
Optimal Nonrecursive Datalog Rewritings of Linear
TGDs and Bounded (Hyper)Tree-Width Queries

M. Bienvenu1, S. Kikot2, R. Kontchakov2, V. Ryzhikov3, and M. Zakharyaschev2

1 CNRS & University of Montpellier, France (meghyn@lirmm.fr)
2 Birkbeck, University of London, UK ({kikot,roman,michael}@dcs.bbk.ac.uk)

3 Free University of Bozen-Bolzano, Italy (ryzhikov@inf.unibz.it)

Abstract. Our concern is answering ontology-mediated queries (O, q), whereO
is a set of linear tgds and q a conjunctive query (CQ) of bounded hypertree width.
Assuming that the arity of predicates is bounded, we show that polynomial-size
nonrecursive Datalog rewritings can be constructed and executed in (i) LOGCFL
for OMQs with ontologies of bounded existential depth; (ii) NL for OMQs with
ontologies of bounded depth and CQs whose hypertree decompositions have a
bounded number of leaves; (iii) LOGCFL for OMQs with acyclic CQs whose
join trees have a bounded number of leaves.

1 Introduction

As shown in [3, 4, 13], the optimal combined complexity (LOGCFL and NL) of an-
swering ontology-mediated queries (OMQs) with OWL 2 QL ontologies of bounded
depth and conjunctive queries (CQs) of bounded treewidth can be achieved by means
of rewriting them into nonrecursive datalog (NDL) queries, though not via positive-
existential rewritings. (Note that in these cases the complexity of OMQs matches the
complexity of evaluating the underlying CQs.) Our recent experiments have demon-
strated that such NDL rewritings, reformulated as Spark SQL queries with views, are
efficiently executed by Apache Spark taking advantage of their parallelisable structure.

The aim of this paper is to extend the above mentioned results to ontologies and
CQs with predicates of arbitrary fixed arity. We consider ontologies that consist of
linear TGDs (linear existential rules or atomic-hypothesis rules) [2, 6, 11, 12], which
are instances of finite unification sets [18, 15, 16]. Our interest in this problem is also
motivated by the system ETAP [5] designed to answer natural language questions by
translating them into SPARQL and executing—along with background knowledge—
over RDF data extracted from texts. To illustrate, suppose that the data contains the
atoms Purchased(j, c) and Car(c) representing the sentence ‘John purchased a car’.
To answer the question ‘has a car been sold?’ ETAP utilises the ontology rules (with
omitted universal quantifiers)

Purchased(x, y)→ ∃vz
(
Purchase(v) ∧ hasAgent1(v, x) ∧

hasObject(v, y) ∧ hasAgent2(v, z)
)
,

Purchase(v) ∧ hasAgent1(v, x) ∧ hasObject(v, y) ∧ hasAgent2(v, z)→
∃v′
(
Sale(v′) ∧ hasAgent1(v′, z) ∧ hasObject(v′, x) ∧ hasAgent2(v′, y)

)
,

where v and v′ represent the acts of purchase and sale, respectively. The rules are clearly
beyond the limitations of OWL 2 QL ; however, the knowledge they represent can also
be captured by means of linear TGDs with ternary predicates:

Purchased(x, y)→ ∃z Purchase(x, y, z), Purchase(x, y, z)→ Sale(z, y, x),

which are enough to answer the query ∃xyz (Car(y) ∧ Sale(x, y, z)).
We classify OMQs Q = (O, q) with linear TGDs and predicates of any fixed arity

n < ω along three axes: (1) the existential depth d of O, that is, the maximal depth of
Skolem terms in the chases of O over arbitrary data (cf. [8]), (2) the hypertree width t
of q, and (3) the number ` of leaves in the tree underlying a hypertree decomposi-
tion of q. Thus, OMQ(p1, p2, p3) denotes the class of OMQs in which parameter (i)
is bounded by pi ∈ N ∪ {∞}. We show that, for any fixed d, t, ` < ω, answering
OMQs in the classes OMQ(d, t,∞) and OMQ(∞, 1, `) can be done in LOGCFL (for
combined complexity) by means of NDL-rewritings, and even in NL for OMQ(d, t, `).
On the other hand, one can show that answering OMQs in OMQ(∞, t, `), for t, ` ≥ 2,
is NP-hard by observing that the sequence of tree-shaped CQs from the proof of [3,
Theorem 20] is of path width 2. Thus, we obtain a full classification of the classes
OMQ(p1, p2, p3), for pi ∈ N ∪ {∞}, with respect to combined complexity.

2 Preliminaries

Ontology-mediated queries. Let Σ be a relational schema with the maximum arity
ar(Σ) of its predicates bounded by n. By writing P (x), for a predicate name P and an
n-tuple x of variables (with possible repetitions), we mean that P is n-ary. By writing
γ(x), we mean that the free variables of formula γ are x, where x contains no repeti-
tions. If the meaning is clear from the context, we use set-theoretic notation for lists.

A data instance, D, over Σ is any finite set of ground atoms P (a) with predicate
symbols P from Σ. We denote by ind(D) the set of individual constants in D. An
ontology is any finite set, O, of sentences of the form

∀x (γ0(x)→ ∃y γ1(x′,y)) and ∀x (γ0(x)→ γ2(x
′)),

where γ0, γ1 and γ2 are atoms with predicate symbols from Σ and x′ ⊆ x, for disjoint
sets x and y of variables. When writing rules, we omit the universal quantifiers.

An ontology-mediated query (OMQ) Q(x) is a pair (O, q(x)), in which O is an
ontology and q(x) a conjunctive query (CQ), that is, a formula of the form ∃y ϕ(x,y),
where ϕ is a conjunction of atoms P (z) over Σ with z ⊆ x∪y. A tuple a ∈ ind(D)|x|
is a certain answer toQ(x) over D if M |= q(a), for every model M ofO∪D; in this
case we writeO,D |= q(a). If the list x of answer variables is empty, a certain answer
toQ overD is ‘yes’ if M |= q, for every model M ofO∪D, and ‘no’ otherwise. OMQs
and CQs without answer variables are called Boolean. We often regard CQs as sets of
their atoms. We abuse notation and use sets of variables in place of sequences assuming
that they are ordered in some (fixed) way. Also, given c ∈ ind(D)|z| and z ∈ z, we
write c(z) to refer to the component of c that corresponds to z.
Canonical models. An important property of tgds is the fact [1] that, for any O and D,
there is a (possibly infinite) canonical (or universal) model CO,D such that, for every

CQ q(x) and a ∈ ind(D)|x|, we haveO,D |= q(a) iff CO,D |= q(a). Such a canonical
model can be constructed by the following (oblivious) chase procedure that, intuitively,
‘repairs’ D with respect to O (though not in the most economical way). With each
rule % of the form γ0(x) → ∃y γ1(x′,y), where x = (x1, . . . , xn), y = (y1, . . . , yk)
and k > 0, we associate the k-tuple s% = (s1%, . . . , s

k
%) of distinct n-ary Skolem function

symbols. An application of % to D under a map h : x → ind(D) such that h(γ0) ∈ D
adds h′(γ1) to D, where h′ is defined by taking h′(xi) = h(xi), for 1 ≤ i ≤ n, and
h′(yj) = sj%(h(x)), for 1 ≤ j ≤ k. An application of a rule γ0(x)→ γ2(x

′) toD under
such an h adds h(γ2) to D. The chase algorithm applies these two rules exhaustively
to O and D in a breadth-first manner. More precisely, we set C0

O,D = D and say that
the atoms in C0

O,D are of (derivation) level 0. Assuming that Cn−1O,D has already been
constructed, we define CnO,D as follows. Take some enumeration of all distinct pairs
(%i, hi) such that %i ∈ O with γi on the left-hand side is applicable to Cn−1O,D under hi. If
none of the atoms in the hi(γi) is of level n− 1, then we set CnO,D = Cn−1O,D. Otherwise,
we apply the %i under hi to Cn−1O,D one after the other and say that the newly added
atoms are of (derivation) level n; the resulting extension of Cn−1O,D is denoted by CnO,D.
The canonical model CO,D is then the union of all CnO,D, for n < ω.

