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ABSTRACT
Our concern is the overhead of answering OWL2QL onto-
logy-mediated queries (OMQs) in ontology-based data ac-
cess compared to evaluating their underlying tree-shaped
and, more generally, bounded treewidth conjunctive queries
(CQs). We show that OMQs with bounded depth ontologies
have nonrecursive datalog (NDL) rewritings that can be con-
structed and evaluated in LOGCFL for combined complexity,
and even in NL if their CQs are tree-shaped with a bounded
number of leaves. Thus, such OMQs incur no overhead in
complexity-theoretic terms. For OMQs with arbitrary on-
tologies and bounded-leaf tree-shaped CQs, NDL-rewritings
are constructed and evaluated in LOGCFL. We experimen-
tally demonstrate feasibility and scalability of our rewritings
compared to previously proposed NDL-rewritings. On the
negative side, we prove that answering OMQs with tree-
shaped CQs is not fixed-parameter tractable if the ontology
depth or the number of leaves in the CQs is regarded as the
parameter, and that answering OMQs with a fixed ontology
(of infinite depth) is NP-complete for tree-shaped CQs and
LOGCFL-complete for bounded-leaf CQs.

Keywords
Ontology-based data access; ontology-mediated query; query
rewriting; combined complexity; parameterised complexity.

1. INTRODUCTION
The main aim of ontology-based data access (OBDA, for

short) [50, 43] is to facilitate access to complex data for non-
expert end-users. The ontology, given by a logical theory
T , provides a unified conceptual view of one or more data
sources, so the users do not have to know the actual struc-
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ture of the data and can formulate their queries in the vo-
cabulary of the ontology, which is connected to the schemas
of data sources by a mapping M. The instance M(D) that
can be obtained by applying M to a given dataset D is in-
terpreted under the open-world assumption, and additional
facts can be inferred using the domain knowledge provided
by the ontology. A certain answer to a query q(x) over
D is any tuple of constants a such that T ,M(D) |= q(a).
OBDA is closely related to querying incomplete databases
under (ontological) constraints [9], data integration [20], and
data exchange [2].

In the classical approach to OBDA [13, 50], the com-
putation of certain answers is reduced to standard data-
base query evaluation: given an ontology-mediated query
(OMQ) Q = (T , q(x)), one constructs a first-order (FO)
query q′(x), called a rewriting of Q, such that, for every
dataset D and mapping M,

T ,M(D) |= q(a) iff IM(D) |= q′(a), (1)

where IM(D) is the FO-structure comprised of the atoms
in M(D); note that the rewriting is interpreted in IM(D)

under the closed-world semantics. When the form of M is
appropriately restricted, e.g., to GAV mappings, in which
case the ontology predicates are defined as views over the
data sources, one can further unfold q′(x) usingM to obtain
an FO-query that can be evaluated directly over the original
dataset D (so there is no need to materialise M(D)).

For reduction (1) to hold for all OMQs, it is necessary to
restrict the expressivity of T and q. The DL-Lite family of
description logics [13] was specifically designed to ensure (1)
for OMQs with conjunctive queries (CQs) q. Other ontology
languages with this property include linear and sticky tuple-
generating dependencies (tgds) [10, 11], and the OWL2QL
profile [45] of the W3C-standardised Web Ontology Lan-
guage OWL2, which extends DL-Lite and is the focus of this
work. Like many other ontology languages originating from
description logics, OWL2QL admits only unary and binary
predicates, but arbitrary relational instances can be queried
due to the mapping. Various types of FO-rewritings q′(x)
have been developed and implemented for the aforemen-
tioned ontology languages [50, 47, 41, 54, 15, 21, 53, 38, 28,
44, 40], and a few mature OBDA systems have emerged, in-
cluding pioneering MASTRO [12], commercial Stardog [48]
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Figure 1: OMQ answering in OWL2QL (a) combined complexity and (b) the size of rewritings.

and Ultrawrap [55], and the Optique platform [24] with the
query answering engine Ontop [51, 42].

Our concern in this paper is the overhead of OMQ an-
swering—that is, checking whether the left-hand side of (1)
holds—compared to evaluating the underlying CQs. At first
sight, there is no apparent difference between the two prob-
lems when viewed through the lens of computational com-
plexity: OMQ answering is in AC0 for data complexity by (1)
and is NP-complete for combined complexity [13], which for
both measures corresponds to the complexity of evaluating
CQs in the relational setting. Further analysis revealed,
however, that answering OMQs is already NP-hard for com-
bined complexity when the underlying CQs are tree-shaped
(acyclic) [37], in sharp contrast to the well-known LOGCFL-
completeness of evaluating bounded treewidth CQs [62, 14,
27]. This surprising difference motivated a systematic in-
vestigation of the combined complexity of OMQ answering
along two dimensions: (i) the query topology (treewidth t of
CQs, and the number ` of leaves in tree-shaped CQs), and
(ii) the ‘existential’ depth d of ontologies (i.e., the length of
the longest chain of labelled nulls in the chase on any data).
The resulting landscape, displayed in Fig. 1 (a) (under the
assumption that datasets are given as RDF graphs—that
is, sets of unary and binary ground atoms—and M is the
identity) [13, 37, 35, 5], indicates three tractable cases:

OMQ(d, t,∞): ontologies of depth ≤ d coupled with CQs
of treewidth ≤ t (for fixed d, t);

OMQ(d, 1, `): ontologies of depth ≤ d with tree-shaped CQs
with ≤ ` leaves (for fixed d, `);

OMQ(∞, 1, `): ontologies of arbitrary depth coupled with
tree-shaped CQs with ≤ ` leaves (for fixed `).

Observe, in particular, that when the depth of ontologies
is bounded by a fixed constant, the complexity of OMQ
answering is precisely the same as of evaluating the un-
derlying CQs. If we place no restriction on the ontology,
then tractability for tree-shaped queries can be recovered
by bounding the number of leaves, but we have LOGCFL
rather than the expected NL.

While the results in Fig. 1 (a) appear to answer the ques-
tion of the additional cost incurred by adding an OWL2QL
ontology, they only tell part of the story. Indeed, in the
context of classical rewriting-based OBDA [50], it is not
the abstract complexity of OMQ answering that matters,
but the cost of computing and evaluating OMQ rewritings.
Fig. 1 (b) summarises what is known about the size of pos-
itive existential (PE), nonrecursive datalog (NDL) and FO-
rewritings [36, 26, 35, 5]. Thus, we see, for example, that

PE-rewritings for OMQs from OMQ(d, t,∞) can be of super-
polynomial size, and so are not computable and evaluable
in polynomial time, even though Fig. 1 (a) shows that such
OMQs can be answered in LOGCFL. The same concerns
OMQ(d, 1, `) and OMQ(∞, 1, `), which can be answered in
NL and LOGCFL, respectively, but do not enjoy polynomial-
size PE-rewritings. Moreover, our experiments show that
standard rewriting engines exhibit exponential behaviour on
OMQs drawn from OMQ(1, 1, 2) lying in the intersection of
the three tractable classes.

Our first aim is to show that the positive complexity re-
sults in Fig. 1 (a) can in fact be achieved using query rewrit-
ing. To this end, we develop NDL-rewritings for the three
tractable cases that can be computed and evaluated by al-
gorithms of optimal combined complexity. In theory, such
algorithms are known to be space efficient and highly paral-
lelisable. We demonstrate practical efficiency of our optimal
NDL-rewritings by comparing them with the NDL-rewrit-
ings produced by Clipper [21], Presto [54] and Rapid [15],
using a sequence of OMQs from the class OMQ(1,1,2).

Our second aim is to understand the contribution of the
ontology depth and the number of leaves in tree-shaped CQs
to the complexity of OMQ answering. (As follows from
Fig. 1 (a), if these parameters are unbounded, this prob-
lem is harder than evaluating the underlying CQs unless, of
course, LOGCFL = NP.) Unfortunately, it turns out that
answering OMQs with ontologies of finite depth and tree-
shaped CQs is not fixed-parameter tractable if either the
ontology depth or the number of leaves in CQs is regarded
as a parameter. More precisely, we prove that the problem
is W [2]-hard in the former case and W [1]-hard in the lat-
ter. These results suggest that the ontology depth and the
number of leaves are inherently in the exponent of the size
of the input in any OMQ answering algorithm.

Finally, we revisit the NP- and LOGCFL-hardness results
for OMQs with tree-shaped CQs. The known lower bounds
were established using sequences (Tn, qn) of OMQs, where
the depth of Tn grows with n [37, 5]. One might thus hope
to make answering OMQs with tree-shaped CQs easier by
restricting the ontology signature, size, or even by fixing
the whole ontology, which is very relevant for applications
because a typical OBDA scenario has users posing different
queries over the same ontology. Our third main result is that
this is surprisingly not the case: we present ontologies T† and
T‡ of infinite depth such that answering OMQs (T†, q) with
tree-shaped CQs q and (T‡, q) with linear CQs q is NP- and
LOGCFL-hard for query complexity, respectively. We also
show that, unless P = NP, no polynomial-time algorithm can



construct FO-rewritings of the OMQs (T†, q), even though
polynomial-size FO-rewritings of these OMQs do exist.

The paper is organised as follows. We begin in Section 2
by introducing the OWL2QL ontology language and key
notions like OMQ answering and query rewriting. In Sec-
tion 3, we first identify fragments of NDL that can be eval-
uated in LOGCFL or NL, and then we use these results to
develop NDL-rewritings of optimal combined complexity for
the three tractable cases. Section 4 concerns the parame-
terised complexity of OMQ answering with tree-shaped CQs.
For ontologies of finite depth, we show W [2]-hardness (W [1]-
hardness) when the ontology depth (respectively, number of
leaves) is taken as the parameter. For the infinite depth case,
we show in Section 5 that NP-hardness holds even for a fixed
ontology. The final section of the paper presents preliminary
experiments that compare our new NDL-rewritings to those
produced by existing rewriting engines and also discusses
possible directions for future work. Concrete examples of
our three types of NDL-rewriting are provided in the ap-
pendix. All omitted proofs and details of the experiments
can be found in the long version of this paper [4].

