Minimal module extraction from *DL-Lite* ontologies #### **Roman Kontchakov** School of Computer Science and Inf. Systems, Birkbeck College, London http://www.dcs.bbk.ac.uk/~roman joint work with Luca Pulina, Frank Wolter and Michael Zakharyaschev #### Large-scale ontologies - Life-sciences, healthcare, and other knowledge intensive areas depend on having a common language for gathering and sharing knowledge - Such a common language is provided by reference terminologies - Examples: - SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms) - NCI (National Cancer Institute Ontology) - FMA (Foundational Model of Anatomy) - GALEN - - Typical size: at least 50,000 terms and axioms - Trend towards axiomatising reference terminologies in ('lightweight') description logics ## Description logic \mathcal{ALCQI} ## Vocabulary: - individuals a_0, a_1, \dots (e.g., john, mary) - concept names A_0, A_1, \dots (e.g., Person, Female) - role names R_0 , R_1 , ... (e.g., hasChild, loves) - roles $$R ::= R_i \mid R_i^-$$ concepts $$\mathcal{I} = (\Delta^{\mathcal{I}},\, oldsymbol{\cdot}^{\mathcal{I}})$$ an interpretation $$a_i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$$ $$A_i^\mathcal{I} \subseteq \Delta^\mathcal{I}$$ $$R_i^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$$ $$(R_i^-)^\mathcal{I} = \{(y,x) \mid (x,y) \in R_i^\mathcal{I}\}$$ ## Description logic ALCQI (cont.) knowledge base $$\mathcal{K} = \text{TBox } \mathcal{T} + \text{ABox } \mathcal{A}$$ - \mathcal{T} is a set of **terminological axioms** of the form $C \sqsubseteq D$ - \mathcal{A} is a set of **assertional axioms** of the form C(a) and R(a,b) ``` Reasoning: – satisfiability K ``` is there a model \mathcal{I} for \mathcal{K} $(\mathcal{I} \models C \sqsubseteq D)$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ - subsumption $\mathcal{K} \models C \sqsubseteq D$ $\mathcal{I} \models C \sqsubseteq D$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$ - instance checking $\mathcal{K} \models C(a)$ $a^{\mathcal{I}} \in C^{\mathcal{I}}$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$ - query answering $\mathcal{K}\models q(\vec{a})$, $q(\vec{a})$ a positive existential formula $\mathcal{I} \models q(a)$ (as a first-order structure), for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$ **OWL 1.0 DL** is based on SHOIQ(D), **OWL 2.0** on SROIQ(D) ALCQI + role inclusions + nomimals + transitive roles + concrete domains $\mathcal{SHOIQ}(D)$ + role chains + disjoint roles + self (diagonal) ## **Developing and maintaining ontologies** #### versions: comparing logical consequences over some common vocabulary Σ not the syntactic form of the axioms (as in diff) #### refinement: adding new axioms but preserving the relationships between terms of a certain part Σ of the vocabulary #### reuse: importing an ontology and using its vocabulary Σ as originally defined (relationships between terms of Σ should not change) #### module extraction: computing a subset ${\cal M}$ (ideally as small as possible) of an ontology ${\cal T}$ that 'says' the same about Σ as ${\cal T}$ new types of reasoning problems ## **DL-Lite:** Description Logic for Databases TBox axioms: $C_1 \sqsubseteq C_2$ ABox assertions: C(a), R(b,c) Essentially positive existential queries: $\exists \vec{y} \varphi(\vec{x}, \vec{y})$, built from C(t), R(t, t'), \land , \lor ## Σ -entailment and Σ -inseparability Let \mathcal{T}_1 and \mathcal{T}_2 be TBoxes and Σ a signature (concept and role names) When do \mathcal{T}_1 and \mathcal{T}_2 'say' the same about Σ ? • \mathcal{T}_1 Σ -concept entails \mathcal{T}_2 if, for all Σ -concept inclusions $C \sqsubseteq D$, $$\mathcal{T}_1 \preceq^c_\Sigma \mathcal{T}_2$$ $$\mathcal{T}_1 \models C \sqsubseteq D$$ implies $\mathcal{T}_2 \models C \sqsubseteq D$ • \mathcal{T}_1 Σ -query entails \mathcal{T}_2 if, for all Σ -queries $q(\vec{x})$ and ABoxes \mathcal{A} , $$\mathcal{T}_1 \preceq^q_\Sigma \mathcal{T}_2$$ $$|\mathcal{T}_1 \preceq^q_\Sigma \mathcal{T}_2|$$ $|(\mathcal{T}_1, \mathcal{A}) \models q(\vec{a})|$ implies $|(\mathcal{T}_2, \mathcal{A}) \models q(\vec{a}),$ for all \vec{a} \mathcal{T}_1 Σ -model entails \mathcal{T}_2 if, for all Σ -interpretations \mathcal{I} , $$\mathcal{T}_1 \preceq^m_{\Sigma} \mathcal{T}_2$$ $$\exists \ \mathcal{I}_1 \supseteq \mathcal{I} \ \mathcal{I}_1 \models \mathcal{T}_1 \ \text{implies} \ \exists \ \mathcal{I}_2 \supseteq \mathcal{I} \ \mathcal{I}_2 \models \mathcal{T}_2$$ \mathcal{T}_1 and \mathcal{T}_2 are S_{Σ} (concept/query/model) inseparable if $$\mathcal{T}_1 \equiv^S_\Sigma \mathcal{T}_2$$ $$\mathcal{T}_1 \preceq^S_\Sigma \mathcal{T}_2$$ and $\mathcal{T}_2 \preceq^S_\Sigma \mathcal{T}_1$ # Σ -inseparability: Examples Example 1. $$\Sigma = \{\text{Lecturer}, \text{Course}\}$$ $$\mathcal{T}_1 = \emptyset$$, $\mathcal{T}_2 = \{\text{Lecturer} \sqsubseteq \exists \text{teaches}, \exists \text{teaches}^- \sqsubseteq \text{Course}\}$ • Is $$\mathcal{T}_1 \equiv^c_\Sigma \mathcal{T}_2$$? • Is $\mathcal{T}_1 \equiv^q_\Sigma \mathcal{T}_2$? Take $$\mathcal{A} = \{ \mathsf{Lecturer}(a) \}$$, $q = \exists y \, \mathsf{Course}(y)$. Then $(\mathcal{T}_1, \mathcal{A}) \not\models q$ but $(\mathcal{T}_2, \mathcal{A}) \models q$ # Example 2. $\Sigma = \{\text{Lecturer}\}$ $$\mathcal{T}_1 = \emptyset, \quad \mathcal{T}_2 = \{ \text{Lecturer} \sqsubseteq \exists \text{teaches}, \, \text{Lecturer} \sqcap \exists \text{teaches}^- \sqsubseteq \bot \}$$ • Is $$\mathcal{T}_1 \equiv^c_{\Sigma} \mathcal{T}_2$$? • Is $\mathcal{T}_1 \equiv^q_{\Sigma} \mathcal{T}_2$? Take $$\mathcal{A} = \{ \mathsf{Lecturer}(a) \}$$, $q = \exists y \, \neg \mathsf{Lecturer}(y)$. Then $(\mathcal{T}_1, \mathcal{A}) \not\models q$ and $(\mathcal{T}_2, \mathcal{A}) \models q$ ## Σ -inseparability: Examples (cont.) #### **Example 3.** Let \mathcal{T}_1 contain the axioms Research \sqsubseteq \exists worksIn, \exists worksIn $^ \sqsubseteq$ Project, \exists manages $^-$, \exists manages \sqsubseteq Academic \sqcup Visiting, \exists teaches \sqsubseteq Academic \sqcup Research, Academic \sqsubseteq \exists teaches \sqcap \leq 1 teaches, Research \sqcap Visiting \sqsubseteq \bot , \exists writes \sqsubseteq Academic \sqcup Research, $$\mathcal{T}_2 = \mathcal{T}_1 \cup \{ ext{Visiting } \sqsubseteq \geq 2 ext{ writes} \} \ \ ext{and} \ \ \Sigma = \{ ext{teaches} \}$$ - $\mathcal{T}_1 \equiv^c_\Sigma \mathcal{T}_2$ $\mathcal{T}_2 \models ext{Visiting } \sqsubseteq ext{Academic, but nothing new in the signature } \Sigma$ - $\mathcal{T}_1 \not\equiv_{\Sigma}^q \mathcal{T}_2$: $\mathcal{A} = \{ \text{teaches}(a,b), \text{teaches}(a,c) \}$ $q = \exists x \ ((\exists \text{teaches})(x) \land (\leq 1 \text{ teaches})(x))$ 'is there anybody who teaches precisely one module?' $$(\mathcal{T}_1,\mathcal{A})\not\models q$$ $(\mathcal{T}_2,\mathcal{A})\models q$ #### Σ -entailment: semantic criteria Let Q be a set of numerical parameters and Σ a signature