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Topological logics

topological model M = (T, -
T atopological space

fvt '
terms: subsets of T' 2t a valuation
T = 71, | 0 | T | mNT | mUTR | T | T |
empty set complement interior closure

formulas: true or false
o = m=7 | mCmn | o) | "¢ | p1Aep2 |

eg. ME™ =7 iff 7P =+1
M = c(71) iff 7™ is connected
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Topological logics

topological model M = (T, -™)
T atopological space

m '
terms: subsets of T' 2t a valuation
T = 71, | 0 | T | mNT | mUTR | T | T |
empty set complement interior closure

formulas: true or false
o = m=7 | mCmn | o) | "¢ | p1Aep2 |

eg. MET =1 Iff 7] :Tém

M = c(71) iff 7™ is connected
Examples:

c(r1) A c(r2) A(riNre #0) — c(r; Urs)
‘the union of two intersecting connected sets »; and r5 is connected’
c(ri)) N (11 Cra) A (r2Cry) — c(rs)

'if »1 is a connected set, and r, is sandwiched between r; and its closure,
then r, is also connected’

Let £ alanguage with functions F and predicates P and K be a class of models
| Sat(L, KC) is the set of £L-formulas satisfiable in models over K




S4, as a topological logic

S4,-terms: T u= 1, | T | mNT | mUm | T | 1
84u-formU|OS: (0} 0= T1 = T2 | P | w1 N\ P2 | P11V P2
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S4, as a topological logic

S4,-terms: T u= 1, | T | mNT | mUm | T | 1
S4,,-formulas: p = T=T2 | ¢ | @1 Aps | @1V

This definition (although it does not allows nested universal modalities)
is as expressive as the ‘standard’ one
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S4, as a topological logic

S4,-terms: T u= 1, | T | mNT | mUm | T | 1
S4,,-formulas: p = T=T2 | ¢ | @1 Aps | @1V

This definition (although it does not allows nested universal modalities)
is as expressive as the ‘standard’ one

(Shehtman 99, Areces ef. al 00): Sat(S4,, ALL) = Sat(S4,, ALEK),
and this set is PSPACE-complete

(Aleksandrov spaces = quasi-ordered Kripke frames)
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S4, as a topological logic

S4,-terms: T = 7 | T | mNm | mUTR | ™ | T
S4,-formulas: ¢ = T =7 | @ | @i1Ap: | w1V

This definition (although it does not allows nested universal modalities)
is as expressive as the ‘standard’ one

(Shehtman 99, Areces ef. al 00): Sat(S4,, ALL) = Sat(S4,, ALEK),
and this set is PSPACE-complete
(Aleksandrov spaces = quasi-ordered Kripke frames)
Sat(S4,,ALL) # Sat(S4,,R™) (in contrast with S4)
Example:

(ri Z0) AN (r2#0) A (r1Ura=1) A (ry Nra =0) A (riNry; =0)
is satisfiable in a topological space T iff T is not connected
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S4, as a topological logic

S4,-terms: T u= r | T | mNm | mUn | T | T
S4,formulas: ¢ = Ti=T | @ | @1 Ap2 | @1V e

This definition (although it does not allows nested universal modalities)
is as expressive as the ‘standard’ one

(Shehtman 99, Areces ef. al 00): Sat(S4,, ALL) = Sat(S4,, ALEK),
and this set is PSPACE-complete
(Aleksandrov spaces = quasi-ordered Kripke frames)
Sat(S4,,ALL) # Sat(S4,,R™) (in contrast with S4)
Example:

(ri1 Z0) A (r2 #0) A (rMUra=1) A (r{y Ny =0) A (riNry; =0)
is satisfiable in a topological space T iff T is not connected

but Sat(s4,,R™) = Sat(S4,,, CON) = Sat(S§4,,, CON N ALEK)
and this set is PSPACE-complete
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S4, over connected topological spaces

Aleksandrov spaces = quasi-ordered Kripke frames

connectedness = connectedness in the undirected graph
(induced by the quasi-order)
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S4, over connected topological spaces

Aleksandrov spaces = quasi-ordered Kripke frames

connectedness = connectedness in the undirected graph
(induced by the quasi-order)

Example: generating all numbers from 0 to 2™ — 1.
0 ® ;7 @

e 0 and 2" — 1 are non-empty:
U,N---No; #0 vpN---Nvy #0
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S4, over connected topological spaces

Aleksandrov spaces = quasi-ordered Kripke frames

connectedness = connectedness in the undirected graph
(induced by the quasi-order)

Example: generating all numbers from 0 to 2™ — 1.