2. PRELIMINARIES
An OWL2QL ontology (TBox in description logic), T , is

a finite set of sentences (axioms) of the form

∀x (τ(x)→ τ ′(x)), ∀x (τ(x) ∧ τ ′(x)→ ⊥),

∀xy (%(x, y)→ %′(x, y)), ∀xy (%(x, y) ∧ %′(x, y)→ ⊥),

∀x %(x, x), ∀x (%(x, x)→ ⊥),

where τ(x) and %(x, y) are defined, using unary predicates
A and binary predicates P , by the grammars

τ(x) ::= > | A(x) | ∃y %(x, y),

%(x, y) ::= > | P (x, y) | P (y, x).

When writing ontology axioms, we omit the universal quan-
tifiers and denote by RT the set of binary predicates P oc-
curring in T and their inverses P−, assuming that P−− = P .
For every % ∈ RT , we take a fresh unary predicate A% and
add A%(x)↔ ∃y %(x, y) to T (where, as usual, ϕ↔ ψ is an
abbreviation for ϕ→ ψ and ψ → ϕ). The resulting ontology
is said to be in normal form, and we assume, without loss
of generality, that all our ontologies are in normal form.

A data instance, A, is a finite set of unary or binary ground
atoms (called an ABox in description logic). We denote
by ind(A) the set of individual constants in A and write
%(a, b) ∈ A if P (a, b) ∈ A and % = P , or P (b, a) ∈ A and
% = P−. We say that A is complete for an ontology T if
T ,A |= S(a) implies S(a) ∈ A, for any ground atom S(a)
with a ⊆ ind(A).1

A conjunctive query (CQ) q(x) is a formula of the form
∃y ϕ(x,y), where ϕ is a conjunction of atoms S(z) all of
whose variables are among x∪y. We assume, without loss of
generality, that CQs contain no constants. We often regard
a CQ as the set of its atoms; in particular, |q| is the number
of atoms in q. With every CQ q, we associate its Gaifman
graph G whose vertices are the variables of q and whose
edges are the pairs {u, v} such that P (u, v) ∈ q, for some P .
We call q connected if G is connected; q is tree-shaped if G
is a tree, and linear if G is a tree with two leaves.

1If the meaning is clear from the context, we use set-
theoretic notation for lists.

By an ontology-mediated query (OMQ) we understand a
pair Q(x) = (T , q(x)), where T is an ontology and q(x) a
CQ. A tuple a ⊆ ind(A) is a certain answer to Q(x) over a
data instance A if I |= q(a) for all models I of T and A;
in this case we write T ,A |= q(a). If x = ∅, then a certain
answer to Q over A is ‘yes’ if T ,A |= q and ‘no’ otherwise.
The OMQ answering problem (for a class of OMQs) is to
decide whether T ,A |= q(a) holds, given an OMQ Q(x)
(in the class), A and a ⊆ ind(A). If T , q(x), and A are
regarded as input, we speak about combined complexity of
OMQ answering; if A and T are regarded as fixed, we speak
about query complexity. The size of Q is |Q| = |T | + |q|,
where |T | is the number of symbols in T .

Every consistent knowledge base (KB) (T ,A) has a canon-
ical model (or chase in database theory) [1] CT ,A with the
property that T ,A |= q(a) iff CT ,A |= q(a), for all CQs
q(x) and a ⊆ ind(A). In our constructions, we use the
following definition of CT ,A, where without loss of gener-
ality we assume that T contains no binary predicates P
such that T |= ∀xy P (x, y). The domain, ∆CT ,A , consists
of ind(A) and the witnesses (or labelled nulls) of the form
w = a%1 . . . %n, for n ≥ 1, such that

– a ∈ ind(A) and T ,A |= ∃y %1(a, y);

– T 6|= %i(x, x), for 1 ≤ i ≤ n;

– T |= ∃x %i(x, y)→ ∃z %i+1(y, z)
but T 6|= %i(x, y)→ %i+1(y, x), for 1 ≤ i < n.

We denote by WT the set consisting of the empty word ε and
all words %1 . . . %n ∈ R+

T satisfying the last two conditions.
Every a ∈ ind(A) is interpreted in CT ,A by itself, and unary
and binary predicates are interpreted as follows:

– CT ,A |= A(u) iff either u ∈ ind(A) and T ,A |= A(u),
or u = w% with T |= ∃y %(y, x)→ A(x);

– CT ,A |= P (u, v) iff one of the three conditions holds:
(i) u, v ∈ ind(A) and T ,A |= P (u, v); (ii) u = v and
T |= P (x, x); (iii) T |= %(x, y) → P (x, y) and either
v = u% or u = v%−.

We say that T is of depth 0 if it does not contain any axioms
with ∃ on the right-hand side, excepting the normalisation
axioms2. Otherwise, we say that T is of depth 0 < d < ∞
if d is the maximum length of the words in WT , and it is
of depth ∞ if WT is infinite. (Note that the depth of T
is computable in NL; cf. [25, 8] for related results on chase
termination for tgds.)

An FO-formula q′(x), possibly with equality, is an FO-
rewriting of an OMQ Q(x) = (T , q(x)) if, for any data
instance A and any tuple a ⊆ ind(A),

T ,A |= q(a) iff IA |= q′(a), (2)

where IA is the FO-structure over the domain ind(A) such
that IA |= S(a) iff S(a) ∈ A, for any ground atom S(a).
If q′(x) is a positive existential formula (that is, an FO-
formula with ∃, ∨ and ∧ only), we call it a PE-rewriting of
Q(x). A PE-rewriting whose matrix is a Πk-formula (with
respect to ∧ and ∨) is called a Πk-rewriting. The size |q′| of
a rewriting q′ is the number of symbols in it.

2This somewhat awkward definition of depth 0 ontologies is
due to the use of normalisation axioms, which may introduce
unnecessary words on length 1 in WT .



We also consider rewritings in the form of nonrecursive
datalog queries. A datalog program, Π, is a finite set of Horn
clauses ∀z (γ0 ← γ1 ∧ · · · ∧ γm), where each γi is an atom
Q(y) with y ⊆ z or an equality (z = z′) with z, z′ ∈ z. (As
usual, we omit ∀z from clauses.) The atom γ0 is the head of
the clause, and γ1, . . . , γm its body. All variables in the head
must occur in the body, and = can only occur in the body.
The predicates in the heads of clauses in Π are IDB predi-
cates, the rest (including =) EDB predicates. A predicate Q
depends on P in Π if Π has a clause with Q in the head and
P in the body. Π is a nonrecursive datalog (NDL) program if
the (directed) dependence graph of the dependence relation
is acyclic. The size |Π| of Π is the number of symbols in it.

An NDL query is a pair (Π, G(x)), where Π is an NDL pro-
gram and G(x) a predicate. A tuple a ⊆ ind(A) is an answer
to (Π, G(x)) over a data instanceA ifG(a) holds in the first-
order structure with domain ind(A) obtained by closing A
under the clauses in Π; in this case we write Π,A |= G(a).
The problem of checking whether a is an answer to (Π, G(x))
over A is called the query evaluation problem. The depth of
(Π, G(x)) is the length, d(Π, G), of the longest directed path
in the dependence graph for Π starting from G. NDL queries
are equivalent if they have exactly the same answers over any
data instance.

An NDL query (Π, G(x)) is called an NDL-rewriting of
an OMQ Q(x) = (T , q(x)) over complete data instances
in case T ,A |= q(a) iff Π,A |= G(a), for any complete A
and any a ⊆ ind(A). Rewritings over arbitrary data in-
stances are defined by dropping the completeness condition.
Given an NDL-rewriting (Π, G(x)) of Q(x) over complete
data instances, we denote by Π∗ the result of replacing each
predicate S in Π with a fresh IDB predicate S∗ of the same
arity and adding the clauses

A∗(x)← τ(x), if T |= τ(x)→ A(x),

P ∗(x, y)← %(x, y), if T |= %(x, y)→ P (x, y),

P ∗(x, x)← >(x), if T |= P (x, x),

where >(x) is an EDB predicate for the active domain [33].
Clearly, (Π∗, G(x)) is an NDL-rewriting of Q(x) over arbi-
trary data instances and |Π∗| ≤ |Π|+ |T |2.

Finally, we remark that, without loss of generality, we can
(and will) assume that our ontologies T do not contain ⊥.
Indeed, we can always incorporate into rewritings subqueries
that check whether the left-hand side of an axiom with ⊥
holds and output all tuples of constants if this is the case [10].

3. OPTIMAL NDL-REWRITINGS
In order to construct theoretically optimal NDL-rewritings

for OMQs from the three tractable classes, we first identify
two types of NDL queries whose evaluation problems are in
NL and LOGCFL for combined complexity.

3.1 NL and LOGCFL Fragments of NDL
To simplify the analysis of non-Boolean NDL queries, it

is convenient to regard certain variables as parameters to
be instantiated with constants from the candidate answer.
Formally, an NDL query (Π, G(x)) is called ordered if each
of its IDB predicates Q comes with a fixed list of variables
xQ ⊆ x, called the parameters of Q, such that

(i) in each occurrence of Q in Π, the parameters occupy
the last |xQ| positions: that is, Q(z,xQ); parameters
can, however, occur in other positions too;

(ii) the parameters of G are x; and

(iii) in every clause, the parameters of the head include all
the parameters of the predicates in the body.

Observe that Boolean NDL queries are trivially ordered (the
lists of parameters are empty for all IDBs).

The width w(Π, G) of an ordered (Π, G(x)) is the maximal
number of non-parameter variables in a clause of Π.

Example 1. The NDL query (Π, G(x)), where

Π = {G(x)← R(x, y) ∧Q(x), Q(x)← R(y, x) },

is ordered with parameter x and has width 1 (the conditions
do not restrict the EDB predicate R). Replacing Q(x) by
Q(y) in the first clause yields an NDL query that is not
ordered in view of (i). A further change of Q(x) in the
second clause to Q(y) would satisfy (i) but not (iii).

As all the NDL-rewritings we construct are ordered, with
their parameters being the answer variables, from now on
we only consider ordered NDL queries.

