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Abstract

In this paper we prove some results on the computational complexity of standard quantifier-
free spatial logics with the connectedness predicate interpreted over the Euclidean spaces R
and R2.

Topological logics with connectedness. A topological logic is a formal language whose vari-
ables range over subsets of topological spaces, and whose non-logical primitives denote fixed topo-
logical properties and operations involving these subsets. For example, let the function symbols ∩,
∪ and ·− denote the operations of intersection, union and topological closure, respectively; let the
constant 0 denote the empty set; let the unary predicate c denote the property of connectedness;
and let the binary predicate ⊆ denote the subset relation. Then the formula

c(r1) ∧ c(r2) ∧ ¬(r1 ∩ r2 ⊆ 0) → c(r1 ∪ r2) (1)

states that the union of two intersecting connected sets r1 and r2 is connected; likewise, the formula

c(r1) ∧ (r1 ⊆ r2) ∧ (r2 ⊆ r1−) → c(r2) (2)

states that, if r1 is a connected set, and r2 is sandwiched between r1 and its closure, then r2 is also
connected. It is well known that these statements hold for any subsets r1, r2 of any topological
space. As we might put it: formulas (1) and (2) are validities of the topological logic in question.
Once the syntax of that logic has been made precise, it is natural to ask: what is the computational
complexity of identifying such validities?

Formally, let F be a set of function symbols with fixed interpretations as operations on subsets
of a topological space; and let P be a set of predicates, again with fixed interpretations as relations
between subsets of a topological space. We denote by L(F, P ) the set of quantifier-free first-order
formulas over the signature (F, P ). Using the obvious abbreviations, we may regard formulas (1)
and (2) as belonging to the language S4uc := L({∪,∩, ·− , · }, {c,=}), where the operator · denotes
complementation with respect to the containing space, and = denotes the equality relation. An
interpretation I for this language consists of a topological space T and a map r 7→ rI taking every
variable to a subset of T . This map is extended to terms in the obvious way, and truth-values are
assigned to atomic formulas according to the rules: I |= τ1 = τ2 iff τI

1 = τI
2 and I |= c(τ) iff τI is

connected. A formula ϕ is satisfiable if there exists an interpretation I such that I |= ϕ, and valid
if I |= ϕ, for all interpretations I. The properties of validity and satisfiability are thus dual in the
usual sense.

If L is a topological language and K a class of interpretations, we write Sat(L,K) to denote
the problem of determining whether a given L-formula is satisfied by some interpretation in K.
It is shown in [2] that Sat(S4uc,All) is ExpTime-complete, where All denotes the class of
all interpretations. Removing the connectedness predicates altogether, we obtain the language
S4u := L({∪,∩, ·− , ·}, {=})—in essence the modal logic S4 with an additional universal modality,
under the topological semantics of McKinsey and Tarski [4]. It is well-known that Sat(S4u,All)
is PSpace-complete.

By restricting the language in various ways, we obtain less expressive logics, having—in
general—less complex satisfiability problems. A subset of a topological space is regular closed
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if it is the closure of an open set. The collection of regular closed sets of a topological space T
forms a Boolean algebra under inclusion with top element 1 = T and bottom element 0 = ∅. We
denote this Boolean algebra by RC(T ), and use the symbols +, · and − to denote the obvious
operations in RC(T ); in addition, we write τ1 ≤ τ2 in preference to τ1 ⊆ τ2. Now consider the lan-
guage Bc := L({·,+,−,0,1}, {c,=}). Let RegC be the class of interpretations over any domain
of the form RC(T ). Any such interpretation I may then be extended to Bc-terms, and hence to
Bc-formulas in the expected way. It turns out that, e.g., c(r1) ∧ c(r2) ∧ (r1 · r2 6= 0)→ c(r1 + r2)
is a validity of Bc over RegC (cf. formula (1)). Since the property of being a regular closed
set can be expressed in S4uc, we may regard Bc, interpreted over RegC, as a sub-language of
S4uc, interpreted over All. Nevertheless, it is shown in [2] that Sat(Bc,RegC) is still ExpTime-
complete. For a language having intermediate expressive power between Bc and S4uc, consider
Cc := L({·,+,−,0,1}, {C, c,=}), where the binary ‘contact’ predicate C is given the semantics:
I |= C(τ1, τ2) iff τI

1 ∩ τI
2 6= ∅. It follows from the above results that Sat(Cc,RegC) is ExpTime-

complete. On the other hand, by removing the predicate c from Cc, we obtain the language
C = L({·,+,−,0,1}, {C,=}), whose satisfiability problem over RegC is shown in [7] to be NP-
complete, and PSpace-complete if we restrict attention to connected spaces.

The language C is of particular interest, because it enables us to express the so-called ‘RCC-8’
relations—DC (disconnection), EC (external connection), PO (partial overlap), EQ (equality),
TPP (tangential proper part) and NTPP (non-tangential proper part)—popularized in the seminal
treatments of spatial logics by Egenhofer and Franzosa [1] and Randell et al. [5]. These relations
are illustrated, for closed disc homeomorphs in R2, in Fig. 1. The RCC-8 predicates are of most
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NTTP(X, Y ) TTP(X, Y ) EQ(X, Y ) PO(X, Y ) DC(X, Y )EC(X, Y )

X Y X and Y

Figure 1: The RCC-8 relations illustrated for disc-homeomorphs in R2.

interest when interpreted over certain geometrical spaces: it is to these that we now turn.