0 ® 7 @
e 0 and 2" — 1 are non-empty:
T,N--ND; #0 VpN---Nv #0
e the closure of m can share points only withm + 1, for0 < m < 2™ — 1:
(v; NTE)~ C vj, (v; NoE)~ C w5, forn>j>k>1
(TeNUg—1N---Nv)~ C (v ND;) U (T N v;), forn > E>i>1
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S4, over connected topological spaces

Aleksandrov spaces = quasi-ordered Kripke frames

connectedness = connectedness in the undirected graph
(induced by the quasi-order)

Example: generating all numbers from 0 to 2™ —

NGNGNNNGNGN

e 0 and 2" — 1 are non-empty:
T,N--ND; #0 VpN---Nv #0

e the closure of m can share points only withm + 1, for0 < m < 2™ — 1:
(v; NTE)~ C vj, (v; NoE)~ C w5, forn>j>k>1
(TeNUg—1N---Nv)~ C (v ND;) U (T N v;), forn > E>i>1

e 2" — lisaclosed set (and thus its closure shares no points with 0):
(vpoN---Nvy)” Cov,N---Nvy

Logic Colloquium Sofia 2.08.09 3



S4,c = S84, + connectedness predicate (1)

S4,c-terms: T S4,.-terms
S4,c-formulas: ¢ = =7 | c(T) |

e | i Apr | 1 Ao
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S4,c = S84, + connectedness predicate (1)

S4,c-terms:
S4, c-formulas:

-
@

S4,.-terms

T1 =— T2

c(7)

—p

P1 N\ P2

P1 N\ P2

1 one occurrence of ¢

Theorem. Sat(S4,c', ALL) is PSPACE-complete
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S4,c = S84, + connectedness predicate (1)

S4,c-terms: T u= S84,-terms
S4ycformulas: ¢ = Tm=7 | e(T) | e | 1 Ap2 | @1 A g2

J, one occurrence of ¢

Theorem. Sat(S4,c', ALL) is PSPACE-complete

Proof. Let ¢ = (19 =0) A /\(‘Ti #0) A (c(o) A (o #0)) (conjunct of a full DNF)

=1

1. guess a type (Hintikka set) t, containing o and 7°
and expond the tableau branch by branch (all points with o are to be connected to t,)

ot,

Logic Collogquium Sofia 2.08.09 4



S4,c = S84, + connectedness predicate (1)

S4,c-terms: T u= S84,-terms
S4,cformulas: ¢ =

=T | () | ¢ | p1 AP | @1 A

J, one occurrence of ¢

Theorem. Sat(S4,c', ALL) is PSPACE-complete

Proof. Let ¥ = (10 =0) A K(Ti #0) A (c(o) A (o #0))

=1

(conjunct of a full DNF)

1. guess a type (Hintikka set) t, containing o and 7°
and expcnd the tableau branch by branch (all points with o are to be connected to t,)

2. for each ¢, guess a type t., containing =, and 7,°
and expand the tableau branch by branch
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S4,c = S84, + connectedness predicate (1)

S4,c-terms: T u= S84,-terms
S4,cformulas: ¢ =

=T | () | ¢ | p1 AP | @1 A

J, one occurrence of ¢

Theorem. Sat(S4,c', ALL) is PSPACE-complete

Proof. Let ¥ = (10 =0) A K(Ti #0) A (c(o) A (o #0))

=1

(conjunct of a full DNF)

1. guess a type (Hintikka set) t, containing o and 7°
and expcnd the tableau branch by branch (all points with o are to be connected to t,)

2. for each ¢, guess a type t., containing =, and 7,°
and expand the tableau branch by branch