Given an NDL query (Π, G(x)), a data instance A and a
tuple a with |x| = |a|, the a-grounding Πa

A of Π on A is the
set of ground clauses obtained by first replacing each param-
eter in Π by the corresponding constant from a, and then
performing the standard grounding [18] of Π using the con-

stants from A. The size of Πa
A is bounded by |Π| · |A|w(Π,G),

and so checking whether Π,A |= G(a) can be done in time

poly(|Π| · |A|w(Π,G)).

3.1.1 Linear NDL in NL
An NDL program is linear [1] if the body of its every

clause contains at most one IDB predicate.

Theorem 2. For every w > 0, evaluation of linear NDL
queries of width at most w is NL-complete for combined com-
plexity.

Proof. Let (Π, G(x)) be a linear NDL query. Deciding
whether Π,A |= G(a) is reducible to finding a path to G(a)
from a vertex in a certain set X in the grounding graph
G, which is constructed as follows. The vertices of G are
the IDB atoms of Πa

A, and G has an edge from Q(c) to
Q′(c′) iff Πa

A contains Q′(c′)← Q(c)∧S1(c1)∧ · · · ∧Sk(ck)
with Si(ci) ∈ A, for 1 ≤ i ≤ k (we assume that A con-
tains all c = c, for c ∈ ind(A)). The set X consists of all
vertices Q(c) with IDB predicates Q being of in-degree 0
in the dependency graph of Π for which there is a clause
Q(c) ← S1(c1) ∧ · · · ∧ Sk(ck) in Πa

A such that Si(ci) ∈ A,
for 1 ≤ i ≤ k. Bounding the width of (Π, G) ensures that G
is of polynomial size and can be constructed by a determinis-
tic Turing machine with read-only input, write-once output
and logarithmic-size work tapes. q

The transformation ∗ of NDL-rewritings over complete
data instances into NDL-rewritings over arbitrary data in-
stances does not preserve linearity. A more involved con-
struction is given in the proof of the following:

Lemma 3. Fix any w > 0. There is an LNL-transducer
that, for any linear NDL-rewriting (Π, G(x)) of an OMQ
Q(x) over complete data instances with w(Π, G) ≤ w, com-
putes a linear NDL-rewriting (Π′, G(x)) of Q(x) over arbi-
trary data instances such that w(Π′, G) ≤ w + 1.

We note that a possible increase of the width by 1 is due
to the ‘replacement’ of unary atoms A(z) by binary atoms
%(y, z) whenever T |= ∃y %(y, z)→ A(z).



3.1.2 Skinny NDL in LOGCFL
The complexity class LOGCFL can be defined using nonde-

terministic auxiliary pushdown automata (NAuxPDAs) [16],
which are nondeterministic Turing machines with an ad-
ditional work tape constrained to operate as a pushdown
store. Sudborough [58] proved that LOGCFL coincides with
the class of problems that are solved by NAuxPDAs in log-
arithmic space and polynomial time (the space on the push-
down tape is not subject to the logarithmic bound). It is
known that LOGCFL can equivalently be defined in terms
of logspace-uniform families of semi-unbounded fan-in cir-
cuits (where or-gates have arbitrarily many inputs, and
and-gates two inputs) of polynomial size and logarithmic
depth. Moreover, there is an algorithm that, given such a
circuit C, computes the output using an NAuxPDA in log-
arithmic space in the size of C and exponential time in the
depth of C [61, pp. 392–397].

We call an NDL query (Π, G) skinny if the body of any
clause in Π has at most two atoms (cf. LOGCFL circuits).

Lemma 4. For any skinny (Π, G(x)) and any data in-
stance A, query evaluation can be done by an NAuxPDA in
space log |Π|+ w(Π, G) · log |A| and time 2O(d(Π,G)).

Proof. Using the atoms of the grounding Πa
A as gates

and inputs, we define a monotone Boolean circuit C as fol-
lows: its output is G(a); for every atom γ in the head of
a clause in Πa

A, we take an or-gate whose output is γ and
inputs are the bodies of the clauses with head γ; for every
such body, we take an and-gate whose inputs are the atoms
in the body. We set input γ to 1 iff γ ∈ A. Clearly, C is
a semi-unbounded fan-in circuit of depth O(d(Π, G)) with

O(|Π| · |A|w(Π,G)) gates. Having observed that our C can be
computed by a deterministic logspace Turing machine, we
conclude that the query evaluation problem can be solved
by an NAuxPDA in the required space and time. q

Observe that Lemma 4 holds for NDL queries with any
bounded number of atoms, not only two. In the rewritings
we propose in Sections 3.2 and 3.4, however, the number
of atoms in the clauses is not bounded by a constant. We
require the following notion to generalise skinny programs.
A function ν from the predicate names in Π to N is called a
weight function for an NDL query (Π, G(x)) if

ν(Q) > 0 and ν(Q) ≥ ν(P1) + · · ·+ ν(Pk),

for any clause Q(z)← P1(z1)∧· · ·∧Pk(zk) in Π. Note that
ν(P ) can be 0 for an EDB predicate P . To illustrate, we con-
sider NDL queries with the following dependency graphs:

The one on the left has a weight function bounded by the
number of predicates (i.e., linear in the size of the query);
intuitively, this function corresponds to the number of di-
rected paths from a vertex to the leaves. In contrast, any
NDL query with the dependency graph on the right can only
have a weight function whose values (numbers of paths) are
exponential. Note that linear NDL queries have weight func-
tions bounded by 1.

Let eΠ be the maximum number of EDB predicates in a
clause of Π. The skinny depth sd(Π, G) of (Π, G(x)) is the
minimum value of 2d(Π, G) + log ν(G) + log eΠ over possible

weight functions ν. We show, using Huffman coding, that
any NDL query (Π, G(x)) can be transformed into an equiv-
alent skinny NDL query of depth not exceeding sd(Π, G).

Lemma 5. Any NDL query (Π, G(x)) is equivalent to a
skinny NDL query (Π′, G(x)) such that |Π′| = O(|Π|2),
d(Π′, G) ≤ sd(Π, G), and w(Π′, G) ≤ w(Π, G).

Proof. Suppose sd(Π, G) = 2d(Π, G)+log ν(G)+log eΠ.
Without loss of generality, we assume that ν(E) = 0 for
EDB predicates E. First, we split clauses into EDB and
IDB components by replacing each clause ψ of the form
Q(z)← ϕ(z′) with clauses Q(z) ← QψE(zE) ∧ QψI (zI) and

Qψα(zα)← ϕα(z′α), where α ∈ {E, I}, QψE and QψI are fresh
predicates, and ϕE(z′E) and ϕI(z

′
I) are conjunctions of the

EDB and IDB atoms in ϕ, respectively. The depth of the
resulting NDL query (Π∗, G(x)) is 2d(Π, G). Now, each

QψE(zE) ← ϕE(z′E) in Π∗ is replaced by ≤ eΠ − 1 clauses
with ≤ 2 atoms in the body, resulting in an NDL query of
depth ≤ 2d(Π, G)+ log eΠ. In the rest of the proof, we focus
on the part Π† of Π∗ comprising clauses that have predi-

cates Q and QψI in their head (thus making the QψE EDB
predicates). The weight function for (Π†, G(x)) is obtained

by extending ν with ν(QψI ) = ν(Q) and ν(QψE) = 0, for each
clause ψ having Q as its head predicate.

Next, by induction on d(Π†, G), we show that there is
an equivalent skinny NDL query (Π′†, G(x)) of the required
size and width such that d(Π′†, G) ≤ d(Π†, G) + log ν(G).
We take Π′† = Π† if d(Π†, G) = 0. Otherwise, let ψ be
a clause of the form G(z) ← P1(z1) ∧ · · · ∧ Pk(zk) in Π†,
for k > 2. By construction, all clauses in Π† with EDB

predicates are of the form Q(z) ← QψE(zE) ∧QψI (z′I), with
two atoms in the body. So, the Pi in ψ are IDB predicates
and ν(G) ≥ ν(Pi) > 0. Suppose that, for each i (1 ≤ i ≤ k),
we have an NDL query (Π′i, Pi) equivalent to (Π†, Pi) with

d(Π′i, Pi) ≤ d(Π†, Pi) + log ν(Pi)

≤ d(Π†, G)− 1 + log ν(Pi). (3)

Construct the Huffman tree [31] for the alphabet {1, . . . , k},
where the frequency of i is ν(Pi)/ν(G). For example, for
ν(G) = 39, ν(P1) = 15, ν(P2) = 7, ν(P3) = 6, ν(P4) = 6
and ν(P5) = 5, we obtain the following tree:

g 39

115 24

13 11

27 36 4 6 5 5

In general, the Huffman tree is a binary tree with k leaves
1, . . . , k, root g, and k−2 internal nodes such that the length
of the path from g to any leaf i is ≤ dlog(ν(G)/ν(Pi))e. For
each internal node v, we take a predicate Pv(zv), where zv is
the union of zu for all descendants u of v; for root g, we take
Pg(zg) = G(z). Let Π′ψ be the extension of the union of the
Π′i (1 ≤ i ≤ k) with clauses Pv(zv)← Pu1(zu1) ∧ Pu2(zu2),
for each v with immediate successors u1 and u2. The number
of the new clauses is k − 1. By (3), we have:

d(Π′ψ, G) ≤ maxi{dlog(ν(G)/ν(Pi))e+ d(Π′i, Pi)}
≤ maxi{log(ν(G)/ν(Pi)) + d(Π†, G) + log ν(Pi)}

= d(Π†, G) + log ν(G).

Let Π′† be the result of applying this transformation to each
clause in Π† with head G(z) and > 2 atoms in the body.



Finally, we add to Π′† the clauses with the QE predicates
and denote the result by Π′. It is readily seen that (Π′, G)
is as required; in particular, |Π′| = O(|Π|2). q

We now use Lemmas 4 and 5 to obtain the following:

Theorem 6. For every c > 0 and w > 0, evaluation of
NDL queries (Π, G(x)) of width at most w and such that
sd(Π, G) ≤ c log |Π| is in LOGCFL for combined complexity.