Topological logics over R and R2. Consider the language RCC-8c, whose only topological
primitives are the RCC-8 predicates (illustrated above) together with the predicate c (connected-
ness); and consider the RCC-8c-formula∧

1≤i≤3

c(ri) ∧
∧

1≤i<j≤3

EC(ri, rj). (3)

Formula (3) states that regions r1, r2 and r3 are connected, and that any two of them touch at
their boundaries without overlapping. It is easy to see that this formula is satisfiable over RC(R2),
but unsatisfiable over RC(R). Using simple facts about non-planar graphs, it is likewise easy to
write an RCC-8c-formula satisfiable over RC(R3), but not over RC(R2). Thus the satisfiability
problems for RCC-8c-formulas over these spaces are all different. More intriguingly, consider the
RCC-8c-formula

c(r1) ∧
∧

1≤i<j≤4

EC(ri, rj), (4)

stating that r1 is connected, and that any two of r1, . . . , r4 touch at their boundaries without
overlapping. Formula (4) is satisfiable over the regular closed subsets of R, as shown in Fig. 2.
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Figure 2: A configuration of regular closed regions in R satisfying the RCC-8c-formula (4).

However, such an arrangement is only possible provided that at least two of the regions r2, r3 and
r4 have infinitely many components. If, for example, we chose to consider only interpretations
over (say) the regular closed semi-linear (=semi-algebraic) subsets of R, then this formula would
count as unsatisfiable. Moral: simple topological logics featuring the connectedness predicate are
sensitive to the underlying topological space, and indeed to the precise choice of subsets of that
space over which its variables range.

Denote by RC(Rn) the class of all interpretations over the regular closed subsets of Rn, and
by RCP(Rn) the class of all interpretations over the regular closed, semi-linear subsets of Rn.
(The ‘P’ in RCP stands for ‘polyhedron.’) Although the example of formula (4) shows that
Sat(RCC-8c,RC(R)) 6= Sat(RCC-8c,RCP(R)), we nevertheless establish:

Theorem 1. The problems Sat(Bc,RC(R)) and Sat(Bc,RCP(R)) are identical, and are NP-
complete.

Denote by P(R) the set of all interpretations over the power set of R, and by S(R) the set of
all interpretations over the set of semi-linear subsets of R. It was shown in [3] that Sat(Cc,RC(R))
and Sat(S4uc,P(R)) are both PSpace-complete. We present the following additional complexity
results:

Theorem 2. The problem Sat(RCC-8c,RCP(R)) is NP-complete. The problems Sat(Cc,RCP(R))
and Sat(S4uc,S(R)) are both PSpace-complete.

Turning our attention from the real line to the Euclidean plane, we have:

Sat(RCC-8c,RC(R2)) = Sat(RCC-8c,RCP(R2)).

Thus, the easy separation result for the space R obtained using (4) no longer holds in R2. However,
making the language just a little bit more expressive than RCC-8 causes this equivalence to break
down. Specifically, we have

Sat(Bc,RC(R2)) 6= Sat(Bc,RCP(R2)).

We remark that the simplest Bc-formula known to the authors that is satisfied by an interpretation
in RC(R2), but not by one in RCP(R2), is much more complicated than formula (4), separating
Sat(RCC-8c,RC(R)) from Sat(RCC-8c,RCP(R)). It is shown in [6] that Sat(RCC-8,D(R2)) is
NP-complete, where D(R2) is the domain of closed disc-homeomorphs in R2. A routine extension
of this proof can be used to show

Theorem 3. The problems Sat(RCC-8c,RC(R2)) and Sat(RCC-8c,RCP(R2)) coincide, and are
NP-complete.

The complexity—even the decidability—of Bc and Cc over RC(R2) and RCP(R2) remains
open. However, it is possible to establish the following lower bounds:

Theorem 4. The satisfiability problems for Bc over RC(R2) and RCP(R2) are PSpace-hard.
The satisfiability problems for Cc over RC(R2) and RCP(R2) are ExpTime-hard.
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language R R2

RC(R) RCP(R) RC(R2) RCP(R2)
RCC-8c ? NP Thm. 2 NP Thm. 3

Bc NP Thm. 1 ≥PSpace Thm. 4 ≥PSpace Thm. 4

Cc PSpace [3] PSpace Thm. 2 ≥ExpTime Thm. 4 ≥ExpTime Thm. 4

P(R) S(R) P(R2) S(R2)
S4uc PSpace [3] PSpace Thm. 2 ≥ExpTime Thm. 4 ≥ExpTime Thm. 4

Table 1: Summary of results.

The known complexity results for the logics RCC-8c, Bc, Cc and S4uc interpreted over R and
R2 are summarized in Table 1.

We conjecture that RCC-8c is still NP-complete over RC(R).

Acknowledgement. The results presented in this paper have been obtained in the framework
of the UK EPSRC projects EP/E035248 and EP/E034942: ‘Computational logic of Euclidean
spaces.’ Other directions of research on this project are (i) interpretations over R3 and higher-
dimensional Euclidean spaces, (ii) topological logics with component counting (which usually
increases complexity from ExpTime to NExpTime), and first-order theories of topological signa-
tures.
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