Minimal module extraction from *DL-Lite* ontologies

Roman Kontchakov

School of Computer Science and Inf. Systems, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

joint work with

Luca Pulina, Frank Wolter and Michael Zakharyaschev

Large-scale ontologies

- Life-sciences, healthcare, and other knowledge intensive areas depend on having a common language for gathering and sharing knowledge
- Such a common language is provided by reference terminologies
- Examples:
 - SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms)
 - NCI (National Cancer Institute Ontology)
 - FMA (Foundational Model of Anatomy)
 - GALEN
 -
- Typical size: at least 50,000 terms and axioms
- Trend towards axiomatising reference terminologies in

('lightweight') description logics

Description logic \mathcal{ALCQI}

Vocabulary:

- individuals a_0, a_1, \dots (e.g., john, mary)
- concept names A_0, A_1, \dots (e.g., Person, Female)
- role names R_0 , R_1 , ... (e.g., hasChild, loves)
- roles

$$R ::= R_i \mid R_i^-$$

concepts

$$\mathcal{I} = (\Delta^{\mathcal{I}},\, oldsymbol{\cdot}^{\mathcal{I}})$$
 an interpretation

$$a_i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$$

$$A_i^\mathcal{I} \subseteq \Delta^\mathcal{I}$$

$$R_i^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$$

$$(R_i^-)^\mathcal{I} = \{(y,x) \mid (x,y) \in R_i^\mathcal{I}\}$$

Description logic ALCQI (cont.)

knowledge base
$$\mathcal{K} = \text{TBox } \mathcal{T} + \text{ABox } \mathcal{A}$$

- \mathcal{T} is a set of **terminological axioms** of the form $C \sqsubseteq D$
- \mathcal{A} is a set of **assertional axioms** of the form C(a) and R(a,b)

```
Reasoning: – satisfiability K
```

is there a model \mathcal{I} for \mathcal{K} $(\mathcal{I} \models C \sqsubseteq D)$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

- subsumption $\mathcal{K} \models C \sqsubseteq D$ $\mathcal{I} \models C \sqsubseteq D$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$
- instance checking $\mathcal{K} \models C(a)$ $a^{\mathcal{I}} \in C^{\mathcal{I}}$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$
- query answering $\mathcal{K}\models q(\vec{a})$, $q(\vec{a})$ a positive existential formula $\mathcal{I} \models q(a)$ (as a first-order structure), for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$

OWL 1.0 DL is based on SHOIQ(D), **OWL 2.0** on SROIQ(D)

ALCQI + role inclusions + nomimals + transitive roles + concrete domains $\mathcal{SHOIQ}(D)$ + role chains + disjoint roles + self (diagonal)

Developing and maintaining ontologies

versions:

comparing logical consequences over some common vocabulary Σ not the syntactic form of the axioms (as in diff)

refinement:

adding new axioms but preserving the relationships between terms of a certain part Σ of the vocabulary

reuse:

importing an ontology and using its vocabulary Σ as originally defined (relationships between terms of Σ should not change)

module extraction:

computing a subset ${\cal M}$ (ideally as small as possible) of an ontology ${\cal T}$ that 'says' the same about Σ as ${\cal T}$

new types of reasoning problems

DL-Lite: Description Logic for Databases

TBox axioms: $C_1 \sqsubseteq C_2$ ABox assertions: C(a), R(b,c)

Essentially positive existential queries: $\exists \vec{y} \varphi(\vec{x}, \vec{y})$, built from C(t), R(t, t'), \land , \lor

Σ -entailment and Σ -inseparability

Let \mathcal{T}_1 and \mathcal{T}_2 be TBoxes and Σ a signature (concept and role names)

When do \mathcal{T}_1 and \mathcal{T}_2 'say' the same about Σ ?

• \mathcal{T}_1 Σ -concept entails \mathcal{T}_2 if, for all Σ -concept inclusions $C \sqsubseteq D$,

$$\mathcal{T}_1 \preceq^c_\Sigma \mathcal{T}_2$$

$$\mathcal{T}_1 \models C \sqsubseteq D$$
 implies $\mathcal{T}_2 \models C \sqsubseteq D$

• \mathcal{T}_1 Σ -query entails \mathcal{T}_2 if, for all Σ -queries $q(\vec{x})$ and ABoxes \mathcal{A} ,

$$\mathcal{T}_1 \preceq^q_\Sigma \mathcal{T}_2$$

$$|\mathcal{T}_1 \preceq^q_\Sigma \mathcal{T}_2|$$
 $|(\mathcal{T}_1, \mathcal{A}) \models q(\vec{a})|$ implies $|(\mathcal{T}_2, \mathcal{A}) \models q(\vec{a}),$ for all \vec{a}