We say that a class of OMQs is skinny-reducible if, for
some fixed c > 0 and w > 0, there is an LLOGCFL-transducer
that, given any OMQ Q(x) in the class, computes its NDL-
rewriting (Π, G(x)) over complete data instances such that
sd(Π, G) ≤ c log |Π| and w(Π, G) ≤ w. Theorem 6 and the
transformation ∗ give the following:

Corollary 7. For any skinny-reducible class, the OMQ
answering problem is in LOGCFL for combined complexity.

In the following subsections, we will exploit the results
obtained above to construct optimal NDL-rewritings for the
three classes of tractable OMQs. Concrete examples of our
rewritings are provided in the appendix of the present paper.

3.2 LOGCFL Rewritings for OMQ(d, t, ∞)
We begin by considering the case of bounded treewidth

queries coupled with bounded depth ontologies. Recall (see,
e.g., [23]) that a tree decomposition of an undirected graph
G = (V,E) is a pair (T, λ), where T is an (undirected) tree
and λ a function from the nodes of T to 2V such that

– for every v ∈ V , there exists a node t with v ∈ λ(t);

– for every e ∈ E, there exists a node t with e ⊆ λ(t);

– for every v ∈ V , the nodes {t | v ∈ λ(t)} induce a
connected subgraph of T (called a subtree of T ).

We call the set λ(t) ⊆ V a bag for t. The width of (T, λ) is
maxt∈T |λ(t)|−1. The treewidth of a graph G is the minimum
width over all tree decompositions of G. The treewidth of a
CQ is the treewidth of its Gaifman graph.

Example 8. Consider the CQ q(x0, x7) depicted below
(black nodes represent answer variables):

x0 x1 x2 x3 x4 x5 x6 x7

R S R R S R R

Its natural tree decomposition of treewidth 1 is based on the
chain T of 7 vertices shown as bags below:

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

R S R R S R R

We now establish the following theorem, which, by the
results of the preceding subsection, yields an NDL-rewriting
with the desired LOGCFL complexity.

Theorem 9. For any fixed d ≥ 0 and t ≥ 1, the class
OMQ(d, t,∞) is skinny-reducible.

In a nutshell, we split recursively a given CQ q into sub-
CQs qD based on subtrees D of the tree decomposition of
q, and combine their rewritings into a rewriting of q. To

guarantee compatibility of these rewritings, we use ‘bound-
ary conditions’ w that describe the types of points on the
boundaries of the qD and, for each possible boundary con-
dition w, we define recursively a fresh IDB predicate Gw

D .
We now formalise the construction and illustrate it using the
CQ from Example 8.

Fix a connected CQ q(x) and a tree decomposition (T, λ)
of its Gaifman graph G = (V,E). Let D be a subtree of T .
The size of D is the number of nodes in it. A node t of D
is called boundary if T has an edge {t, t′} with t′ /∈ D. The
degree deg(D) of D is the number of its boundary nodes (T
itself is the only subtree of T of degree 0). We say that a
node t splits D into subtrees D1, . . . , Dk if the Di partition
D without t: each node of D different from t belongs to
exactly one the Di.

Lemma 10 ([5]). Let D be a subtree of T of size n > 1.
If deg(D) = 2, then there is a node t splitting D into subtrees
of size ≤ n/2 and degree ≤ 2 and, possibly, one subtree of
size < n − 1 and degree 1. If deg(D) ≤ 1, then there is t
splitting D into subtrees of size ≤ n/2 and degree ≤ 2.

In Example 8, t splits T into D1 and D2 as follows:

D1 D2
t

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

R S R R S R R

We define recursively a set D of subtrees of T , a binary
‘predecessor’ relation ≺ on D, and a function σ on D indi-
cating the splitting node. We begin by adding T to D. Take
any D ∈ D that has not been split yet. If D is of size 1,
then σ(D) is the only node of D. Otherwise, by Lemma 10,
we find a node t in D that splits it into D1, . . . , Dk. We
set σ(D) = t and, for 1 ≤ i ≤ k, add Di to D and set
Di ≺ D; then, we apply the procedure recursively to each
of D1, . . . , Dk. In Example 8 with t splitting T , we have
σ(T ) = t, D1 ≺ T and D2 ≺ T .

For each D ∈ D, we recursively define a set of atoms

qD =
{
S(z) ∈ q | z ⊆ λ(σ(D))

}
∪
⋃

D′≺D
qD′ .

By the definition of tree decomposition, qT = q. Denote
by xD the subset of x that occurs in qD. In Example 8,
xT = {x0, x7}, xD1 = {x0} and xD2 = {x7}. Let ∂D be
the union of all λ(t) ∩ λ(t′) for boundary nodes t of D and
its neighbours t′ in T outside D. In our example, ∂T = ∅,
∂D1 = {x3} and ∂D2 = {x4}.

Let T be an ontology of depth≤ d. A type is a partial map
w from V to WT ; its domain is denoted by dom(w). The
unique partial type with dom(ε) = ∅ is denoted by ε. We
use types to represent how variables are mapped into CT ,A,
with w(z) = w indicating that z is mapped to an element of
the form aw (for some a ∈ ind(A)), and with w(z) = ε that
z is mapped to an individual constant. We say that a type
w is compatible with a bag t if, for all y, z ∈ λ(t)∩ dom(w):

– if z ∈ x, then w(z) = ε;

– if A(z) ∈ q, then either w(z) = ε or w(z) = w% with
T |= ∃y %(y, x)→ A(x);

– if P (y, z) ∈ q, then one of the three conditions holds:
(i) w(y) = w(z) = ε; (ii) w(y) = w(z), T |= P (x, x);
(iii) T |= %(x, y) → P (x, y) and either w(z) = w(y)%
or w(y) = w(z)%−.



In the sequel, we abuse notation and use sets of variables
in place of sequences assuming that they are ordered in some
(fixed) way. For example, we use xD for a tuple of variables
in the set xD (ordered in some way). Also, given a tuple

a ∈ ind(A)|xD| and x ∈ xD, we write a(x) to refer to the
component of a that corresponds to x (that is, the compo-
nent with the same index).

We now define an NDL-rewriting of Q(x) = (T , q(x)).
For every D ∈ D and type w with dom(w) = ∂D, let
Gw
D(∂D,xD) be a fresh IDB predicate with parameters xD

(note that ∂D and xD may not be disjoint). For each type
s with dom(s) = λ(σ(D)) that is compatible with σ(D) and
agrees with w on their common domain, the NDL program
ΠLog

Q contains

Gw
D(∂D,xD)← Ats ∧

∧
D′≺D

G
(s∪w)�∂D′

D′ (∂D′,xD′),

where (s ∪ w) � ∂D′ is the restriction of the union s ∪ w
to ∂D′ (since dom(s ∪ w) covers ∂D′, the domain of the
restriction is ∂D′), and Ats is the conjunction of

(a) A(z), for A(z) ∈ q with s(z) = ε, and P (y, z), for
P (y, z) ∈ q with s(y) = s(z) = ε;

(b) y = z, for P (y, z) ∈ q with s(y) 6= ε or s(z) 6= ε;

(c) A%(z), for z with s(z) = %w, for some w.

The conjuncts in (a) ensure that atoms all of whose variables
are assigned ε hold in the data instance. The conjuncts in (b)
ensure that if one variable in a binary atom is not mapped
to ε, then the images of both its variables share the same
initial individual. Finally, the conjuncts in (c) ensure that
if a variable is to be mapped to a%w, then a%w is indeed in
the domain of CT ,A.

Example 11. With the query in Example 8, consider
now the following ontology T :

P (x, y)→ S(x, y), AP (x)↔ ∃y P (x, y),

P (x, y)→ R(y, x), AP−(x)↔ ∃y P (y, x)

(the remaining normalisation axioms are omitted). Since
λ(t) = {x3, x4}, there are two types compatible with t that
can contribute to the rewriting: s1 = {x3 7→ ε, x4 7→ ε}
and s2 = {x3 7→ ε, x4 7→ P−}. So we have Ats1 = R(x3, x4)
and Ats2 = AP−(x4) ∧ (x3 = x4). Thus, the predicate Gε

T

is defined by two clauses with the head Gε
T (x0, x7) and the

following bodies:

Gx3 7→εD1
(x3, x0) ∧R(x3, x4) ∧Gx4 7→εD2

(x4, x7),

Gx3 7→εD1
(x3, x0) ∧AP−(x4) ∧ (x3 = x4) ∧Gx4 7→P

−

D2
(x4, x7),

for s1 and s2, respectively. Although {x3 7→ P, x4 7→ ε} is

also compatible with t, its predicate Gx3 7→PD1
will have no def-

inition in the rewriting, and hence can be omitted. The same
is true of the other compatible types {x3 7→ ε, x4 7→ R} and
{x3 7→ R−, x4 7→ ε}.

By induction on ≺, one can now show that (ΠLog
Q , Gε

T ) is
a rewriting of Q(x).

Lemma 12. For any complete data instance A, subtree
D ∈ D, type w with dom(w) = ∂D, and any a ∈ ind(A)|xD|

and b ∈ ind(A)|∂D|, we have ΠLog
Q ,A |= Gw

D(b,a) iff there is
a homomorphism h : qD → CT ,A such that h(x) = a(x), for
x ∈ xD, and h(z) = b(z)w(z), for z ∈ ∂D.

Now fix d and t, and consider Q(x) = (T , q(x)) from
OMQ(d, t,∞). Let T be a tree decomposition of q of tree-
width ≤ t; we may assume without loss of generality that T
has at most |q| nodes. We take the following weight func-
tion: ν(Gw

D) = |D|, where |D| is the number of nodes in D.
Clearly, ν(Gε

T ) ≤ |q|. By Lemma 10, we have

w(ΠLog
Q , Gε

T ) ≤ maxD |∂D ∪ λ(σ(D))| ≤ 3(t + 1),

sd(ΠLog
Q , Gε

T ) ≤ 4 log |T |+ 2 log |q| ≤ 6 log |q| ≤ 6 log |ΠLog
Q |;

the last inequality is due to ΠLog
Q containing every atom of q

(with variables renamed). Since |D| ≤ |T |2 and there are
at most |T |2d(t+1) options for w, there are polynomially
many predicates Gw

D , so ΠLog
Q is of polynomial size. Finally,

we note that a tree decomposition of treewidth ≤ t can be
computed using an LLOGCFL-transducer [27], and so the NDL-
rewriting can also be constructed by an LLOGCFL-transducer.
We have thus shown that the class OMQ(d, t,∞) is skinny-
reducible, establishing Theorem 9.