The domain ∆CO,D of CO,D consists of terms built from the constants in D using
Skolem functions sj%, for % ∈ O. The depth of such a term is the maximal number of
nested occurrences of function symbols in it. We say that O is of depth k ≤ ω if k is
the minimal ordinal such that ∆CO,D contains no terms of depth > k, for any data D.
For an ontology O and a ground atom P (a), we set termO(P (a)) = ∆CO,{P (a)} \ a.
We denote by termO the union of termO(P (a)), for all possible (up to renaming the
constants) atoms P (a) with predicates in O (assuming that distinct P (a) do not share
constants). It should be clear thatO is of finite depth iff termO is finite. By counting the
number of possible linear derivations of Skolem terms, we see that, for O of depth k,
| termO | ≤ (ar(Σ)ar(Σ)|O|)k . We assume that any constant a occurring in termO has
a twin variable ã and denote by ã the result of replacing all constants in a with their
twin variables. Given a tuple b ⊆ ind(D), we denote by a/b(ã) the substitution that
maps each a in a to the corresponding b(ã) in b.

NDL-rewritings. A datalog program, Π , is a finite set of Horn clauses of the form
∀z (γ0 ← γ1 ∧ · · · ∧ γm), where each γi is an atom Q(y) with y ⊆ z or an equality
(z = z′) with z, z′ ∈ z. (As usual, we omit ∀z from clauses.) The atom γ0 is the
head of the clause, and γ1, . . . , γm its body. All variables in the head must occur in
the body, and = can only occur in the body. The predicates in the heads of clauses in
Π are IDB predicates, the rest (including =) EDB predicates. A predicate Q depends
on P in Π if Π has a clause with Q in the head and P in the body. Π is a nonrecursive
datalog (NDL) program if the (directed) dependence graph of the dependence relation
is acyclic. The size |Π| of Π is the number of symbols in it. An NDL query is a pair
(Π,G(x)), where Π is an NDL program and G a predicate. A tuple a ∈ ind(D)|x| is
an answer to (Π,G(x)) over a data instanceD ifG(a) holds in the first-order structure
with domain ind(D) obtained by closing D under the clauses in Π; in this case we
write Π,D |= G(a). The problem of checking whether a is an answer to (Π,G(x))
over D is called the query evaluation problem. The depth of (Π,G(x)) is the length,
d(Π,G), of the longest directed path in the dependence graph for Π starting from G.

An NDL query (Π,G(x)) is an NDL-rewriting of an OMQ Q(x) = (O, q(x)) in case
O,D |= q(a) iff Π,D |= G(a), for any D and any a ∈ ind(D)|x|. Every OMQ is
known to have an NDL-rewriting [2, 6].
Tree decomposition. A tree decomposition of a CQ q with variables var(q) is a pair
(T, λ) of an (undirected) tree T = (V,E) and λ : V → 2var(q) such that

– for any atom P (z) ∈ q, there exists v ∈ V with z ⊆ λ(v);
– for any variable z in q, the set of vertices {v ∈ V | z ∈ λ(v)} is connected in T .

We call λ(v) the bag for v. The width of (T, λ) is maxv∈V |λ(v)| − 1. The treewidth
of q is the minimum width over all tree decompositions of q. It is known [9] that,
for CQs of bounded arity n, the notions of bounded treewidth and bounded hypertree
width [10] are interchangeable. Indeed, in this case, every hypertree decomposition of
width t induces a tree decomposition of width t · n. A CQ q is called acyclic if it has
a join tree whose nodes are the atoms of q and, whenever atoms γ1 and γ2 share a
variable, this variable occurs in all atoms along the (unique) path in the tree linking γ1
and γ2. It is known [10] that a CQ q is acyclic iff q is of hypertree width 1.

3 NL and LogCFL Fragments of NDL

In this section we present two classes of NDL queries that enjoy NL- and LOGCFL-
complete evaluation. First, observe that if the number of variables in each clause of an
NDL query is bounded, then the size of its grounding (obtained by replacing variables
by all possible combinations of constants) is polynomial. So, evaluation of such NDL
queries is tractable. However, if we bound the number of variables in clauses of NDL
rewritings of OMQs, then we will also effectively impose a bound on the number of
answer variables in their CQs. To avoid this limitation, we treat answer variables of the
CQs (and the predicate positions they occur in) differently from all other variables in
the NDL-rewritings. Intuitively, answer variables get their values fixed by a candidate
certain answer and thus do not cause an exponential blowup of groundings.

Formally, an NDL query (Π,G(x)) is called ordered if each of its IDB predicatesQ
has a fixed list of variables xQ ⊆ x, the parameters of Q, such that

– the parameters of G are x and, in every clause, the parameters of the head include
all the parameters of the predicates in the body;

– the parameters xQ of each Q occupy the last |xQ| positions in every occurrence
of Q in Π; they can, however, occur in other positions too.

The width w(Π,G) of an ordered (Π,G(x)) is the maximum number of non-parameter
variables in a clause of Π . Observe that Boolean NDL queries are trivially ordered
(their IDB predicates have no parameters), and the width of such queries is simply
the maximum number of variables in a clause of Π . As all the NDL-rewritings we
construct are ordered, with their parameters being the answer variables, in the sequel
we will consider only ordered NDL queries. We say that a class of NDL queries is of
bounded width if there is w > 0 such that w(Π,G) ≤ w, for all (Π,G(x)) in the class.
As we observed above, evaluation of NDL queries of bounded width is P-complete.

Our first subclass of NDL queries is based on linear rules. An NDL program is
linear [1] if the body of its every clause contains at most one IDB predicate.

Theorem 1. Evaluation of linear NDL queries of bounded width is NL-complete for
combined complexity.