 \mathcal{T}_1 Σ -model entails \mathcal{T}_2 if, for all Σ -interpretations \mathcal{I} ,

$$\mathcal{T}_1 \preceq^m_{\Sigma} \mathcal{T}_2$$

$$\exists \ \mathcal{I}_1 \supseteq \mathcal{I} \ \mathcal{I}_1 \models \mathcal{T}_1 \ \text{implies} \ \exists \ \mathcal{I}_2 \supseteq \mathcal{I} \ \mathcal{I}_2 \models \mathcal{T}_2$$

 \mathcal{T}_1 and \mathcal{T}_2 are S_{Σ} (concept/query/model) inseparable if

$$\mathcal{T}_1 \equiv^S_\Sigma \mathcal{T}_2$$

$$\mathcal{T}_1 \preceq^S_\Sigma \mathcal{T}_2$$
 and $\mathcal{T}_2 \preceq^S_\Sigma \mathcal{T}_1$

Σ -inseparability: Examples

Example 1.
$$\Sigma = \{\text{Lecturer}, \text{Course}\}$$

$$\mathcal{T}_1 = \emptyset$$
, $\mathcal{T}_2 = \{\text{Lecturer} \sqsubseteq \exists \text{teaches}, \exists \text{teaches}^- \sqsubseteq \text{Course}\}$

• Is
$$\mathcal{T}_1 \equiv^c_\Sigma \mathcal{T}_2$$
? • Is $\mathcal{T}_1 \equiv^q_\Sigma \mathcal{T}_2$?

Take
$$\mathcal{A} = \{ \mathsf{Lecturer}(a) \}$$
, $q = \exists y \, \mathsf{Course}(y)$. Then $(\mathcal{T}_1, \mathcal{A}) \not\models q$ but $(\mathcal{T}_2, \mathcal{A}) \models q$

Example 2. $\Sigma = \{\text{Lecturer}\}$

$$\mathcal{T}_1 = \emptyset, \quad \mathcal{T}_2 = \{ \text{Lecturer} \sqsubseteq \exists \text{teaches}, \, \text{Lecturer} \sqcap \exists \text{teaches}^- \sqsubseteq \bot \}$$

• Is
$$\mathcal{T}_1 \equiv^c_{\Sigma} \mathcal{T}_2$$
? • Is $\mathcal{T}_1 \equiv^q_{\Sigma} \mathcal{T}_2$?

Take
$$\mathcal{A} = \{ \mathsf{Lecturer}(a) \}$$
, $q = \exists y \, \neg \mathsf{Lecturer}(y)$. Then $(\mathcal{T}_1, \mathcal{A}) \not\models q$ and $(\mathcal{T}_2, \mathcal{A}) \models q$

Σ -inseparability: Examples (cont.)

Example 3. Let \mathcal{T}_1 contain the axioms

Research \sqsubseteq \exists worksIn, \exists worksIn $^ \sqsubseteq$ Project, \exists manages $^-$, \exists manages \sqsubseteq Academic \sqcup Visiting, \exists teaches \sqsubseteq Academic \sqcup Research, Academic \sqsubseteq \exists teaches \sqcap \leq 1 teaches, Research \sqcap Visiting \sqsubseteq \bot , \exists writes \sqsubseteq Academic \sqcup Research,

$$\mathcal{T}_2 = \mathcal{T}_1 \cup \{ ext{Visiting } \sqsubseteq \geq 2 ext{ writes} \} \ \ ext{and} \ \ \Sigma = \{ ext{teaches} \}$$

- $\mathcal{T}_1 \equiv^c_\Sigma \mathcal{T}_2$ $\mathcal{T}_2 \models ext{Visiting } \sqsubseteq ext{Academic, but nothing new in the signature } \Sigma$
- $\mathcal{T}_1 \not\equiv_{\Sigma}^q \mathcal{T}_2$: $\mathcal{A} = \{ \text{teaches}(a,b), \text{teaches}(a,c) \}$ $q = \exists x \ ((\exists \text{teaches})(x) \land (\leq 1 \text{ teaches})(x))$ 'is there anybody who teaches precisely one module?'

$$(\mathcal{T}_1,\mathcal{A})\not\models q$$

 $(\mathcal{T}_2,\mathcal{A})\models q$

Σ -entailment: semantic criteria

Let Q be a set of numerical parameters and Σ a signature

 ΣQ -concepts B: $A_i \in \Sigma$ and $(\geq q\,R)$ with $q \in Q$ and $R \in \Sigma$