The obtained NDL-rewriting shows that answering OMQs
(T , q(x)) with T of finite depth d and q of treewidth t over
any data instance A can be done in time

poly(|T |dt, |q|, |A|t). (4)

Indeed, we can evaluate (ΠLog
Q , Gε

T (x)) in time polynomial

in |ΠLog
Q | and |A|w(ΠLog

Q ,Gε
T ), which are bounded by a poly-

nomial in |T |3d(t+1), |q| and |A|3(t+1).

3.3 NL Rewritings for OMQ(d, 1, `)
For OMQs based upon bounded leaf queries and bounded

depth ontologies, we establish the following theorem:

Theorem 13. Let d ≥ 0 and ` ≥ 2 be fixed. There
is an LNL-transducer that, given an OMQ Q = (T , q(x))
in OMQ(d, 1, `), constructs its polynomial-size linear NDL-
rewriting of width ≤ 2`.

Let T be an ontology of finite depth d, and let q(x) be
a tree-shaped CQ with at most ` leaves. Fix one of the
variables of q as root, and let M be the maximal distance
to a leaf from the root. For 0 ≤ n ≤ M , let zn denote the
set of all variables of q at distance n from the root; clearly,
|zn| ≤ `. We call the zn slices of q and observe that they
satisfy the following: for every P (z, z′) ∈ q with z 6= z′,
there exists n < M such that

either z ∈ zn and z′ ∈ zn+1 or z′ ∈ zn and z ∈ zn+1.

For 0 ≤ n ≤ M , let qn(zn∃ ,x
n) be the query consisting of

all atoms S(z) of q such that z ⊆
⋃
n≤k≤M zk, where xn is

the subset of x that occurs in qn and zn∃ = zn \ x.
By a type for slice zn, we mean a total map w from zn

to WT . Analogously to Section 3.2, we define the notions of
types compatible with slices. Specifically, we call w locally
compatible with zn if for every z ∈ zn:

– if z ∈ x, then w(z) = ε;

– if A(z) ∈ q, then either w(z) = ε or w(z) = w% with
T |= ∃y %(y, x)→ A(x);

– if P (z, z) ∈ q, then either w(z) = ε or T |= P (x, x).

If w, s are types for zn and zn+1, respectively, then we say
(w, s) is compatible with (zn,zn+1) if w is locally compat-
ible with zn, s is locally compatible with zn+1,



– for every P (z, z′) ∈ q with z ∈ zn and z′ ∈ zn+1,
one of the three condition holds: w(z) = s(z′) = ε, or
w(z) = s(z′), T |= P (x, x), or T |= %(x, y) → P (x, y)
and either s(z′) = w(z)% or w(z) = s(z′)%−.

Consider the NDL program ΠLin
Q defined as follows. For

every 0 ≤ n < M and every pair of types (w, s) that is
compatible with (zn,zn+1), we include the clause

Gw
n (zn∃ ,x

n)← Atw∪s(zn,zn+1) ∧Gs
n+1(zn+1

∃ ,xn+1),

where xn are the parameters of Gw
n and Atw∪s(zn,zn+1) is

the conjunction of atoms (a)–(c) as defined in Section 3.2,
for the union w ∪ s. For every type w locally compatible
with zM , we include the clause

Gw
M (zM∃ ,x

M )← Atw(zM ).

(Recall that zM is a disjoint union of zM∃ and xM .) We
use G with parameters x as the goal predicate and include
G(x)← Gw

0 (z0
∃,x) for every predicate Gw

0 occurring in the
head of one of the preceding clauses.

By induction on n, we show that (ΠLin
Q , G(x)) is a rewrit-

ing of (T , q(x)) over complete data instances.

Lemma 14. For any complete data instance A, any pred-
icate Gw

n , and any a ∈ ind(A)|x
n| and b ∈ ind(A)|z

n
∃ |,

we have ΠLin
Q ,A |= Gw

n (b,a) iff there is a homomorphism
h : qn → CT ,A such that h(x) = a(x), for x ∈ xn, and
h(z) = b(z)w(z), for z ∈ zn∃ .

It should be clear that ΠLin
Q is a linear NDL program of

width ≤ 2` and containing ≤ |q| · |T |2d` predicates. More-
over, it takes only logarithmic space to store a type w, which
allows us to show that ΠLin

Q can be computed by an LNL-
transducer. We apply Lemma 3 to obtain an NDL-rewriting
for arbitrary data instances, and then use Theorem 2 to con-
clude that the resulting program can be evaluated in NL.

The obtained NDL-rewriting shows that answering OMQs
(T , q(x)) with T of finite depth d and tree-shaped q with `
leaves over any data A can be done in time

poly(|T |d`, |q|, |A|`). (5)

Indeed, (ΠLin
Q , G(x)) can be evaluated in time polynomial in

|ΠLin
Q | and |A|w(ΠLin

Q ,G), which are bounded by a polynomial

in |T |2d`, |q| and |A|2`.

3.4 LOGCFL Rewritings for OMQ(∞, 1, `)
Unlike the previous two classes, answering OMQs from

the class OMQ(∞, 1, `) can be harder—LOGCFL-complete—
than evaluating their CQs, which can be done in NL.

Theorem 15. For any fixed number of leaves ` ≥ 2, the
class OMQ(∞, 1, `) is skinny-reducible.

For OMQs with bounded-leaf CQs and ontologies of un-
bounded depth, our rewriting uses the notion of tree wit-
ness [38]. Consider an OMQ Q(x) = (T , q(x)). Suppose
t = (tr, ti) is a pair of disjoint sets of variables in q such that
ti 6= ∅ but ti ∩ x = ∅. Set

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr

}
.

If qt is a minimal subset of q containing every atom of q with
a variable from ti and such that there is a homomorphism
h : qt → CT ,{A%(a)} with h−1(a) = tr, we call t a tree witness
for Q(x) generated by %. Intuitively, t identifies a minimal

subset of q that can be mapped to the tree-shaped part of the
canonical model consisting of labelled nulls: the variables in
tr are mapped to an individual constant, say, a, at the root
of a tree and the ti are mapped to the labelled nulls of the
form aw, for some w ∈ WT that begins with %. Note that
the same tree witness can be generated by different %.

The logarithmic-depth NDL-rewriting for OMQs drawn
from OMQ(∞, 1, `) is based on the following observation:

Lemma 16 ([35]). Every tree T of size n has a node
splitting it into subtrees of size ≤dn/2e.

Let Q(x0) = (T , q0(x0)) be an OMQ with a tree-shaped
CQ. We will repeatedly apply Lemma 16 to decompose the
CQ into smaller and smaller subqueries. Formally, for a
tree-shaped CQ q, we denote by zq a vertex in the Gaifman
graph G of q that satisfies the condition of Lemma 16; if q
has two variables and at least one of them is existentially
quantified, then we assume that zq is such. Let Q be the
smallest set that contains q0(x0) and the following CQs, for
every q(x) ∈ Q with existentially quantified variables:

– for each zi adjacent to zq in G, the CQ qi(xi) compris-
ing all binary atoms with both zi and zq, and all atoms
whose variables cannot reach zq in G without passing
by zi, where xi is the set of variables in x ∪ {zq} that
occur in qi;

– for each tree witness t for (T , q(x)) with tr 6= ∅ and
zq ∈ ti, the CQs qt

1(xt
1), . . . , qt

k(xt
k) that correspond

to the connected components of the set of atoms of q
that are not in qt, where each xt

i is the set of variables
in x ∪ tr that occur in qt

i.

The two cases are depicted below:

q1

q2

q3
zq

z1

z2

z3

a tr

ti

qt
1 qt

2

zq

a

a%

Note that tr 6= ∅ ensures that part of the query without qt

is mapped onto individual constants.
The NDL program ΠTw

Q uses IDB predicates Gq(x), for
q(x) ∈ Q, whose parameters are the variables in x0 that
occur in q(x). For each q(x) ∈ Q that has no existentially
quantified variables, we include the clause Gq(x) ← q(x).
For any q(x) ∈ Q with existential variables, we include

Gq(x) ←
∧

S(z)∈q, z⊆{zq}

S(z) ∧
∧

1≤i≤n

Gqi
(xi),

where q1(x1), . . . , qn(xn) are the subqueries induced by the
neighbours of zq in G, and, for any tree witness t of (T , q(x))
with tr 6= ∅ and zq ∈ ti and any % generating t, the clause

Gq(x) ← A%(z0) ∧
∧

z∈tr\{z0}

(z = z0) ∧
∧

1≤i≤k

Gqt
i
(xt
i),

where z0 is any variable in tr and qt
1, . . . , q

t
k are the con-

nected components of q without qt. Finally, if q0 is Boolean,
then we include clauses Gq0

← A(x) for all unary predi-
cates A such that T , {A(a)} |= q0.

The program ΠTw
Q is inspired by a similar construction

from [35]. By adapting the proof, we can show that the
NDL query (ΠTw

Q , Gq0
(x0)) is indeed a rewriting.



Lemma 17. For any OMQ Q(x0) = (T , q0(x0)) with a
tree-shaped CQ, any complete data instance A, any query
q(x) ∈ Q and any a ∈ ind(A)|x|, we have ΠTw

Q ,A |= Gq(a)
iff there is a homomorphism h : q → CT ,A with h(x) = a.