Our second subclass was inspired by semi-unbounded fan-in circuits. Recall that the
class LOGCFL of problems reducible in logarithmic space to context-free languages
can equivalently be defined in terms of L-uniform families of semi-unbounded fan-
in circuits (where OR-gates have arbitrarily many inputs, and AND-gates two inputs)
of polynomial size and logarithmic depth. Alternatively, LOGCFL can be defined us-
ing nondeterministic auxiliary pushdown automata (NAuxPDAs) [7], which are non-
deterministic Turing machines with an additional work tape constrained to operate as
a pushdown store. Sudborough [17] proved that LOGCFL coincides with the class of
problems that are solved by NAuxPDAs in logarithmic space and polynomial time (the
space on the pushdown tape is not subject to the logarithmic bound). Moreover, there
is an algorithm that, given a semi-unbounded fan-in circuit C and an input, computes
the output using an NAuxPDA in logarithmic space in the size of C and exponential
time in the depth of C [19, pp. 392–397]. Using these results, it can be shown that any
(Π,G(x)) with at most two atoms in the body of any clause can be evaluated on a data
instance D by an NAuxPDA in space log |Π|+ w(Π,G) · log |D| and time 2O(d(Π,G))

(thus, in LOGCFL provided the query width is bounded and its depth is logarithmic).
In the rewritings we propose in Sections 5 and 7, however, the number of atoms in

the clauses is not bounded. We require the following to generalise the idea. A function
ν from the predicate names in Π to non-negative integers N is called a weight function
for an NDL query (Π,G(x)) if, for any clause Q(z) ← P1(z1) ∧ · · · ∧ Pk(zk) in Π ,
we have

ν(Q) > 0 and ν(Q) ≥ ν(P1) + · · ·+ ν(Pk),

Note that ν(P) can be 0 for an EDB predicate P . To illustrate, we consider NDL queries
with the following dependency graphs:

The one on the left has a weight function bounded by the number of predicates (i.e.,
linear in the size of the query); intuitively, this function corresponds to the number
of directed paths from a vertex to the leaves. In contrast, any NDL query with the
dependency graph on the right can only have a weight function whose values (numbers
of paths) are exponential. Linear NDL queries have weight functions bounded by 1.

Let eΠ be the maximum number of EDB predicates in a clause of Π . The skinny
depth sd(Π,G) of (Π,G(x)) is the minimum value of

2d(Π,G) + log ν(G) + log eΠ

over possible weight functions ν. One can show, using Huffman coding, that any NDL
query (Π,G(x)) can be transformed into an equivalent skinny NDL query (Π ′, G(x))
of depth not exceeding sd(Π,G) and such that |Π ′| = O(|Π|2) and w(Π ′, G) ≤
w(Π,G). We say that a class of NDL queries has logarithmic skinny depth if there is
c > 0 such that sd(Π,G) ≤ c log |Π|, for all (Π,G(x)) in the class. We now obtain:

Theorem 2. Evaluation of NDL queries of logarithmic skinny depth and bounded width
is LOGCFL-complete for combined complexity.

3.1 NDL Rewritings over (Complete) Data

We say that a data instance D is complete for an ontology O if O,D |= P (a) implies
P (a) ∈ D, for any ground atom P (a), where P in Σ and a ⊆ ind(D). An NDL query
(Π,G(x)) is an NDL-rewriting of an OMQ Q(x) = (O, q(x)) over complete data in
case O,D |= q(a) iff Π,D |= G(a), for any D complete for O and any a ⊆ ind(D).

Given an NDL-rewriting (Π,G(x)) ofQ(x) over complete data, we denote by Π∗

the result of replacing each EDB predicate P in Π with a fresh IDB predicate P ∗ of
the same arity and adding the clauses P ∗(z) ← γ for every atom γ with a predicate
symbol from O such that O |= γ → P (z), where z is a tuple of variables (with
possible repetitions). Clearly, (Π∗, G(x)) is an NDL-rewriting of Q(x) over arbitrary
data instances and |Π∗| ≤ |Π|+ ar(Σ)ar(Σ) · |O|2.

We say that a class of OMQs is skinny-reducible if there are c > 0 and w > 0 and
an LLOGCFL-transducer that, given any OMQ Q(x) in the class, computes its NDL-
rewriting (Π,G(x)) over complete data with sd(Π,G) ≤ c log |Π| and w(Π,G) ≤ w.
Theorem 2 and the transformation ∗ give the following:

Corollary 1. Answering OMQs is in LOGCFL for combined complexity for any skinny-
reducible class.

The transformation ∗, however, does not preserve linearity because it replaces oc-
currences of EDB predicates P by IDB predicates P ∗. A more involved ‘linear’ con-
struction is given in the proof of the following, where a possible increase of the width
is due to the ‘replacement’ of atoms P (z) by atoms γ whenever O |= γ → P (z):

Lemma 1. Fix any w > 0. There is an LNL-transducer that, for a linear NDL-rewriting
(Π,G(x)) of an OMQ Q(x) over complete data with w(Π,G) ≤ w, computes its lin-
ear NDL-rewriting (Π ′, G(x)) over arbitrary data with w(Π ′, G) ≤ w + ar(Σ).

4 Conditional Rewritings

Let Q(x) = (O, q(x)) be an OMQ with an ontology of finite depth. Intuitively, we
recursively split q(x) into subqueries qD based on subtrees D of a tree decomposition
of q and combine the rewritings of qD into a rewriting of q. To guarantee ‘compatibil-
ity’ of the rewritings of the subqueries, we take account of the types of points on the
boundaries of the qD. So, for each D and each type w, we take a fresh IDB predicate
Gw
D to represent the conditional rewriting of qD provided that its boundary satisfies the

type. We now give formal definitions.
A type is a partial map s from the variables of q to termO ∪{ε}; its domain is

denoted by dom(s). The unique partial type with dom(ε) = ∅ is denoted by ε. We use
types to represent how variables are mapped into the canonical model: s(z) = ε means
that z is mapped to an individual constant and s(z) = f(a), for a Skolem term f(a),
means that z is mapped to an element of the form f(c), for some c ⊆ ind(D). Given a
type s and a tuple z = (z1, . . . , zn) ⊆ dom(s), we denote the tuple (s(z1), . . . , s(zn))
by s(z). A type s is compatible with a bag λ(t) if s(x) = ε, for all x ∈ x ∩ dom(s),
and, for every S(z) ∈ q with z ⊆ λ(t) ∩ dom(s), one of the following applies:

(d) s(z) ⊆ {ε};

(b) there is P (a) such that s(z) ⊆ termO(P (a)) ∪ {ε} but neither s(z) ⊆ {ε} nor
s(z) ⊆ termO(P (a));

(i) there is P (a) such that s(z) ⊆ termO(P (a)) and S(s(z)) ∈ CO,{P (a)}.

Given a type s, we take a tuple of variables var(s) that contains, for z ∈ dom(s) \ x,

variable z, if s(z) = ε, and variables ã, if s(z) ∈ termO(P (a)).

Denote the answer variables that occur in dom(s) by xs. Our rewritings use conjunc-
tions Ats(var(s),xs) of the following formulas, for all S(z) ∈ q with z ⊆ dom(s):

(d′) S(z) if s(z) ⊆ {ε};
(b′) the disjunction

∨
g : z′→a

[
P (ã) ∧

∧
z∈z′ and g(z)=a

(z = ã)
]

over grounding functions g : z′ → a such that z′ = {z ∈ z | s(z) = ε} 6= ∅,
z′′ = {z ∈ z | s(z) ∈ termO(P (a))} 6= ∅ and CO,{P (a)} contains the result of
replacing z′ and z′′ in S(z) by g(z′) and s(z′′), respectively;

(i′) P (ã) if s(z) ⊆ termO(P (a)).

Strictly speaking, the resulting rewritings will not be NDL programs because of dis-
junctions in (b′), but we can get rid of them using an extra predicate and (if needed)
the construction from the proof of Lemma 1 keeping the size and the execution time
polynomial.

