exercise 2:
Classes Person, Tutor, Student

(revised) and Test

Implement a class Person (a person has a name and a
year of birth). Change the class Student so that it
extends Person. Then implement another subclass,
Tutor, of Person (a tutor has a salary).

For the classes, write the class declarations, the
constructors and the methods toString() for all classes.

Implement a program that tests these classes & methods.
11

Inheritance hierarchy

12

Person
name: String
year: int
getName(): String
getYear(): int
toString(): String

Student
programme: String
getProgramme(): String
toString(): String

Tutor
salary: double

getSalary(): double
toString(): String

Revised Student Class

13

/** Revised Student class */
public class Student extends Person
{

private String programme;

public Student(String name, int year,
String programme)

{
// call the constructor of Person
super(name, year);
this.programme = programme;

}

Revised
Student Class (2)

14

public String getProgramme()
{
/* to do: write the code to return programme */

}

public String toString()
{

return "Student " + getName() +
" programme " + programme;

}

} // end of class Student

Home Work
Java for Everyone by C. Horstmann

15

Read Sections 9.1–9.5, which are available online from
http://vufind.lib.bbk.ac.uk/vufind/Record/566484

and complete the following exercises:
• Exercise R9.10
• Exercise P9.12
• Exercise P9.21
• Exercise P9.22