Now fix ` > 1 and consider Q(x) = (T , q0(x)) from the
class OMQ(∞, 1, `). The size of the program ΠTw

Q is polyno-
mially bounded in |Q| since q0 has O(|q0|`) tree witnesses
and tree-shaped subqueries. It is readily seen that the func-
tion ν defined by setting ν(Gq) = |q|, for each q ∈ Q, is
a weight function for (ΠTw

Q , Gq0
(x)) with ν(Gq0

) ≤ |Q|.
Moreover, by Lemma 16, d(ΠTw

Q , Gq0
) ≤ log ν(Gq0

)+1; and
clearly, w(ΠTw

Q , Gq0
) ≤ `+1. Finally, we note that, since the

number of leaves is bounded, it is in NL to decide whether a
vertex satisfies the conditions of Lemma 16, and in LOGCFL
to decide whether T , {A(a)} |= q(a), for bounded-leaf tree-
shaped CQs q(x) [5], or whether a (logspace) representation
of a possible tree witness is indeed a tree witness. This al-
lows us to show that (ΠTw

Q , Gq0
(x)) can be generated by

an LLOGCFL-transducer. By Corollary 7, the obtained NDL-
rewritings can be evaluated in LOGCFL.

It also follows that answering OMQs (T , q(x)) with a tree-
shaped CQ with ` leaves over any A can be done in time

poly(|T |, |q|`, |A|`). (6)

Indeed, (ΠTw
Q , G(x)) can be evaluated in time polynomial in

|ΠTw
Q | and |A|w(ΠTw

Q ,G), which are bounded by polynomials

in |T |, |q|` and |A|`+1, respectively.

4. PARAMETERISED COMPLEXITY
The upper bounds (4) and (6) for the time required to

evaluate NDL-rewritings of OMQs from OMQ(d, 1,∞) and
OMQ(∞, 1, `) contain d and ` in the exponent of |T | and |q|.
Moreover, if we allow d and ` to grow while keeping CQs
tree-shaped, the combined complexity of OMQ answering
will jump to NP; see Fig. 1 (a). In this section, we regard d
and ` as parameters and show that answering tree-shaped
OMQs is not fixed-parameter tractable.

4.1 Ontology Depth
Consider the following problem pDepth-TreeOMQ:

Instance: an OMQ Q = (T , q) with T of finite depth
and tree-shaped Boolean CQ q.

Parameter: the depth of T .
Problem: decide whether T , {A(a)} |= q.

Theorem 18. pDepth-TreeOMQ is W [2]-hard.

Proof. The proof is by reduction of the parameterised
problem p-HittingSet, known to be W [2]-complete [23]:

Instance: a hypergraph H = (V,E) and k ∈ N.
Parameter: k.
Problem: decide whether there is A ⊆ V such that

|A| = k and e ∩A 6= ∅, for every e ∈ E.

(Such a set A of vertices is called a hitting set of size k.)
Suppose that H = (V,E) is a hypergraph with vertices V =
{v1, . . . , vn} and hyperedges E = {e1, . . . , em}. Let T kH be
the (normal form of an) ontology with the following axioms,
for 1 ≤ l ≤ k:

V l−1
i (x)→ ∃z

(
P (z, x) ∧ V li′(z)

)
, for 0 ≤ i < i′ ≤ n,

V li (x)→ Elj(x), for vi ∈ ej , ej ∈ E,

Elj(x)→ ∃z
(
P (x, z) ∧ El−1

j (z)
)
, for 1 ≤ j ≤ m.

Let qkH be a tree-shaped Boolean CQ with the following
atoms, for 1 ≤ j ≤ m:

P (y, zk−1
j ), P (zlj , z

l−1
j ) for 1 ≤ l < k, and E0

j (z0
j ).

The first axiom of T kH generates a tree of depth k, with
branching ranging from n to 1, such that the points w of
level k are labelled with subsets X ⊆ V of size k that are
read off the path from the root to w. The CQ qkH is a
star with rays corresponding to the hyperedges of H. The
second and third axioms generate ‘pendants’ ensuring that,
for any hyperedge e, the central point of the CQ can be
mapped to a point with a label X iff X and e have a common
vertex. The canonical model of (T 2

H , {V 0
0 (a)}) and the CQ

q2
H , for H = (V, {e1, e2, e3}) with V = {1, 2, 3}, e1 = {1, 3},
e2 = {2, 3} and e3 = {1, 2}, are shown below:

CT 2
H
,{V 0

0 (a)}

q2
H

level

0

1

2

a

1 2 3

2 3 3

E1
E3E2 E3

E1 E2 E1 E2E1 E2E3E2

y

E2 E3 E1

Points i at level l belong to V li . In the long version [4],
we prove that T kH , {V 0

0 (a)} |= qkH iff H has a hitting set of
size k. In the example above, {1, 2} is a hitting set of size 2,
which corresponds to the homomorphism from q2

H into the
part of CT 2

H
,{V 0

0 (a)} shown in black. q

By Theorem 9, OMQs (T , q) from OMQ(d, 1,∞) can be
answered (via NDL-rewriting) over a data instanceA in time
poly(|T |d, |q|, |A|). Theorem 18 shows that no algorithm can
do this in time f(d) · poly(|T |, |q|, |A|), for any computable
function f , unless W [2] = FPT.

4.2 Number of Leaves
Next we consider the problem pLeaves-TreeOMQ:

Instance: an OMQ Q = (T , q) with T of finite depth
and tree-shaped Boolean CQ q.

Parameter: the number of leaves in q.
Problem: decide whether T , {A(a)} |= q.

Theorem 19. pLeaves-TreeOMQ is W [1]-hard.

Proof. The proof is by reduction of the following W [1]-
complete PartitionedClique problem [22]:

Instance: a graph G = (V,E) whose vertices are par-
titioned into p sets V1, . . . , Vp.

Parameter: p, the number of partitions.
Problem: decide whether G has a clique of size p con-

taining one vertex from each Vi.

Consider a graph G = (V,E) with V = {v1, . . . , vM} parti-
tioned into V1, . . . , Vp. The ontology TG will create a tree
rooted at A(a) whose every branch corresponds to selecting
one vertex from each Vi. Each branch has length (p ·2M)+1
and consists of p ‘blocks’ of length 2M , plus an extra edge
at the end (used for padding). Each block corresponds to an
enumeration of V , with positions 2j and 2j + 1 being asso-
ciated with vj . In the ith block of a branch, we will select a
vertex vji from Vi by marking the positions 2ji and 2ji + 1
with the binary predicate S; we also mark the positions of
the neighbours of vji in G with the predicate Y . We use the



unary predicate B to mark the end of the pth block (square
nodes in the picture below). The left side of the picture il-
lustrates the construction for p = 3, where V1 = {v1, v2},
V2 = {v3}, V3 = {v4, v5}, and E = {{v1, v3}, {v3, v5}}.
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Since vertices are enumerated in the same order in every
block, to check whether the selected vertex vji for Vi is
a neighbour of the vertices selected from Vi+1, . . . , Vp, it
suffices to check that positions 2ji and 2ji + 1 in blocks
i + 1, . . . , p are marked Y Y . Moreover, the distance be-
tween the positions of a vertex in consecutive blocks is al-
ways 2M − 2. The idea is thus to construct a CQ qG (right
side of the picture) which, starting from a variable labelled
B (mapped to the end of a pth block), splits into p − 1
branches, with the ith branch checking for a sequence of i
evenly-spaced Y Y markers leading to an SS marker. The
distance from the end of the pth block (marked B) to the
positions 2ji and 2ji + 1 in the pth block (where the first
Y Y should occur) depends on the choice of vji . We thus
add an outgoing edge at the end of the pth block, which can
be navigated in both directions, to be able to ‘consume’ any
even number of query atoms preceding the first Y Y .

The Boolean CQ qG looks as follows (for readability, we
use atoms with star-free regular expressions):

B(y) ∧
∧

1≤i<p

(
U2M−2 · (Y Y · U2M−2)i · SS

)
(y, zi),

and the ontology TG contains the following axioms:

A(x)→ ∃y L1
j (x, y), for vj ∈ V1,

∃z Lkj (z, x)→ ∃y Lk+1
j (x, y), for 1 ≤ k < 2M, vj ∈ V,

∃z L2M
j (z, x)→ ∃y L1

j′(x, y), for vj ∈ Vi, vj′ ∈ Vi+1,

Lkj (x, y)→ S(y, x), for k ∈ {2j, 2j + 1},

Lkj (x, y)→ Y (y, x), for {vj , vj′} ∈ E
and k ∈ {2j′, 2j′ + 1},

Lkj (x, y)→ U(y, x), for 1 ≤ k ≤ 2M, vj ∈ V,

∃z L2M
j (z, x)→ B(x), for vj ∈ Vp,

B(x)→ ∃y
(
U(x, y) ∧ U(y, x)

)
.

It can be shown that TG, {A(a)} |= qG iff G has a clique
containing one vertex from each set Vi. q

By (6), OMQs (T , q) from the class OMQ(∞, 1, `) can
be answered (via NDL-rewriting) over a data instance A in

time poly(|T |, |q|`, |A|`). Theorem 19 shows that no algo-
rithm can do this in time f(`) · poly(|T |, |q|, |A|), for any
computable function f , unless W [1] = FPT.

One may consider various other types of parameters that
can hopefully reduce the complexity of OMQ answering.
Obvious candidates are the size of ontology, the size of on-
tology signature or the number of role inclusions in ontolo-
gies. (Indeed, it was shown [6] that in the absence of role
inclusions, tree-shaped OMQ answering is tractable.) Unfor-
tunately, bounding any of these parameters does not make
OMQ answering easier, as we establish in Section 5 that
already one fixed ontology makes the problem NP-hard for
tree-shaped CQs and LOGCFL-hard for linear ones.

5. OMQS WITH A FIXED ONTOLOGY
In a typical OBDA scenario [34], users are provided with

an ontology in a familiar signature (developed by a domain
expert) with which they formulate their queries. Thus, it
is of interest to identify the complexity of answering tree-
shaped OMQs (T , q) with a fixed ontology T of infinite
depth (see Fig. 1). Surprisingly, we show that the prob-
lem is NP-hard even when both T and A are fixed (in the
database setting, answering tree-shaped CQs is in LOGCFL
for combined complexity).

Theorem 20. There is an ontology T† such that answer-
ing OMQs of the form (T†, q) with Boolean tree-shaped CQs
q is NP-hard for query complexity.