5 LOGCFL Rewritings for OMQ(d, t,∞)

We now construct skinny-reducible NDL rewritings for the CQs of bounded treewidth.

Theorem 3. For any d ≥ 0 and t ≥ 1, the class OMQ(d, t,∞) is skinny-reducible.

Fix a connected CQ q(x) and a tree decomposition (T, λ) of its Gaifman graph.
Let D be a subtree of T . The size of D is the number of nodes in it. A node t of D is
called boundary if T has an edge {t, t′} with t′ /∈ D. We denote by ∂D the union of
all λ(t) ∩ λ(t′) for boundary nodes t of D and its neighbours t′ in T outside D. The
degree deg(D) of D is the number of its boundary nodes (so, the only subtree of T of
degree 0 is T itself). We say that a node t splits D into subtrees D1, . . . , Dk if the Di

partition D without t: each node of D except t belongs to exactly one Di.

Lemma 2. Let D be a subtree of T of size n > 1.
If deg(D) = 2, then there is a node t splitting D into subtrees of size ≤ n/2 and
degree ≤ 2 and, possibly, one subtree of size < n− 1 and degree 1.
If deg(D) ≤ 1, then there is t splitting D into subtrees of size ≤ n/2 and degree ≤ 2.

We define recursively a set R of subtrees of T , a binary ‘predecessor’ relation ≺
on R, and a function β on R indicating the bag of the splitting node. We begin by
adding T to R. Take any D ∈ R that has not been split yet. If D is of size 1, then
β(D) = λ(t) for the only node t of D. Otherwise, by Lemma 2, we find a node t in D

that splits it intoD1, . . . , Dk. We set β(D) = λ(t) and, for 1 ≤ i ≤ k, addDi to R and
set Di ≺ D; then, we apply the procedure to each of D1, . . . , Dk. For each D ∈ R, we
recursively define a set of atoms

qD =
{
S(z) ∈ q | z ⊆ β(D)

}
∪
⋃

D′≺D
qD′ .

Let xD be the set of variables from x that occur in qD. By the definition of tree decom-
position, qT = q and xT = x.

We now define an NDL-rewriting of Q(x) = (O, q(x)). Fix D ∈ R and a type
w with dom(w) = ∂D. Let Gw

D(var(w),xD) be a fresh IDB predicate with parame-
ters xD. As we described above, a node is selected inD to split it into smaller trees (pro-
vided that it contains more than one node). We extend the typew to cover the variables
β(D) of the selected bag: more precisely, we consider types s with dom(s) = β(D)
such that they are compatible with bag β(D) and agree with w on their common do-
main. Observe that, if D′ is a subtree resulting from splitting D, then the domain of
the extended type, s ∪ w, includes ∂D′, and thus ∂D′ coincides with the domain of
the restriction of s ∪ w to ∂D′, denoted (s ∪ w) �∂D′ . Now, for each type s with
dom(s) = β(D) such that s is compatible with bag β(D) and agrees with w on their
common domain, the NDL program ΠLOG

Q contains

Gw
D(var(w),xD)← Ats(var(s),xs) ∧

∧
D′≺D

G
(s∪w)�∂D′
D′ (var((s ∪w)�∂D′),xD′).

By induction on ≺, one can now show that (ΠLOG
Q , Gε

T) is a rewriting ofQ(x).

Example 1. Let q(x0, x3) = ∃x1x2
(
S(x0, x1)∧R(x1, x2)∧R(x2, x3)

)
andO consist

of the following linear rules:

% : U(x, y)→ ∃v T (x, v, y), T (x, v, y)→ R(v, x),

T (x, v, y)→ R(y, v), T (x, v, y)→ S(x, y).

The subtree structure of the tree decomposition of q(x0, x3) and the canonical model
are as follows:

D

D1 D2

x0

x1

x1

x2

x2

x3
S R R

a1 a2

f%(a1, a2)

U

R RS

The goal predicate for the rewriting of q(x0, x3) is Gε
D(x0, x3) with parameters x0

and x3. For the type s for the middle bag sending x1 to ε and x2 to f%(a1, a2), we have

Gε
D(x0, x3)← Gx1 7→ε

D1
(x1, x0) ∧ U(ã1, ã2) ∧ (x1 = ã2) ∧G

x2 7→f%(a1,a2)
D2

(ã1, ã2, x3),

where and ã1 and ã2 are the twin variables in var(s). Note that the type forGx2 7→f%(a1,a2)
D2

has no non-twin variables, and we have the following rule for this predicate

G
x2 7→f%(a1,a2)
D2

(ã1, ã2, x3)← U(ã1, ã2) ∧ (x3 = ã1).

Lemma 3. For anyD complete forO, any predicateGw
D and any b ∈ ind(D)|var(w)|+|xD|,

we have ΠLOG
Q ,D |= Gw

D(b) iff there is a homomorphism h : qD → CO,D such that

h(z) =

{
b(z), for all z ∈ xD and all z ∈ ∂D with w(z) = ε,

w(z)[a/b(ã)], for all z ∈ ∂D with w(z) ∈ termO(P (a)).

6 NL Rewritings for OMQ(d, t, `)

For OMQs based upon bounded leaf queries and bounded depth ontologies, we establish
the following theorem:

Theorem 4. Let d ≥ 0, t ≥ 1 and ` ≥ 2 be fixed. There is an LNL-transducer that,
given any OMQ in OMQ(d, t, `), constructs its polynomial-size linear NDL-rewriting
of width ≤ `(t+ 1).

Let O be an ontology of finite depth d and q(x) a CQ with a tree decomposition
(T, λ) of width ≤ t having ≤ ` leaves. Fix one of the nodes of T as root, and let M
be the maximum distance to a leaf from the root. For 0 ≤ n ≤ M , by an n-slice we
mean the set of all nodes of T located at distance n from the root. Denote by yn the
union of all bags λ(t) for a node t in the n-slice. For 1 ≤ n ≤ M , let zn be the
union of all λ(t) ∩ λ(t′) for a node t in the n-slice and its predecessor t′ in T (which
is in (n − 1)-slice), and let z0 = ∅. By definition, zn+1 ⊆ yn+1 ∩ yn and, clearly,
|zn| ≤ |yn| ≤ `(t+1). Denote by qn(z

n
∃ ,x

≥n) the query consisting of all atoms S(z)
of q with z ⊆

⋃
k≥n y

k, where zn∃ = zn \ x and x≥n = x ∩
⋃
k≥n y

k. These queries
and sets of variables for the CQ from Example 1 are shown below:

q2q1q0

x0

x1

x1

x2

x2

x3
S R R

y2 = {x2, x3} z2 = {x2} x2 = {x3}
y1 = {x1, x2} z1 = {x1} x1 = ∅
y0 = {x0, x1} z0 = ∅ x0 = {x0}

A type for zn is a total map w from zn to termO ∪{ε}. Likewise, a type for yn is a
total map s from yn to termO ∪{ε}. We say s compatible with yn if it is compatible
with every bag λ(t) in the n-slice.