ΣQ -concepts B: $A_i \in \Sigma$ and $(\geq q\,R)$ with $q \in Q$ and $R \in \Sigma$ ΣQ -type $m{t}$ is a set of ΣQ -concepts containing B or $\neg B$ (but not both), for all B For a TBox T, a ΣQ -type ${m t}$ is ${m T}$ -realisable if ${m t}$ is satisfied in a model of ${m T}$ (i.e., there is a ${m T}$ of ${m T}$ and a point ${m w}$ in it such that ${m w} \in B^{{m T}}$ iff $B \in {m t}$) a set Ξ of ΣQ -types is **precisely** $\mathcal T$ -realisable if there is a model of $\mathcal T$ realising precisely the types from Ξ **Theorem**. Let Q denote the set of parameters occurring in $\mathcal{T}_1 \cup \mathcal{T}_2$ \mathcal{T}_1 Σ -concept entails \mathcal{T}_2 iff every \mathcal{T}_1 -realisable ΣQ -type is \mathcal{T}_2 -realisable \mathcal{T}_1 Σ -query entails \mathcal{T}_2 iff every precisely \mathcal{T}_1 -realisable set Ξ of ΣQ -types is precisely \mathcal{T}_2 -realisable #### Σ -inseparability: complexity #### Theorem. - Deciding Σ -concept and Σ -query inseparability is Π_2^p -complete - Deciding Σ -model inseparability is NEXPTIME-complete - Can be simpler for various fragments of DL-Lite_{bool} E.g. deciding Σ -concept and Σ -query inseparability for DL-Lite_{horn} is CONP-complete NB. Π_2^p -completeness means that the problem can be encoded as satisfiability of $\forall\exists$ quantified Boolean formulas Various QBF solvers can be used to check Σ -concept and Σ -query inseparability NB. Inseparability is much harder for \mathcal{ALC} and other non-'Lite' DLs (2ExpTime-complete for \mathcal{ALC} , undecidable for \mathcal{ALCQIO}) ## Encoding Σ -concept entailment in QBF Let \mathcal{T} be a TBox, Q a set of numerical parameters and t a $\operatorname{sig}(\mathcal{T})Q$ -type ` $$m{t}_0$$ is $m{\mathcal{T}}$ -realisable with $m{t}_1,\dots,m{t}_n$ being witnesses' = $\Phi_{m{\mathcal{T}}}(b_0,b_1,\dots,b_n)$ b_j is the vector of all propositional variables B^* of the type $oldsymbol{t}_j$ Then the condition 'every \mathcal{T}_1 -realisable ΣQ -type \boldsymbol{t} is \mathcal{T}_2 -realisable' is described by the following QBF $$\begin{vmatrix} \forall b_0^{\Sigma Q} \Big[\exists b_0^{\mathcal{T}_1 \setminus \Sigma Q} \exists b_1^{\mathcal{T}_1} \dots \exists b_{n_1}^{\mathcal{T}_1} \ \Phi_{\mathcal{T}_1}(b_0^{\Sigma Q} \cdot b_0^{\mathcal{T}_1 \setminus \Sigma Q}, b_1^{\mathcal{T}_1}, \dots, b_{n_1}^{\mathcal{T}_1}) & \rightarrow \\ \exists b_0^{\mathcal{T}_2 \setminus \Sigma Q} \exists b_1^{\mathcal{T}_2} \dots \exists b_{n_2}^{\mathcal{T}_2} \ \Phi_{\mathcal{T}_2}(b_0^{\Sigma Q} \cdot b_0^{\mathcal{T}_2 \setminus \Sigma Q}, b_1^{\mathcal{T}_2}, \dots, b_{n_2}^{\mathcal{T}_2}) \Big]$$ $(b_0^{\Sigma Q}$ is the ΣQ -part of b_0 and $b_0^{\mathcal{T}_i \setminus \Sigma Q}$ contains the rest of the variables) ## **Experiments** TBox instances (standard Department Ontology + ICNARC) | | | no. of | axioms | | basic concepts | | | |--------|---|-----------|-----------------|-----------------|-----------------|-----------------|---------------------| | series | description | instances | \mathcal{T}_1 | \mathcal{T}_2 | \mathcal{T}_1 | \mathcal{T}_2 | $oldsymbol{\Sigma}$ | | NN | \mathcal{T}_1 does not Σ -concept entail \mathcal{T}_2 | 840 | 59–308 | 74–396 | 47–250 | 49–300 | 5–103 | | YN | \mathcal{T}_1 Σ -concept but not Σ -query entails \mathcal{T}_2 | 504 | 56–302 | 77–382 | 44–246 | 58–298 | 6–89 | | YY | \mathcal{T}_1 Σ -query entails \mathcal{T}_2 | 624 | 43–178 | 43–222 | 40–158 | 40–188 | 5–64 | #### **QBF** solvers - sKizzo 0.8.2 - 2clsQ - yQuaffle - QuBE 6.4 - AQME | | Σ -concept er | ntailment QBF | Σ -query entailment QBF | | | | |--------|----------------------|---------------|--------------------------------|-----------------|--|--| | series | variables | clauses | variables | clauses | | | | NN | 1,469–48,631 | 2,391–74,621 | 1,715–60,499 | 5,763-1,217,151 | | | | YN | 1,460–46,873 | 2,352–71,177 | 1,755–59,397 | 7,006–1,122,361 | | | | YY | 1,006–16,033 | 1,420–23,363 | 1,202–20,513 | 2,963–204,889 | | | number of clauses is **linear** quadratic (in the number of roles) # Experimental results: percentage of solved instances #### What is a module? Let S be an inseparability relation, $\mathcal T$ a TBox and Σ a signature. $\mathcal{M}\subseteq\mathcal{T}$ is - ullet an $S_\Sigma ext{-module of }\mathcal T$ if $\mathcal M\equiv^S_\Sigma\mathcal T$ - ullet a self-contained S_Σ -module of ${\mathcal T}$ if ${\mathcal M} \equiv_{\Sigma \cup {\sf sig}({\mathcal M})}^S {\mathcal T}$ - ullet a depleting S_Σ -module of ${\mathcal T}$ if $\emptyset \equiv_{\Sigma \cup {\sf sig}({\mathcal M})}^S {\mathcal T} \setminus {\mathcal M}$ \mathcal{M} is a minimal module of \mathcal{T} if it can't be made smaller #### Facts: - depleting \equiv^q_Σ -module \Rightarrow self-contained \equiv^q_Σ -module \Rightarrow \equiv^q_Σ -module - self-contained \equiv^c_Σ -module \Rightarrow \equiv^c_Σ -module - There is precisely **one** minimal depleting \equiv_{Σ}^q -module - There may be (exponentially) many minimal modules of other types # Modules for $\Sigma = \{\text{Publisher}\}\$ - (1) Publisher □ ∃pubHasDistrib - (2) ∃pubHasDistrib⁻ □ Distributor - (3) Publisher □ ¬Distributor - (4) ∃pubHasDistrib □ Publisher - (5) Publisher $\sqsubseteq \le 1$ pubHasDistrib - (6) Role □ ¬Distributor - (7) User <u>□</u> ¬Distributor - (8) Publisher <u>□</u> ∃pubAdmedBy - (9) ∃pubAdmedBy \(\subseteq AdmUser \(\subseteq BookUser \) - (10) AdmUser □ User - the minimal S^c_Σ -module is \emptyset minimal S^q_Σ -modules of \mathcal{T} : \mathcal{M}_D , - the minimal depleting S^q_Σ -module is $\overline{\mathcal{T}}$ - (11) BookUser ⊑ User - (12) User <u>□</u> ∃hasRole - (13) \exists hasRole $^ \sqsubseteq$ Role - (14) Role □ ¬Publisher - (15) User $\sqsubseteq \neg$ Publisher - (16) Role <u>□</u> ¬User \mathcal{M}_{R} - (17) User <u>□</u> ∃userAdmedBy - (18) ∃userAdmedBy⁻ AdmUser - (19) ∃userAdmedBy □ User and (20) ∃pubAdmedBy <u>□</u> Publisher \mathcal{M}_{TT} ## Module extraction algorithms ullet minimal S_{Σ} -module ``` input \mathcal{T}, \Sigma \mathcal{M} := \mathcal{T} for each \alpha \in \mathcal{M} do if \mathcal{M} \setminus \{\alpha\} \equiv_{\Sigma}^{S} \mathcal{M} then \mathcal{M} := \mathcal{M} \setminus \{\alpha\} end for output \mathcal{M} ``` **NB**: depends on the order of axioms in *T* • minimal depleting S_{Σ} -module ``` input \mathcal{T}, \Sigma \mathcal{T}' := \mathcal{T}; \ \Gamma := \Sigma; \ \mathcal{W} := \emptyset while \mathcal{T}' \setminus \mathcal{W} \neq \emptyset do choose \alpha \in \mathcal{T}' \setminus \mathcal{W} \mathcal{W} := \mathcal{W} \cup \{\alpha\} if \mathcal{W} \not\equiv^S_{\Gamma} \emptyset then \mathcal{T}' := \mathcal{T}' \setminus \{\alpha\}; \ \mathcal{W} := \emptyset; \ \Gamma := \Gamma \cup \operatorname{sig}(\alpha) endif end while output \mathcal{T} \setminus \mathcal{T}' ``` #### Practical minimal module extraction Module sizes and standard deviation for $|\Sigma|=10$