Proof. The proof is by reduction of SAT. Given a CNF
ϕ with variables p1, . . . , pk and clauses χ1, . . . , χm, take a
Boolean CQ qϕ with A(y) and, for 1 ≤ j ≤ m, the following

atoms with zkj = y:

P+(zlj , z
l−1
j ), if pl occurs in χj positively,

P−(zlj , z
l−1
j ), if pl occurs in χj negatively,

P0(zlj , z
l−1
j ), if pl does not occur in χj ,

B0(z0
j ).

Thus, qϕ is a star with centre A(y) and m rays encoding the
χj by the binary predicates P+, P− and P0. Let T† be an
ontology with the axioms

A(x)→ ∃y
(
P+(y, x) ∧ P0(y, x) ∧B−(y) ∧A(y)

)
,

B−(y)→ ∃x′
(
P−(y, x′) ∧B0(x′)

)
,

A(x)→ ∃y
(
P−(y, x) ∧ P0(y, x) ∧B+(y) ∧A(y)

)
,

B+(y)→ ∃x′
(
P+(y, x′) ∧B0(x′)

)
,

B0(x)→ ∃y
(
P+(x, y) ∧ P−(x, y) ∧ P0(x, y) ∧B0(y)

)
.

Intuitively, (T†, {A(a)}) generates an infinite binary tree,
where nodes of depth n represent all 2n truth assignments to
n propositional variables. The CQ qϕ can only be mapped
along a branch of this tree towards its root a, with the image
of y, the centre of the star, giving a satisfying assignment
for ϕ. Each non-root node of the tree also starts an infinite
‘sink’ branch of B0-nodes, where the remainder of the ray for
χj can be mapped as soon as one of its literals is satisfied.
We can show that T†, {A(a)} |= qϕ iff ϕ is satisfiable. To
illustrate, the CQ qϕ for ϕ = (p1∨p2)∧¬p1 and a fragment
of the canonical model CT†,{A(a)} are shown below:
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Here, are the points in B0 and the labels on arrows in-
dicate the subscripts of the binary predicates P (the empty
label means all three: +, − and 0); predicates A, B+, B−
are not shown in CT†,{A(a)}. q

The proof above uses OMQs Qϕ = (T†, qϕ) over a data
instance with a single individual constant. Thus:

Corollary 21. No polynomial-time algorithm can con-
struct FO- or NDL-rewritings of Qϕ unless P = NP.

Proof. Indeed, if a polynomial-time algorithm could find
a rewriting q′ϕ of Qϕ, then we would be able to check whether

ϕ is satisfiable in polytime by evaluating q′ϕ over {A(a)}. q

Curiously enough, Corollary 21 can be complemented with

Theorem 22. The Qϕ have polynomial FO-rewritings.

Proof. Define q′ϕ as the FO-sentence

∀xy
(
(x = y) ∧A(x) ∧ ϕ∗

)
∨ ∃xy

(
(x 6= y) ∧ q∗ϕ(x, y)

)
,

where ϕ∗ is> if ϕ is satisfiable and⊥ otherwise, and q∗ϕ(x, y)
is the polynomial-size FO-rewriting of Qϕ over data with at
least 2 constants [26, Corollary 14]. Recall that the proof of
Theorem 20 shows that, if A has a single constant, a, and
there is a homomorphism from qϕ to CT†,A, then A(a) ∈ A
and ϕ is satisfiable. Thus, the first disjunct of q′ϕ is an FO-
rewriting of Qϕ over data instances with a single constant;
the case of at least 2 constants follows from [26]. q

Whether the OMQs Qϕ have a polynomial-size PE- or
NDL-rewritings remains open. We have only managed to
construct a modification q̄ϕ(x) of qϕ with the following in-
teresting properties (details can be found in [4]). Let T be
the class of data instances representing finite binary trees
with root a whose edges are labelled with P+ and P−, and
some of whose leaves are labelled with B0. Let QL be any
query language such that, for every QL-query Φ(x) and ev-
ery A ∈ T, the answer to Φ(a) over A can be computed in
time polynomial in |Φ| and |A|. Typical examples of QL are
modal-like languages such as certain fragments of XPath [39]
or description logic instance queries [3].

Theorem 23. The OMQs (T†, q̄ϕ(x)) do not have poly-
nomial-size rewritings in QL unless NP ⊆ P/poly.

To our surprise, Theorem 23 is not applicable to PE.3

Theorem 24. Evaluating PE-queries over trees in T is
NP-hard.

Finally, we consider bounded-leaf CQs (whose evaluation
is NL-complete in the database setting) with fixed ontology
and data.

3This result might be known but we could not find it in the
literature, and so provide a proof in [4].

Theorem 25. There is an ontology T‡ such that answer-
ing OMQs of the form (T‡, q) with Boolean linear CQs q is
LOGCFL-hard for query complexity.

The proof is by reduction of the recognition problem for the
hardest LOGCFL language L [30, 57]. We construct an on-
tology T‡ and a logspace transducer that converts the words
w over the alphabet of L to linear CQs qw such that w ∈ L
iff T‡, {A(a)} |= qw. To illustrate, take the context-free lan-
guage B over the alphabet Σ = {a1, b1, a2, b2} generated by
the grammar S → SS, S → ε, S → a1Sb1, S → a2Sb2.
Let TB be an ontology such that the canonical model of
(TB, {A(a)}) looks like in the picture below:
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Then, for every word w = c0 . . . cn over Σ, we have w ∈ B
just in case TB, {A(a)} |= A(u0) ∧ γw ∧A(un+1), where

γw =
∧

0≤i≤n

(
Rci(ui, vi), Sci(vi, ui+1)

)
.

Although B is not LOGCFL-hard, by adding axioms to TB
that generate additional branches from the points , we can
construct an ontology T‡ recognising L (see [4] for details).

6. EXPERIMENTS & CONCLUSIONS
The main positive result of this paper is the development

of theoretically optimal NDL-rewritings for OMQs belong-
ing to one of the classes OMQ(d, t,∞), OMQ(d, 1, `), and
OMQ(∞, 1, `). It was known that answering such OMQs
is tractable, but the proofs employed elaborate algorithms
tailored for each of the three cases. We have shown that
the optimal complexity can be achieved via NDL-rewriting,
thus reducing OMQ answering to standard query evalua-
tion. This result is practically relevant as many user queries
are tree-shaped (see, e.g., [49] for evidence in the RDF set-
ting), and indeed, recent tools for query formulation over
ontologies (like [56]) produce tree-shaped CQs. Moreover,
the majority of important real-world OWL2 ontologies are
of finite depth; see [17] for statistics. In the context of
OBDA, OWL2QL ontologies are often built starting from
the database schemas (bootstrapping [32]), which typically
do not contain cycles such as ‘every manager is managed by
a manager.’ For example, the NPD FactPages ontology,4 de-
signed to facilitate querying the datasets of the Norwegian
Petroleum Directorate, is of depth 5.

The starting point of our research was the observation
that standard query rewriting systems tend to produce sub-
optimal rewritings of the OMQs in these three classes. This
is obviously so for UCQ-rewriters [50, 47, 15, 28, 44, 40],
but is also true of more elaborate PE-rewriters (which use
disjunctions inside conjunctions) [51, 59] whose rewritings in
theory can be of superpolynomial size; see Fig. 1 (b). Sur-
prisingly, even NDL-rewriters like Clipper [21], Presto [54],
4http://sws.ifi.uio.no/project/npd-v2/
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Figure 2: The size of NDL-rewritings produced by different algorithms.

and Rapid [15] do not fare much better in practice. To
illustrate, we generated three sequences of OMQs in the
class OMQ(1, 1, 2) (lying in the intersection of the classes
OMQ(d, t,∞), OMQ(d, 1, `) and OMQ(∞, 1, `)) with the
ontology from Example 11 and linear CQs of up to 15 atoms
as in Example 8 (which are associated with words from
{R,S}∗). By Fig. 1 (a), answering these OMQs can be
done in NL. The barcharts in Fig. 2 show the number of
clauses in their NDL-rewritings produced by Clipper, Presto
and Rapid, as well as by our algorithms Lin, Log and Tw
from Sections 3.2–3.4, respectively. The first three NDL-
rewritings display a clear exponential growth, with Clipper
and Rapid failing to produce rewritings for longer CQs. In
contrast, our rewritings grow linearly in accord with theory.

We evaluated the rewritings over a few randomly gener-
ated data instances using off-the-shelf datalog engine
RDFox [46]. The experiments (detailed in [4]) show that
our rewritings are usually executed faster than those pro-
duced by Clipper, Presto and Rapid.

The version of RDFox we used did not seem to take ad-
vantage of the structure of the NL/LOGCFL rewritings, as it
simply materialises all of the predicates without using magic
sets or optimising programs before execution. It would be
interesting to see whether the nonrecursiveness and paral-
lelisability of our rewritings can be utilised to produce ef-
ficient execution plans. One could also investigate whether
our rewritings can be efficiently implemented using views in
standard DBMSs.

Our rewriting algorithms are based on the same idea: pick
a point splitting the given CQ into sub-CQs, rewrite the
sub-CQs recursively, and then formulate rules that combine
the resulting rewritings. The difference between the algo-
rithms is in the choice of the splitting points, which deter-
mines the execution plans for OMQs and has a big impact
on their performance. The experiments show that none of
the three splitting strategies systematically outperforms the
others. This suggests that execution times may be dramat-

ically improved by employing an ‘adaptable’ splitting strat-
egy that would work similarly to query execution planners
in DBMSs and use statistical information about the rela-
tional tables to generate efficient NDL programs. For ex-
ample, one could first define a ‘cost function’ on some set
of alternative rewritings that roughly estimates their evalu-
ation time and then construct a rewriting minimising this
function. Such a performance-oriented approach was in-
troduced and exploited in [7], where the target language
for OMQ rewritings was joins of UCQs (unions of CQs).
Other optimisation techniques for removing redundant rules
or sub-queries from rewritings [54, 51, 29, 40] or exploit-
ing the emptiness of certain predicates [60] are also relevant
here. In the context of OBDA with relational databases and
mappings, integrity constraints [53, 52] and the structure of
mappings [19] are particularly important for optimisation.