Consider the NDL program ΠLIN
Q defined as follows. For every 0 ≤ n < M and

every typew for zn, we introduce a new IDB predicateGw
n (var(w),x≥n) with param-

eters x≥n. For each type s for yn such that s is compatible with yn and agrees withw
on zn, the program ΠLIN

Q contains the clause

Gw
n (var(w),x

≥n)← Ats(var(s),xs) ∧Gs�zn+1

n+1 (var(s�zn+1),x
≥n+1).

For every type w for zM and every type s for yM such that s is compatible with yM

and agrees with w on zM , we include the clause

Gw
M (var(w),x

≥M)← Ats(var(s),xs).

Finally, we use Gε
0 with parameters x as the goal predicate (note that z0 = ∅, and so

the domain of any type for z0 is empty).

Lemma 4. For anyD complete forO, any predicateGw
n , any b ∈ ind(D)|var(w)|+|x≥n|,

we have ΠLIN
Q ,D |= Gw

n (b) iff there is a homomorphism h : qn → CO,D such that

h(z) =

{
b(z), for all z ∈ x≥n and all z ∈ zn∃ with w(z) = ε,

w(z)[a/b(ã)], for all z ∈ zn∃ with w(z) ∈ termO(P (a)).

It should be clear that ΠLIN
Q is a linear NDL program of width ≤ `(t + 1) and

containing ≤ |q| · | termO |`(t+1) predicates. Moreover, it takes only logarithmic space
to store a type w, which allows us to show that ΠLIN

Q can be computed by an LNL-
transducer. We apply Lemma 1 to obtain an NDL-rewriting for arbitrary data instances,
and then use Theorem 1 to conclude that the resulting program can be evaluated in NL.

7 LOGCFL Rewritings for OMQ(∞, 1, `)

Unlike the previous two classes, answering OMQs from the class OMQ(∞, 1, `) can
be harder—LOGCFL-complete—than evaluating their CQs, which can be done in NL.

Theorem 5. For any fixed ` ≥ 2, the class OMQ(∞, 1, `) is skinny-reducible.

For OMQs with ontologies of unbounded depth and acyclic CQs whose join trees
have a bounded number of leaves, our rewriting uses the notion of Skolem witness that
generalises tree witnesses [14].

Let Q(x) = (O, q(x)) be an OMQ, let s = (s1r , . . . , s
n
r , si) be a tuple of disjoint

sets of variables in q(x) such that si 6= ∅ and si ∩ x = ∅, and let sr = s1r ∪ · · · ∪ snr ,

qs =
{
S(z) ∈ q | z ⊆ sr ∪ si and z 6⊆ sr

}
.

If qs is a minimal subset of q containing every atom of q with at least one variable from
si and such that there is a homomorphism h : qs → CO,{P (a)} with a = (a1, . . . , an)
and h−1(aj) = sjr for 1 ≤ j ≤ n, then we call s a Skolem witness for Q(x) generated
by P (a). Intuitively, s identifies a minimal subset of q that can be mapped to the Skolem
part of the canonical model CO,{P (a)} consisting of Skolem terms: the variables in sr
are mapped to constants from a and the variables in si to Skolem terms in termO(P (a)).

The logarithmic-depth NDL-rewriting for OMQ(∞, 1, `) is based on the following:

Lemma 5. Every tree T of size n has a node splitting it into subtrees of size ≤dn/2e.

LetQ(x0) = (O, q0(x0)) be an OMQ with an acyclic CQ having a join tree T0. We
repeatedly apply Lemma 5 to decompose the CQ into smaller and smaller subqueries.
Formally, for an acyclic CQ q, we denote by γq a vertex in the join tree T for q that
satisfies the condition of Lemma 5. Let Q be the smallest set containing q0(x0) and the
following CQs, for every q(x) ∈ Q with at least one existentially quantified variable:

(1) the CQs qi(xi) corresponding to the connected components Ti with root γqi adja-
cent to γq of the result of removing γq from T , where xi consists of the restriction
of x to the variables in qi together with the common variables of γqi and γq;

(2) for each Skolem witness s for (O, q(x)) with sr 6= ∅ and γq ∈ qs, the CQs
qs1(x

s
1), . . . , q

s
k(x

s
k) that correspond to the connected components T s

i of the re-
sults of removing qs from T (note that qs is connected in T), where each xs

i is the
set of variables in x ∪ sr that occur in qsi .

The NDL program ΠSW
Q uses IDB predicates Gq(x), for q(x) ∈ Q, whose parameters

are the variables in x0 that occur in q(x). For each q(x) ∈ Q that has no existentially
quantified variables, we include the clause Gq(x) ← q(x). For any q(x) ∈ Q with
existential variables, we include

Gq(x) ← γq ∧
∧

1≤i≤n
Gqi(xi),

where q1(x1), . . . , qn(xn) are the subqueries obtained by splitting q by γq in (1),
and, for any Skolem witness s of (O, q(x)) with sr 6= ∅ and γq ∈ qs and any P (a)
generating s, the clause

Gq(x) ← P (ã) ∧
∧

z∈sjr
(z = ãj) ∧

∧
1≤i≤k

Gqs
i
(xs
i),

where qs1, . . . , q
s
k are the connected components of q without qs. Finally, if q0 is

Boolean, then we include Gq0
← P (ã) for all atoms P (a) such thatO, {P (a)} |= q0.

Lemma 6. For any OMQ with an acyclic CQ, any data D complete for O, any query
q(x) ∈ Q and any b ∈ ind(D)|x|, we have ΠSW

Q ,D |= Gq(b) iff there is a homomor-
phism h : q → CO,D with h(x) = b.

Now fix ` > 1 and consider Q(x) = (O, q0(x)) from the class OMQ(∞, 1, `)
(remember that we have fixed arity n). The size of the program ΠSW

Q is polynomially
bounded in |Q| since q0 has polynomially-many subtrees of Tq0

and O(|q0|`) Skolem
witnesses (there are at mostO(|q0|` · |Σ| · nn) pairs of a Skolem witness s and its gen-
erating atom P (a)). It is readily seen that the function ν defined by ν(Gq) = |q|, for
each q ∈ Q, is a weight function for (ΠSW

Q , Gq0
(x)) with ν(Gq0

) ≤ |Q|. Moreover, by
Lemma 5, d(ΠSW

Q , Gq0
) ≤ log ν(Gq0

)+1; also, w(ΠSW
Q , Gq0

) ≤ `+1. Finally, we note
that, since the number of leaves is bounded, it is in NL to decide whether a vertex satis-
fies the conditions of Lemma 5, and in LOGCFL to decide whetherO, {P (a)} |= q(a),
for bounded-leaf acyclic CQs q(x) (see the full version1), or whether a (logspace) rep-
resentation of a possible Skolem witness is indeed a Skolem witness. This allows us to
show that (ΠSW

Q , Gq0
(x)) can be generated by an LLOGCFL-transducer. By Corollary 1,

the obtained NDL-rewritings can be evaluated in LOGCFL.

8 Conclusion

We presented NDL rewritings for three classes of OMQs with CQs of bounded (hyper)-
tree width and ontologies given as linear TGDs. These NDL rewritings can be con-
structed and evaluated in LOGCFL, NL and LOGCFL, respectively (provided that the
arity of predicates is bounded). Since the three upper bounds match the lower bounds
inherited from the OWL 2 QL setting [4], the proposed rewritings are theoretically op-
timal.