- if o appears in the tableau

then we construct a path to ¢,
(by “divide and conquer”)

\%

path of length 2!1%!
Logic Collogquium Sofia 2.08.09
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S4,c = S84, + connectedness predicate (1)

S4,c-terms: T u= S84,-terms
S4,cformulas: ¢ =

=T | () | ¢ | p1 AP | @1 A

J, one occurrence of ¢

Theorem. Sat(S4,c', ALL) is PSPACE-complete

Proof. Let ¥ = (10 =0) A K(Ti #0) A (c(o) A (o #0))

=1

(conjunct of a full DNF)

1. guess a type (Hintikka set) t, containing o and 7°
and expcnd the tableau branch by branch (all points with o are to be connected to t,)

2. for each ¢, guess a type t., containing =, and 7,°
and expand the tableau branch by branch

- if o appears in the tableau

then we construct a path to ¢, g \ /
(by “divide and conquer”) A A /\ /cr;\
tro ] %o °c °o °to

path of length 2!1%!
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S4,c = S84, + connectedness predicate (1)

S4,c-terms: T u= S84,-terms
S4,cformulas: ¢ =

=T | () | ¢ | p1 AP | @1 A

J, one occurrence of ¢

Theorem. Sat(S4,c', ALL) is PSPACE-complete

Proof. Let ¥ = (10 =0) A K(Ti #0) A (c(o) A (o #0))

=1

(conjunct of a full DNF)

1. guess a type (Hintikka set) t, containing o and 7°
and expcnd the tableau branch by branch (all points with o are to be connected to t,)

2. for each ¢, guess a type t., containing =, and 7,°
and expand the tableau branch by branch

- if o appears in the tableau

o
then we construct a path to ¢, g
(by “divide and conquer”) A A /\ /cr;\
tro ] %o °c °o °to

path of length 2!1%!
Logic Colloquium Sofia 2.08.09




S4,c = S84, + connectedness predicate (2)

Theorem. Sat(S4,c, ALL) is EXPTIME-complete
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S4,c = S84, + connectedness predicate (2)

Theorem. Sat(S4,c, ALL) is EXPTIME-complete

Proof. (upper bound)
k

Let ¢ = (70 =0) A 7\(7} #0) A /\ (e(o3) A (05 #0))  (conjunct of a full DNP

=1 =1

The proof is by reduction to PDL with converse and nominals (De Giacomo 95)
Let a and 3 be atomic programs and £; a nominal, for each o;

e the S4-boxis simulated by [a*]:
71 is the result of replacing in = each sub-term 9° with [a*]9

e the universal box is simulated by [v], where vy = (BUB~ Ua U a™)*
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S4,c = S84, + connectedness predicate (2)

Theorem. Sat(S4,c, ALL) is EXPTIME-complete

Proof. (upper bound)
k

Let ¢ = (70 =0) A 7\(7'1- #0) A /\ (e(o3) A (05 #0))  (conjunct of a full DNP

=1 =1

The proof is by reduction to PDL with converse and nominals (De Giacomo 95)
Let a and 3 be atomic programs and £; a nominal, for each o;

e the S4-boxis simulated by [a*]:
71 is the result of replacing in = each sub-term 9° with [a*]9

e the universal box is simulated by [v], where vy = (BUB~ Ua U a™)*

¥ =l A AT A A A B! = (@ua;al?))e)

v’ is safisfiable iff 4 is safisfiable

Logic Colloquium Sofia 2.08.09 5



Regular closed sets and B

X C Tis regular closed if X = X°~

RC(T) = setsof the form X°~,for X C T
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Regular closed sets and B

X C Tis regular closed if X = X°~

RC(T) = sets of the form X°~,for X C T

e ,\\\ VRN
/ (7)) O O
/ - N 7/
/ / -
/
X N X°© Xo—

RC(T) is a Boolean algebra (RC(T), +,:, —,0,T),
where X+Y =XUY, X-Y=(XNnY)°" and —-X=(X)—