 ΣQ -type $m{t}$ is a set of ΣQ -concepts containing B or $\neg B$ (but not both), for all B

For a TBox T,

a ΣQ -type ${m t}$ is ${m T}$ -realisable if ${m t}$ is satisfied in a model of ${m T}$ (i.e., there is a ${m T}$ of ${m T}$ and a point ${m w}$ in it such that ${m w} \in B^{{m T}}$ iff $B \in {m t}$)

a set Ξ of ΣQ -types is **precisely** $\mathcal T$ -realisable if there is a model of $\mathcal T$ realising precisely the types from Ξ

Theorem. Let Q denote the set of parameters occurring in $\mathcal{T}_1 \cup \mathcal{T}_2$

 \mathcal{T}_1 Σ -concept entails \mathcal{T}_2 iff every \mathcal{T}_1 -realisable ΣQ -type is \mathcal{T}_2 -realisable

 \mathcal{T}_1 Σ -query entails \mathcal{T}_2 iff every precisely \mathcal{T}_1 -realisable set Ξ of ΣQ -types is precisely \mathcal{T}_2 -realisable

Σ -inseparability: complexity

Theorem.

- Deciding Σ -concept and Σ -query inseparability is Π_2^p -complete
- Deciding Σ -model inseparability is NEXPTIME-complete
- Can be simpler for various fragments of DL-Lite_{bool}

 E.g. deciding Σ -concept and Σ -query inseparability for DL-Lite_{horn} is

 CONP-complete

NB. Π_2^p -completeness means that the problem can be encoded as satisfiability of $\forall\exists$ quantified Boolean formulas

Various QBF solvers can be used to check Σ -concept and Σ -query inseparability

NB. Inseparability is much harder for \mathcal{ALC} and other non-'Lite' DLs (2ExpTime-complete for \mathcal{ALC} , undecidable for \mathcal{ALCQIO})

Encoding Σ -concept entailment in QBF

Let \mathcal{T} be a TBox, Q a set of numerical parameters and t a $\operatorname{sig}(\mathcal{T})Q$ -type

`
$$m{t}_0$$
 is $m{\mathcal{T}}$ -realisable with $m{t}_1,\dots,m{t}_n$ being witnesses' = $\Phi_{m{\mathcal{T}}}(b_0,b_1,\dots,b_n)$

 b_j is the vector of all propositional variables B^* of the type $oldsymbol{t}_j$

Then the condition

'every \mathcal{T}_1 -realisable ΣQ -type \boldsymbol{t} is \mathcal{T}_2 -realisable'

is described by the following QBF

$$\begin{vmatrix} \forall b_0^{\Sigma Q} \Big[\exists b_0^{\mathcal{T}_1 \setminus \Sigma Q} \exists b_1^{\mathcal{T}_1} \dots \exists b_{n_1}^{\mathcal{T}_1} \ \Phi_{\mathcal{T}_1}(b_0^{\Sigma Q} \cdot b_0^{\mathcal{T}_1 \setminus \Sigma Q}, b_1^{\mathcal{T}_1}, \dots, b_{n_1}^{\mathcal{T}_1}) & \rightarrow \\ \exists b_0^{\mathcal{T}_2 \setminus \Sigma Q} \exists b_1^{\mathcal{T}_2} \dots \exists b_{n_2}^{\mathcal{T}_2} \ \Phi_{\mathcal{T}_2}(b_0^{\Sigma Q} \cdot b_0^{\mathcal{T}_2 \setminus \Sigma Q}, b_1^{\mathcal{T}_2}, \dots, b_{n_2}^{\mathcal{T}_2}) \Big]$$

 $(b_0^{\Sigma Q}$ is the ΣQ -part of b_0 and $b_0^{\mathcal{T}_i \setminus \Sigma Q}$ contains the rest of the variables)

Experiments

TBox instances (standard Department Ontology + ICNARC)

		no. of	axioms		basic concepts		
series	description	instances	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_1	\mathcal{T}_2	$oldsymbol{\Sigma}$
NN	\mathcal{T}_1 does not Σ -concept entail \mathcal{T}_2	840	59–308	74–396	47–250	49–300	5–103
YN	\mathcal{T}_1 Σ -concept but not Σ -query entails \mathcal{T}_2	504	56–302	77–382	44–246	58–298	6–89
YY	\mathcal{T}_1 Σ -query entails \mathcal{T}_2	624	43–178	43–222	40–158	40–188	5–64

QBF solvers

- sKizzo 0.8.2
- 2clsQ
- yQuaffle
- QuBE 6.4
- AQME

	Σ -concept er	ntailment QBF	Σ -query entailment QBF			
series	variables	clauses	variables	clauses		
NN	1,469–48,631	2,391–74,621	1,715–60,499	5,763-1,217,151		
YN	1,460–46,873	2,352–71,177	1,755–59,397	7,006–1,122,361		
YY	1,006–16,033	1,420–23,363	1,202–20,513	2,963–204,889		

number of clauses is **linear**

quadratic

(in the number of roles)

Experimental results: percentage of solved instances

What is a module?