1 http://www.dcs.bbk.ac.uk/˜kikot/DL17-1-full.pdf

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential variables:

Walking the decidability line. Artificial Intelligence 175(9–10), 1620–1654 (2011)
3. Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V.V., Ryzhikov, V., Zakharyaschev, M.:

The complexity of ontology-based data access with OWL 2 QL and bounded treewidth
queries. In: Proc. of the 26th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS (2017)

4. Bienvenu, M., Kikot, S., Podolskii, V.V.: Tree-like queries in OWL 2 QL: succinctness and
complexity results. In: Proc. of the 30th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2015. pp. 317–328. IEEE Computer Society (2015)

5. Boguslavsky, I., Dikonov, V., Iomdin, L., Lazursky, A., Sizov, V., Timoshenko, S.: Semantic
analysis and question answering: a system under development. In: Computational Linguistics
and Intellectual Technologies. Papers from the Annual International Conference Dialogue.
p. 21. No. 14 (2015)

6. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query
answering over ontologies. Journal of Web Semantics 14, 57–83 (2012)

7. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers.
Journal of the ACM 18(1), 4–18 (1971)

8. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.:
Acyclicity notions for existential rules and their application to query answering in ontologies.
Journal of Artificial Intelligence Research 47, 741–808 (2013)

9. Gottlob, G., Greco, G., Leone, N., Scarcello, F.: Hypertree decompositions: Questions and
answers. In: Proc. of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS (2016)

10. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. Jour-
nal of Computer and System Sciences 64(3), 579–627 (2002)

11. Gottlob, G., Manna, M., Pieris, A.: Polynomial Rewritings for Linear Existential Rules, pp.
2992–2998. In: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence, IJCAI (2015)

12. Gottlob, G., Orsi, G., Pieris, A.: Query rewriting and optimization for ontological databases.
ACM Transactions on Database Systems 39(3), 25:1–25:46 (2014)

13. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: On the succinctness of query
rewriting over shallow ontologies. In: Proc. of the Joint Meeting of the 23rd EACSL Annual
Conf. on Computer Science Logic (CSL 2014) and the 29th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2014). pp. 57:1–57:10. ACM (2014)

14. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2012). pp. 275–285. AAAI (2012)

15. König, M., Leclère, M., Mugnier, M.-L., Thomazo, M.: Sound, complete and minimal UCQ-
rewriting for existential rules. Semantic Web 6(5), 451–475 (2015)

16. König, M., Leclere, M., Mugnier, M.-L.: Query rewriting for existential rules with compiled
preorder. In: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence, IJCAI (2015)

17. Sudborough, I.H.: On the tape complexity of deterministic context-free languages. Journal
of the ACM 25(3), 405–414 (1978)

18. Thomazo, M.: Compact rewriting for existential rules. In: Proc. of the 23rd Int. Joint Conf.
on Artificial Intelligence, IJCAI (2013)

19. Venkateswaran, H.: Properties that characterize LOGCFL. Journal of Computer and System
Sciences 43(2), 380–404 (1991)

A Proof of Lemma 1

Lemma 1. Fix any w > 0. There is an LNL-transducer that, for a linear NDL-rewriting
(Π,G(x)) of an OMQ Q(x) over complete data with w(Π,G) ≤ w, computes its lin-
ear NDL-rewriting (Π ′, G(x)) over arbitrary data with w(Π ′, G) ≤ w + ar(Σ).

Proof. Let (Π,G(x)) be a linear NDL query such that w(Π,G) ≤ w and such that it
is a rewriting of OMQ Q(x) = (O, q(x)) over complete data instances. We replace
every clause λ in Π by a set of clauses Λ′ defined as follows. Let λ be of the form

Q(z)← P (z0) ∧ S1(x1) ∧ · · · ∧ Sn(xn) ∧ ψ, (1)

where P (x0) is the only IDB body atom in λ, S1(x1), . . . , Sn(xn) are the EDB body
atoms not involving equality and ψ contains all equality body atoms. For every Si(xi),
we fix a set yi of fresh variables, |yi| ≤ ar(Σ), and define a set Γi of atoms that imply
Si(xi) with respect to O:

Γi =
{
γ(xi,yγ) | O |= γ(xi,yγ)→ Si(xi) with yγ ⊆ yi

}
.

Note that the Γi share the same additional variables yi (but the yi are pairwise disjoint).
Then Λ′ comprises the following clauses:

Q0(z0)← P (z0),

Qi(zi)← Qi−1(zi−1) ∧ γ(xi,yγ), for 1 ≤ i ≤ n and γ(xi,yγ) ∈ Γi,
Q(z)← Qn(zn) ∧ ψ,

where zi, for i > 0, is the union of zi−1 and xi (note that zn = z). Let Π ′ be
the program obtained from Π by replacing each clause λ by the set of clauses Λ′. By
construction, Π ′ is a linear NDL program and its width does not exceed w(Π,G) +
ar(Σ), where the possible increase is due to the yγ .

We now argue that (Π ′, G(x)) is a rewriting ofQ(x) over arbitrary data instances.
It can be easily verified that (Π ′, G(x)) is equivalent to (Π ′′, G(x)), where NDL pro-
gramΠ ′′ is obtained fromΠ by replacing each clause (1) by the (possibly exponentially
larger) set of clauses of the form

Q(z)← P0(z0) ∧ γ1(x1,yγ1) ∧ · · · ∧ γn(xn,yγn) ∧ ψ, (2)

for all γi(xi,yγi) ∈ Γi and 1 ≤ i ≤ n. It thus suffices to show that (Π ′′, G(x)) is a
rewriting ofQ(x) over arbitrary data instances.

First suppose thatO,D |= q(a), whereD is an arbitrary data instance. LetD′ be the
complete data instance obtained from D by adding the ground atoms S(c), for S from
Σ and c ⊆ ind(D), if O |= γ(x,y) → S(x) and γ(c, b) ∈ D, for some atom γ(x,y)
and some b ⊆ ind(D). Clearly, O,D′ |= q(a), so we must have Π,D′ |= G(a).
A simple inductive argument (on the order of derivation of ground atoms) shows that
whenever a clause (1) is applied using a substitution c for the variables in the body to
derive Q(c(z)) using Π , we can find a corresponding clause (2) and a substitution c′

extending c (on the fresh variables yγi) that allows us to derive Q(c′(z)) using Π ′′.

Indeed, for each 1 ≤ i ≤ n, we have Si(c(xi)) ∈ D′, so, there must exist some
γi(xi,yγi) such that O |= γi(xi,yγi) → S(x) and γi(c(xi), bi) ∈ D, for some
bi ⊆ ind(D); so, we set c′(yγi) = bi. It then suffices to choose the clause (2) whose
atoms match the ground atoms γi(c(xi), bi) ∈ D.

For the converse direction, observe that Π ⊆ Π ′′.
To complete the proof, we note that it is in NL to decide whether an atom belongs

to Γi, and thus we can construct the program Π ′ by means of an LNL-transducer.