Logic Colloquium Sofia 2.08.09 6



Regular closed sets and B

X C Tis regular closed if X = X°~

RC(T) = sets of the form X°~,for X C T

-
a
/ (
/
/

7
X oo~

XO

RC(T) is a Boolean algebra (RC(T), +,:, —,0,T),
where X+Y =XUY, X-Y=(XNnY)°" and —-X=(X)—

O

X°~

B-terms: T u= r; | -7
B-formulas: ¢ = T =T |

| m+m= | 772

—p

P1 N\ P2

regular closed sets!
P1V P2
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Regular closed sets and B

X C Tis regular closed if X = X°~

RC(T) = sets of the form X°~,for X C T

e ,\\\ VRN
/ (7)) o O
/ - N 7/
/ / .
X N X°© Xo—

RC(T) is a Boolean algebra (RC(T), +,:, —,0,T),
where X+Y =XUY, X-Y=(XNnY)°" and —-X=(X)—

B-terms: T uwu= v, | —7 | m+m= | m-m regularclosed sets!
B-formulas: Y = T = T3 | (7] | ®1 N P2 | w1V p2
B isa of S4,: B-terms - S4,-terms

h(r;) =r{", h(—11) = (h(m1)) , h(m1 + 7m2) = h(11) U h(72),
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Regular closed sets and B

X C Tis regular closed if X = X°~

RC(T) = sets of the form X°~,for X C T

///:\\ VRN
A0 o O
/ - N 7/
/ / .
/
X \‘/// XO ):O—

RC(T) is a Boolean algebra (RC(T), +,:, —,0,T),
where X+Y=XUY, X-Y=(XNY)°" and —-X=(X)~

B-terms: T uwu= 1, | —7 | m4+7m | m-7m regularclosed sets!
B-formulas: @ = T = To | (7] | ®1 N P2 | w1V p2
B isa of S4,: B-terms - S4,-terms

h(r;) =r{", h(—11) = (h(m1)) , h(m1 + 7m2) = h(11) U h(72),

Theorem. Sat(B, REG) = Sat(B, CONREG) = Sat(B,RC(R"™))

no fopology! and this set is NP-complete
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Regular closed sets and RCC-8

(Egenhofer & Franzosa, 91) and (Randell, Rui & Cohn, 92):

RCC-8-ferms: T u= regular closed sets!
RCC-8-formulas: ¢ = R(m,72) | —¢ | @1 Ap2 | @1V

DC(r,s) EC(r,s) PO(r,s) EQ(r,s) TPP(r, s) NTPP(r, s)

Jev@ce@
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Regular closed sets and RCC-8

(Egenhofer & Franzosa, 91) and (Randell, Rui & Cohn, 92):

RCC-8-ferms: T u= T regular closed sets!
RCC-8-formulas: ¢ = R(m,72) | —¢ | @1 Ap2 | @1V

DC(r,s) EC(r,s) PO(r,s) EQ(r,s) TPP(r, s) NTPP(r, s)

) @@@‘

(Bennett 94): RCC-8is a of §4,: rCs rn(—s)=0
rNs=0 r-s=0 —(rCs) r=s rN(—=s)#0 —(sCr)
rNs#0 —(sCr) (s Cr)

r-s#0
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Regular closed sets and RCC-8

(Egenhofer & Franzosa, 91) and (Randell, Rui & Cohn, 92):

RCC-8-terms: T = r; regular closed sets!
RCC-8-formulas: ¢ = R(m,72) | —¢ | @1 Ap2 | @1V

DC(r,s) EC(r,s) PO(r,s) EQ(r,s) TPP(r, s) NTPP(r, s)

) @@@‘

(Bennett 94): RCC-8is a of 84,: rCs rn(—s) =0
rNs=0 r-s=0 —(rCs) r=s rN(=8)#0 —(sCr)
rNs#0 —(sCr) (s Cr)

r-s#0

(Renz 98): Sat(RCC-8,REG) = Sat(RCC-8, CONREG) = Sat(RCC-8,RC(R™))
and this set is NP-complete
Sat(RCC-8¢c, REG) = Sat(RCC-8¢c,RC(R™)). n > 3, and this setis NP-complete