Having observed that (i) the ontology depth and (ii) the
number of leaves in tree-shaped CQs occur in the exponent
of our upper bounds for the complexity of OMQ answer-
ing algorithms, we regarded (i) and (ii) as parameters and
investigated the parameterised complexity of the OMQ an-
swering problem. We proved that the problem is W [2]-hard
in the former case and W [1]-hard in the latter (it remains
open whether these lower bounds are tight). Furthermore,
we established that answering OMQs with a fixed ontology
(of infinite depth) is NP-complete for tree-shaped CQs and
LOGCFL-complete for linear CQs, which dashed hopes of
taming intractability by restricting the ontology size, signa-
ture, etc. One remaining open problem is whether answering
OMQs with a fixed ontology and tree-shaped CQs is fixed-
parameter tractable if the number of leaves is regarded as
the parameter.

A more general avenue for future research is to extend the
study of succinctness and optimality of rewritings to suitable
ontology languages with predicates of higher-arity, such as
linear and sticky tgds.
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APPENDIX
We illustrate both standard UCQ-rewritings and the NDL-
rewritings from Sections 3.2–3.4 for the OMQ given in Ex-
amples 8 and 11.

Consider the CQ q(x0, x7) depicted below (black nodes
represent answer variables)

x0 x1 x2 x3 x4 x5 x6 x7

R S R R S R R

and the following ontology T in normal form:

P (x, y)→ S(x, y), P (x, y)→ R(y, x),

AP (x)↔ ∃y P (x, y), AP−(x)↔ ∃y P (y, x),

AR(x)↔ ∃y R(x, y), AR−(x)↔ ∃y R(y, x),

AS(x)↔ ∃y S(x, y) AS−(x)↔ ∃y S(y, x).

UCQ rewriting
The nine CQs below form a UCQ-rewriting of the OMQ
Q(x0, x7) = (T , q(x0, x7)) over complete data instances,
which we give as an NDL program with goal predicate G:

G(x0, x7)←[R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)] ∧
[R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)] ∧R(x6, x7),

G(x0, x7)←[AP−(x0) ∧R(x0, x3)] ∧
[R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x3) ∧AP (x3)] ∧
[R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)] ∧
[AP−(x3) ∧R(x3, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)] ∧
[R(x3, x6) ∧AP (x6)] ∧R(x6, x7),

G(x0, x7)←[AP−(x0) ∧R(x0, x3)] ∧
[AP−(x3) ∧R(x3, x6)] ∧R(x6, x7),

G(x0, x7)←[AP−(x0) ∧R(x0, x3)] ∧
[R(x3, x6) ∧AP (x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x3) ∧AP (x3)] ∧
[AP−(x3) ∧R(x3, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x3) ∧AP (x3)] ∧
[R(x3, x6) ∧AP (x6)] ∧R(x6, x7).

We note that a UCQ-rewriting over all data instances would
in addition contain variants of the CQs above with each
of the predicates R and S replaced by P (with arguments
swapped appropriately).

The UCQ-rewriting above can be obtained by transform-
ing the following PE-formula into UCQ form:[(

R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)
)

∨
(
AP−(x0) ∧R(x0, x3)

)
∨
(
R(x0, x3) ∧AP (x3)

)]
∧

[(
R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)

)
∨
(
AP−(x3) ∧R(x5, x6)

)
∨
(
R(x3, x6) ∧AP (x6)

)]
∧ R(x6, x7).

(Intuitively, each of the two sequences RSR in the query can
be derived in three possible ways: from RSR, from AP−R
and from RAP ).



Log-rewriting
As explained in Example 11, we split T into D1 and D2 and
obtain the following two clauses:

Gε
T (x0, x7)← Gx3 7→εD1

(x3, x0) ∧R(x3, x4) ∧
Gx4 7→εD2

(x4, x7),

Gε
T (x0, x7)← Gx3 7→εD1

(x3, x0) ∧AP−(x4) ∧ (x3 = x4) ∧

Gx4 7→P
−

D2
(x4, x7).

Next, we split each of D1 and D2 into single-atom sub-
queries, which yields the following clauses:

Gx3 7→εD1
(x3, x0)← (x0 = x1) ∧AP−(x1) ∧ (x1 = x2) ∧

R(x2, x3),

Gx3 7→εD1
(x3, x0)← R(x0, x1) ∧

(x1 = x2) ∧AP (x2) ∧ (x2 = x3),

Gx3 7→εD1
(x3, x0)← R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3),

Gx4 7→εD2
(x4, x7)← (x4 = x5) ∧AP (x5) ∧ (x5 = x6) ∧

R(x6, x7),

Gx4 7→εD2
(x4, x7)← S(x4, x5) ∧R(x5, x6) ∧R(x6, x7),

Gx4 7→P
−

D2
(x4, x7)← AP−(x4) ∧ (x4 = x5) ∧R(x5, x6) ∧

R(x6, x7).

Note that in each case we consider only those types that give
rise to predicates that have definitions in the rewriting. The
resulting NDL-rewriting with goal Gε

T consists of 8 clauses.
Note, however, that the rewriting illustrated above is a slight
simplification of the definition given in Section 3.2: here, for
the leaves of the tree decomposition, we directly use the
atoms Ats instead of including a clause Gw

D(∂D,xD)← Ats

in the rewriting. This simplification clearly does not affect
the width of the NDL query or the choice of weight function.

Lin-rewriting
We assume that x0 is the root, which makes x7 the only
leaf of the query. (Note that we could have chosen another
variable, say x3, as the root, with x0 and x7 the two leaves.)
So, the top-level clause is

G(x0, x7)← Gx0 7→ε0 (x0, x7).

We then move along the query and consider the variables x1,
x2 and x3. The possible ways of mapping these variables to
the canonical model give rise to the following 7 clauses:

Gx0 7→ε0 (x0, x7)← R(x0, x1) ∧ P x1 7→ε1 (x1, x7),

Gx0 7→ε0 (x0, x7)← (x0 = x1) ∧AP−(x1) ∧Gx1 7→P
−

1 (x1, x7),

Gx1 7→ε1 (x1, x7)← S(x1, x2) ∧Gx2 7→ε2 (x2, x7),

Gx1 7→ε1 (x1, x7)← (x1 = x2) ∧AP (x2) ∧Gx2 7→P2 (x2, x7),

Gx1 7→P
−

1 (x1, x7)← AP−(x1) ∧ (x1 = x2) ∧Gx2 7→ε2 (x2, x7),

Gx2 7→ε2 (x2, x7)← R(x2, x3) ∧Gx3 7→ε3 (x3, x7),

Gx2 7→P2 (x2, x7)← AP (x2) ∧ (x2 = x3) ∧Gx3 7→ε3 (x3, x7).

Next, we move to the variables x4, x5 and x6, which give
similar 7 clauses:

Gx3 7→ε3 (x3, x7)← R(x3, x4) ∧ P x4 7→ε4 (x4, x7),

Gx3 7→ε3 (x3, x7)← (x3 = x4) ∧AP−(x4) ∧Gx4 7→P
−

4 (x4, x7),

Gx4 7→ε4 (x4, x7)← S(x4, x5) ∧Gx5 7→ε5 (x5, x7),

Gx4 7→ε4 (x4, x7)← (x4 = x5) ∧AP (x5) ∧Gx5 7→P5 (x5, x7),

Gx4 7→P
−

4 (x4, x7)← AP−(x4) ∧ (x4 = x5) ∧Gx5 7→ε5 (x5, x7),

Gx5 7→ε5 (x5, x7)← R(x5, x6) ∧Gx6 7→ε6 (x6, x7),

Gx5 7→P5 (x5, x7)← AP (x5) ∧ (x5 = x6) ∧Gx6 7→ε6 (x6, x7).

Finally, the last variable can only be mapped to a constant
in the data instance, which yields a single clause:

Gx6 7→ε6 (x6, x7)← R(x6, x7).

Note that, like in the previous case, we consider only those
types that give rise to predicates with definitions (and ignore
the dead-ends in the construction).

Tw-rewriting
We begin by splitting the query roughly in the middle, that
is, we choose x3 and consider two subqueries:

q03(x0, x3) = ∃x1x2

(
R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)

)
,

q37(x3, x7) = ∃x4x5x6

(
R(x3, x4) ∧ S(x4, x5) ∧

R(x5, x6) ∧R(x6, x7)
)
.

Since there is no tree witness t for (T, q(x0, x7)) that con-
tains x3 in ti, we have only one top-level clause:

G07(x0, x7)← G03(x0, x3) ∧G37(x3, x7).

Next, we focus on q03 and choose x1 as the splitting variable.
In this case, there is a tree witness t1 with t1i = {x1} and
t1r = {x0, x2}, and so we obtain two clauses for G03:

G03(x0, x3)← R(x0, x1) ∧G13(x1, x3),

G03(x0, x3)← AP−(x0) ∧ (x0 = x2) ∧R(x2, x3)

(although we should write G03(x3, x0), placing parameter x0

last, we keep the natural ordering to improve readability).
The subquery q13(x1, x3) = ∃x2

(
S(x1, x2) ∧ R(x2, x3)

)
contains two atoms and is split at x2. Since there is a tree
witness t2 for (T, q13(x1, x3)) with t2i = {x2} and t2r =
{x1, x3}, we obtain two clauses:

G13(x1, x3)← S(x1, x2) ∧R(x2, x3),

G13(x1, x3)← AP (x1) ∧ (x1 = x3).

By applying the same procedure to q37(x3, x7), we obtain
the following five clauses:

G37(x3, x7)← G35(x3, x5) ∧G57(x5, x7),

G37(x5, x7)← R(x3, x4) ∧AP (x4) ∧ (x4 = x6) ∧R(x6, x7),

G35(x3, x5)← R(x3, x4) ∧ S(x4, x5),

G35(x3, x5)← AP−(x3) ∧ (x3 = x5),

G57(x5, x7)← R(x5, x6) ∧R(x6, x7).

Note that the rewriting illustrated above is slightly simpler
than the definition in Section 3.4: here, we directly use the
atoms of q(x) instead of including a clause Gq(x) ← q(x),
for each q(x) without existentially quantified variables. This
simplification does not affect the width of the NDL query
and the choice of weight function.