B Correctness ofΠLOG
Q

Lemma 3. Let Q(x) = (O, q(x)). For any data instance D complete for O, any
D ∈ R, any type w with dom(w) = ∂D and any b ∈ ind(D)|var(w)|+|xD|, we have
ΠLOG

Q ,D |= Gw
D(b) iff there is a homomorphism h : qD → CO,D such that

h(z) =

{
b(z), for all z ∈ xD and all z ∈ ∂D with w(z) = ε,

w(z)[a/b(ã)], for all z ∈ ∂D with w(z) ∈ termO(P (a)).
(3)

Proof. (⇒) The proof is by induction on ≺. For the basis of induction, let D be of
size 1, that is, D = {t}. Then σ(D) = t. Suppose that ΠLOG

Q ,D |= Gw
D(b). Then

there must exist a type s with dom(s) = λ(σ(D)) such that s is compatible with
σ(D) and agrees with w on their common domain (which is ∂D), and D |= Ats(e)
for some e ∈ ind(D)|var(s)|+|xσ(D)| extending b (note that since D = {t}, we have
xσ(D) = xD).

We define a homomorphism h : qD → CO,D by taking, for each variable z in qD,

h(z) =

{
e(z), if z ∈ xD or s(z) = ε,

s(z)[a/e(ã)], if s(z) ∈ termO(P (a)).

Since b(z) = e(z) for all z in var(w) and s agrees with w on ∂D, we obtain (3).
It remains to show that h is a homomorphism. Let S(z) ∈ qD with z ⊆ λ(σ(D)).

We have the following three options.

– If s(z) ⊆ {ε}, then h(z) = e(z) for all z ∈ z, and S(e(z)) ∈ D since S(z) occurs
in the (d′)-component of Ats. It follows that S(h(z)) ∈ CO,D.

– If neither s(z) ⊆ {ε} nor s(z) ∩ {ε} = ∅, then, since s is compatible with bag t,
there is P (a) such that z = z′ ∪ z′′ for z′ = {z ∈ z | s(z) = ε} 6= ∅ and z′′ =
{z ∈ z | s(z) ∈ termO(P (a))} 6= ∅. Observe that h(z′) = e(z′) and h(z′′) =
s(z′′)[a/e(ã)]. Because of the (b)-component of Ats, atom P (e(ã)) is in D and
there is a grounding function g : z′ → a such that S(z)[z′/g(z′), z′′/s(z′′)] ∈
CO,{P (a)} and, for all z ∈ z′ with g(z) = a, we have e(z) = e(ã). It follows
that we have e(z′) = g(z′)[a/e(ã)]. Therefore, h(z) is the composition of two
substitutions, [z′/g(z′), z′′/s(z′′)] and [a/e(ã)], whence S(h(z)) is generated
by P (e(ã)).

– If s(z)∩{ε} = ∅, then, since s is compatible with bag t, there exists P (a) such that
s(z) ⊆ termO(P (a)). We also have S(s(z)) ∈ CO,{P (a)}. By the (i′)-component
of Ats, we have P (e(ã)) ∈ D. It follows that S(s(z)[a/e(ã)]) ∈ CO,D.

For the inductive step, suppose that ΠLOG
Q ,D |= Gw

D(b) for some D ∈ R, type w
with dom(w) = ∂D and b ∈ ind(D)|var(w)|+|xD|. By the definition of ΠLOG

Q , there
exists a type s such that dom(s) = λ(σ(D)) and w agrees with s on their common
domain and tuples e ∈ ind(D)|var(s)|+|xσ(D)| such that e agrees with b on their common
variables, and

ΠLOG
Q ,D |= Ats(e) ∧

∧
D′≺D

G
(s∪w)�∂D′
D′ (bD′),

where bD′ is the restriction of e ∪ b to var((s ∪ w) �∂D′) ∪ xD′ . By the induction
hypothesis, for each D′ ≺ D, there is a homomorphism hD′ : qD′ → CO,D such
that (3) is satisfied.

Let us show that the hD′ agree on common variables. Suppose that z is shared
by qD′ and qD′′ for D′ ≺ D and D′′ ≺ D. By the definition of tree decompo-
sition, for every variable z, the nodes {t | z ∈ λ(t)} induce a connected subtree
of T , and so z ∈ λ(σ(D)) ∩ λ(t′) ∩ λ(t′′), where t′ and t′′ are the unique neigh-
bours of σ(D) lying in D′ and D′′, respectively. Since w′ = (w ∪ s) �∂D′ and
w′′ = (w ∪ s) �∂D′′ are the restrictions of w ∪ s, we have w′(z) = w′′(z). By (3)
for hD′ and hD′′ , we obtain hD′(z) = (e ∪ b)(z) = hD′′(z) if w′(z) = w′′(z) = ε,
and hD′(z) = w′(z)[(e ∪ b)/(e ∪ b)(ã)] = w′′(z)[(e ∪ b)/(e ∪ b)(ã)] = hD′′(z) if
w′(z) = w′′(z) ∈ termO(P (a)).

We now define h by taking, for each variable z in qD,

h(z) =


hD′(z) if z ∈ λ(t), for z ∈ D′ and D′ ≺ D,
e(z), if z ∈ xD or z ∈ λ(σ(D)) and s(z) = ε,

s(z)[a/e(ã)], if z ∈ λ(σ(D)) and s(z) ∈ termO(P (a)),

If follows that h is well-defined and satisfies (3), and that h is a homomorphism from
qD to CO,D. Indeed, take an atom S(z) ∈ qD. Then either z ⊆ λ(σ(D)), in which
case S(h(z)) ∈ CO,D since s is compatible with σ(D) and ΠLOG

Q ,D |= Ats(e) (the
argument is similar to the base case), or S(z) ∈ qD′ for some D′ ≺ D, in which case
we use the fact that h extends homomorphism hD′ .

(⇐) The proof is by induction on ≺. For the basis of induction, fix D of size 1
and w with dom(w) = ∂D. Take b ∈ ind(D)|var(w)|+|xD| and a homomorphism
h : qD → CO,D satisfying (3). Define a type s and e ∈ ind(D)|var(s)|+|xσ(D)| in the fol-
lowing manner. First, let e coincide with b on xσ(D) and set s(x) = ε for x ∈ xσ(D).
Then, for all z ∈ λ(σ(D)) \ xD, if h(z) ∈ ind(D), then we set s(z) = ε and
e(z) = h(z). Otherwise, we have h(z) = f(a)[η], for f(a) ∈ termO(P (a)) and
η that maps a to ind(D). So, we set s(z) = f(a) and e(ã) = η(a). By definition,
dom(s) = λ(σ(D)) and, by (3), s and w agree on the common domain. Since h is a
homomorphism, ΠLOG

Q ,D |= Ats(e). Indeed, the (d′)-part of Ats(e) is true because of
completeness of D, while the (b′)- and (i′)-parts hold by the definition of the canonical
model. Therefore ΠLOG

Q ,D |= Gw
D(b).

For the inductive step, D is not necessary of size 1. In this case we construct s and
e ∈ ind(D)|var(s)|+|xσ(D)| exactly like in the basis of induction. In addition, for each
D′ ≺ D, let hD′ be the restriction of h to qD′ and let bD′ be the restriction of b ∪ e to

var(∂D′)∪xD′ . By the inductive hypothesis, we haveΠLOG
Q ,D |= Gw′

D′(bD′). Then, by
the argument similar to the basis of induction, we obtain ΠLOG

Q ,D |= Ats(e), whence
ΠLOG

Q ,D |= Gw
D(b).