Let S be an inseparability relation, $\mathcal T$ a TBox and Σ a signature.

 $\mathcal{M}\subseteq\mathcal{T}$ is

- ullet an $S_\Sigma ext{-module of }\mathcal T$ if $\mathcal M\equiv^S_\Sigma\mathcal T$
- ullet a self-contained S_Σ -module of ${\mathcal T}$ if ${\mathcal M} \equiv_{\Sigma \cup {\sf sig}({\mathcal M})}^S {\mathcal T}$
- ullet a depleting S_Σ -module of ${\mathcal T}$ if $\emptyset \equiv_{\Sigma \cup {\sf sig}({\mathcal M})}^S {\mathcal T} \setminus {\mathcal M}$

 \mathcal{M} is a minimal module of \mathcal{T} if it can't be made smaller

Facts:

- depleting \equiv^q_Σ -module \Rightarrow self-contained \equiv^q_Σ -module \Rightarrow \equiv^q_Σ -module
- self-contained \equiv^c_Σ -module \Rightarrow \equiv^c_Σ -module
- There is precisely **one** minimal depleting \equiv_{Σ}^q -module
- There may be (exponentially) many minimal modules of other types

Modules for $\Sigma = \{\text{Publisher}\}\$

- (1) Publisher □ ∃pubHasDistrib
- (2) ∃pubHasDistrib⁻ □ Distributor
- (3) Publisher □ ¬Distributor
- (4) ∃pubHasDistrib □ Publisher
- (5) Publisher $\sqsubseteq \le 1$ pubHasDistrib
- (6) Role □ ¬Distributor
- (7) User <u>□</u> ¬Distributor
- (8) Publisher <u>□</u> ∃pubAdmedBy
- (9) ∃pubAdmedBy \(\subseteq AdmUser \(\subseteq BookUser \)
- (10) AdmUser □ User
 - the minimal S^c_Σ -module is \emptyset minimal S^q_Σ -modules of \mathcal{T} : \mathcal{M}_D ,
 - the minimal depleting S^q_Σ -module is $\overline{\mathcal{T}}$

- (11) BookUser ⊑ User
- (12) User <u>□</u> ∃hasRole
- (13) \exists hasRole $^ \sqsubseteq$ Role
- (14) Role □ ¬Publisher
- (15) User $\sqsubseteq \neg$ Publisher
- (16) Role <u>□</u> ¬User

 \mathcal{M}_{R}

- (17) User <u>□</u> ∃userAdmedBy
- (18) ∃userAdmedBy⁻

 AdmUser
- (19) ∃userAdmedBy □ User

and

(20) ∃pubAdmedBy <u>□</u> Publisher

 \mathcal{M}_{TT}

Module extraction algorithms

ullet minimal S_{Σ} -module

```
input \mathcal{T}, \Sigma \mathcal{M} := \mathcal{T} for each \alpha \in \mathcal{M} do if \mathcal{M} \setminus \{\alpha\} \equiv_{\Sigma}^{S} \mathcal{M} then \mathcal{M} := \mathcal{M} \setminus \{\alpha\} end for output \mathcal{M}
```

NB: depends on the order of axioms in *T*

• minimal depleting S_{Σ} -module

```
input \mathcal{T}, \Sigma
\mathcal{T}' := \mathcal{T}; \ \Gamma := \Sigma; \ \mathcal{W} := \emptyset
while \mathcal{T}' \setminus \mathcal{W} \neq \emptyset do
choose \alpha \in \mathcal{T}' \setminus \mathcal{W}
\mathcal{W} := \mathcal{W} \cup \{\alpha\}
if \mathcal{W} \not\equiv^S_{\Gamma} \emptyset then
\mathcal{T}' := \mathcal{T}' \setminus \{\alpha\}; \ \mathcal{W} := \emptyset; \ \Gamma := \Gamma \cup \operatorname{sig}(\alpha)
endif
end while
output \mathcal{T} \setminus \mathcal{T}'
```

Practical minimal module extraction

Module sizes and standard deviation for $|\Sigma|=10$