Logic Colloquium Sofia 2.08.09 7



Contact predicate

C-terms: T = B-terms
J,WhiTeheod’s ‘connection’ relation
C-formulas: ¢ == 7 — 7 | C(11,7T2) | —p | p1 N pa
M = C(r1,m2) iff 7N #£0
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Contact predicate

C-terms: T = B-terms
\LWhi‘reheod’s ‘connection’ relation
C-formulas: ¢ == 7 — 7 | C(11,7T2) | —p | p1 N pa
M = C(r1,m2) iff 7N #£0

a.k.a. BRCC-8

B + contact predicate = C = RCC-8 + Boolean region terms (.e., B-terms)
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Contact predicate

C-terms: T = B-terms
J,Whi‘reheod’s ‘connection’ relation
C-formulas: ¢ = 7 =7 | C(11,7T2) | —p | 1 A P2
M = C(r1,m2) iff 7N #£0

a.k.a. BRCC-8

B + contact predicate = C = RCC-8 + Boolean region terms (.e., B-terms)

(Wolter & Zakharyaschev 00):
Sat(C, REG) is NP-complete
Sat(C, CONREG) = Sat(C,RC(R™)) and this set is PSPACE-complete

Theorem. Sat(Cc, REG) is EXPTIME-cOomplete
Sat(Cc,RC(R™)), n > 2, is EXPTIME-hard

Proof. Hardness by reduction of the global consequence relation
for the modal logic K

Logic Colloquium Sofia 2.08.09 8



Reduction from Cc to Bc

Bcis a fragment of Ce and the following formula is a Ce-validity:
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Reduction from Cc to Bc

Bcis a fragment of Ce and the following formula is a Ce-validity:

/\ (c(ms) A (1 #0)) = (c(11 + 72) < C(71,72))

i=1,2
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Reduction from Cc to Bc

Bcis a fragment of Ce and the following formula is a Ce-validity:

(C(Tl + ‘Tz) < C(T1,7'2))

Given a Ce-formula ¢, one can construct a Be-formula ¢* such that
 is satisfiable in a (connected) Aleksandrov space  iff
p* is satisfiable in a (connected) Aleksandrov space



Reduction from Cc to Bc

Bcis a fragment of Ce and the following formula is a Ce-validity:

(C(‘Tl + 7'2) < C(Tl,’Tz))

Given a Ce-formula ¢, one can construct a Be-formula ¢* such that
 is satisfiable in a (connected) Aleksandrov space  iff
™ is satisfiable in a (connected) Aleksandrov space

Theorem. Sat(Bc, REG) is EXPTIME-complete
Sat(Bc, RC(R™)), n > 3, is ExPTIME-hard



S4,c in Euclidean spaces

satisfiable in R? but not in R:

/\ c(ry) A /\

1<i<3 1<i<j<3
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S4,c in Euclidean spaces

satisfiable in R? but not in R:

/\ c(ry) A /\ 'rlﬂry 0) A (rlﬂr2ﬁr3=0)

(non-planar graphs, e.g., Ks):

/\ (vzgejk) A /\ ('v,-;éO) A /\ (e,-,jmek,,zo) A

1<i<3 1<i<j<3
satisfiable in R3 but not in R2
ie{j,k} 1<i<5

{330 {k,1}=0

/\ c(e;

1<i<j<5

(o]
,J
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S4,c in Euclidean spaces

satisfiable in R? but not in R:

/\ c(ry) A /\ 'rlﬂry 0) A (rlﬂr2ﬁr3=0)
1<i<3 1<i<j<3

satisfiable in R3 but not in R?  (non-planar graphs, e.g., Ks):

A @Ce) A A @#0) A A (eynen=0) A /e,

1€{J,k} 1<i<5 {i,530{k,1}=0 1<i<j<5

satisfiable in connected spaces (e.g., torus) but not in R™, forany n > 1:

(ryNry =0) A /\ (r; Cr) A e(@) A —e(FNTs)

10



S4,c in Euclidean spaces

e satisfiable in R2 but not in R:

/\ c(ry) A /\ 'rlﬂry ) A (rlﬂr2ﬁr3=0)
1<i<3 1<i<j<3

e satisfiable in R3 but not in R?  (non-planar graphs, e.g., Ks):

/\ ('vz C e k) A /\ ('vi + 0) A /\ (e,-,j Neg; = 0) A /\ c(eg,j)

1€{J,k} 1<i<5 {i,530{k,1}=0 1<i<j<5

e safisfiable in connected spaces (e.g., torus) but not in R™, forany n > 1:

(ryNry =0) A /\ (r; Cr) A e(@) A —e(FNTs)

Theorem. Sat(S4,c,R) is PSPACE-complete

Proof. Embedding intfo temporal logic with & and U over (R, <),
which is PSpace-complete (Reynolds, 99)

10



Summary of the results

language | REG | CONREG RC(iR{;) RC(R?) RC(R)
n
RCC-8 NP
RCC-8c NP | NP |<PSpace,>NP
B NP
Be EXPTIME | EXPTIME | >EXPTIME | >PSPACE | NP
Cc NP PSPACE
Ce EXPTIME | EXPTIME | >EXPTIME | >EXPTIME |  PSPACE
| | AL | CoN [Rn>2]| R* | R
S4, PSPACE PSPACE
S4,c | EXPTIME | EXPTIME | >EXPTIME | >EXPTIME |  PSPACE

e Upper bounds for satisfiability over R™, n > 1, are not known
(even decidability)

e Component counting predicates ¢=k(7): NExPTIME instead of EXPTIME

e k-contact relations C*(ry, ..., ) do not increase complexity

Logic Colloquium Sofia 2.08.09 11



Infinite vs. finite number of components

R1: ‘RCC-8c-formula satisfiable over RC(R) but not over RCP(R)
(RCP(R™) = regular closed, semi-linear subsets of R™)

r, IS connected and
any two of ry, r, r3, 74 tOUuCh at their boundaries without overlapping:

c(r1) A /\ EC(ri,7;)

1<i<j<4
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Infinite vs. finite number of components

Rli RCC-8c-formula satisfiable over RC(R) but not over RCP(R)
(RCP(R™) = regular closed, semi-linear subsets of R™)

r, IS connected and
any two of ry, r, r3, 74 tOUuCh at their boundaries without overlapping:

wrn ey [ - I1-H - BB
1<i<j<4
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Infinite vs. finite number of components

R1: ‘RCC-8c-formula satisfiable over RC(R) but not over RCP(R)
(RCP(R™) = regular closed, semi-linear subsets of R™)

r, IS connected and
any two of ry, r, r3, 74 tOUuCh at their boundaries without overlapping:

wrn Ao [ - LI -
1<i<j<4

Rzi (Schaefer, Sedgwick & Stefankovié 03): Sat(RCC-8, D(R?)) is NP-complete
(D(R?) = closed disc-homeomorphs in R2)

Theorem. Sat(RCC-8¢,RC(R?)) and Sat(RCC-8¢,RCP(R?)) coincide,
and are NP-complete
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Infinite vs. finite number of components

R1: ‘RCC-8c-formula satisfiable over RC(R) but not over RCP(R)
(RCP(R™) = regular closed, semi-linear subsets of R™)

r, IS connected and
any two of ry, r, r3, 74 tOUuCh at their boundaries without overlapping:

c(ry) A /\ EC(rs,7;) - T1 HI IT'3 . T3 -
1<i<j<4

Rzi (Schaefer, Sedgwick & Stefankovié 03): Sat(RCC-8, D(R?)) is NP-complete
(D(R?) = closed disc-homeomorphs in R2)

Theorem. Sat(RCC-8¢,RC(R?)) and Sat(RCC-8¢,RCP(R?)) coincide,
and are NP-complete

language RC(R) RCP(R) RC(R?) \ RCP(RR?)
RCC-8c <PSPACE,>NP NP NP
Bc NP >PSPACE >PSPACE
Cc PSPACE \ PSPACE >EXPTIME >EXPTIME
R S(R) R? S(R?)
S4,c PSPACE PSPACE >EXPTIME >EXPTIME
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