C Correctness ofΠLIN
Q

Lemma 4. Let Q(x) = (O, q(x)). For any data instance D complete for O, any
predicate Gw

n and any tuple b ∈ ind(D)|var(w)|+|x≥n|, we have ΠLIN
Q ,D |= Gw

n (b) iff
there is a homomorphism h : qn → CO,D such that

h(z) =

{
b(z), for all z ∈ x≥n and all z ∈ zn∃ with w(z) = ε,

w(z)[a/b(ã)], for all z ∈ zn∃ with w(z) ∈ termO(P (a)).
(4)

Proof. (⇒) The proof is by induction on n from M to 0.

For the base case (n = M), first suppose that ΠLIN
Q ,D |= Gw

M (b,p), for some
type w for zM and some b ∈ ind(D)|var(w)| and p ∈ ind(D)|x

≥n|. The only rules in
ΠLIN

Q with head predicate Gw
M are Gw

M (var(w),x≥M) ← Ats(var(s),xM), for some
type s for yM that is compatible with yM and extends w. Therefore, there ist a type
s for yM that is compatible with yM and extends w such that D |= Ats(e) for some
e ∈ ind(D)|var(s)|+|x≥M | extending b.

We now define a homomorphism h from qM to CO,D. We set h(z) = e(z) for z
with s(z) = ε and h(z) = s(z)[a/e(ã)] for z with s(v) ∈ termO(P (a)). Note that
since s extendsw, we have b(z) = e(z) for all z ∈ var(w). Therefore, we have (4) for
all z ∈ zM∃ ∪ x

≥M .
It remains to show that h is indeed a homomorphism. Let S(z) ∈ qM with z ⊆ yM .

Then we have the following options.

– If s(z) ⊆ {ε}, Then h(z) = e(z) and S(e(z)) ∈ D because of the (d′)-component
of Ats. It follows that S(h(z)) ∈ CO,D.

– If neither s(z) ⊆ {ε} nor s(z)∩{ε} = ∅, then, since s is compatible with bag yM ,
there is P (a) such that z = z′ ∪ z′′ for z′ = {z ∈ z | s(z) = ε} 6= ∅ and z′′ =
{z ∈ z | s(z) ∈ termO(P (a))} 6= ∅. Observe that h(z′) = e(z′) and h(z′′) =
s(z′′)[a/e(ã)]. Because of the (b)-component of Ats, atom P (e(ã)) is in D and
there is a grounding function g : z′ → a such that S(z)[z′/g(z′), z′′/s(z′′)] ∈
CO,{P (a)} and, for all z ∈ z′ with g(z) = a, we have e(z) = e(ã). It follows
that we have e(z′) = g(z′)[a/e(ã)]. Therefore, h(z) is the composition of two
substitutions, [z′/g(z′), z′′/s(z′′)] and [a/e(ã)], whence S(h(z)) is generated
by P (e(ã)).

– If s(z) ∩ {ε} = ∅, then, since s is compatible with yM , there is P (a) such that
s(z) ⊆ termO(P (a)). We also have S(s(z)) ∈ CO,{P (a)}. Note thatP (e(ã)) ∈ D
due to the (d′)-component of Ats. It follows that S(s(z)[a/e(ã)]) ∈ CO,D.

For the inductive step, suppose that ΠLIN
Q ,D |= Gw

n (b). By the definition of ΠLIN
Q ,

there exist a type s for yn compatible with yn such that w agrees with s on their

common domain and a tuple e ∈ ind(D)|var(s)|+|xn| such that e(z) = b(z) for all
z ∈ var(w) ∪ xn, and

ΠLIN
Q ,D |= Ats(e) ∧Gs�zn+1

n+1 (b′),

where b′ is the restriction of e to var(s�zn+1) ∪ x≥n+1.
By the induction hypothesis, there is a homomorphism h′ : qn+1 → CO,D such that

h′(z) =

{
b′(z), for all z ∈ x≥n+1 and all z ∈ zn+1

∃ with s�zn+1 (z) = ε,

s�zn+1 (z)[a/b′(ã)], for all z ∈ zn+1
∃ with s�zn+1 (z) ∈ termO(P (a)).

Now we define h on every z in qn by taking

h(z) =


h′(z) if z ∈ zn+1,

e(z), if z ∈ xn or z ∈ yn and s(z) = ε,

s(z)[a/e(ã)], if z ∈ yn and s(z) ∈ termO(P (a)).

If follows that h is well defined and (4) holds for all z ∈ zn∃ ∪ x
≥n. It also follows

that h is a homomorphism from qn to CO,D. Indeed, take an atom S(z) ∈ qn. Then
either z ⊆ yn, in which case S(h(z)) ∈ CO,D since s is compatible with yn and
ΠLIN

Q ,D |= Ats(e) (the argument is similar to the base case), or S(z) ∈ qn+1, in
which case we use the fact that h extends homomorphism h′.

(⇐) We proceed by induction on n from M to 0. Take a type w for zn, a tuple
b ∈ ind(D)|var(w)|+|x≥n|, and a homomorphism h : qn → CO,D such that (4) holds.
We define a type s for yn and a tuple e ∈ ind(D)|var(s)|+|xn| coinciding with b on their
common domain in the following manner. For each variable z ∈ yn, if h(z) ∈ ind(D),
then we set s(z) = ε and e(z) = h(z); otherwise, h(z) is of the form f(a)[d/a],
where f(a) is a Skolem term and d ⊆ ind(D), and we set s(z) = f(a) and e(ã) = d.
Since h is a homomorphism, s is compatible with yn. It is also clear that s extends w.
It follows that the following rule appears in ΠLIN

Q

Gw
n (var(w),x

≥n)← Ats(var(s),xn) ∧Gs�zn+1

n+1 (var(s�zn+1),x
≥n+1)

(or Gw
M (var(w),x≥M)← Ats(var(s),xM) for the basis of induction, n = M). Since

h is a homomorphism, each of the ground atoms obtained by taking an atom from
Ats(var(s),xn) and substituting e for var(s)∪xn is present inD. Indeed, the (d′)-part
of Ats is true because of completeness of D, while the (b′)- and (i′)-parts hold by the
definition of canonical model. By applying the induction hypothesis to the predicate
Gs�zn+1

n+1 and the homomorphism h′ : qn+1 → CO,D obtained by restricting h to the
variables of qn+1, we obtain ΠLIN

Q ,D |= Gs
n+1(b

′), where b′ is the restrictions of e to
var(s�zn+1) ∪ x≥n+1 (this argument is not needed for the basis of induction, n =M).
Thus we can conclude that ΠLIN

Q ,D |= Gw
n (b).

ALGORITHM 1: Non-deterministic procedure for answering bounded-leaf OMQs over single-
atom instances.
Data: bounded-leaf OMQ (O, q(x)), single-atom data instance D = {α0}, tuple a from

ind(D)
Result: true if O,D |= q(a) and false otherwise

fix some (directed) join tree T for q, let β0 be its root atom; /* nodes=query atoms */
frontier←− {(∅, β0)}; /* first map β0, no constraints on mapping */
push α0 onto stack; /* initialize stack with data atom */
countLoop←− 0; /* number of iterations of the while loop */
maxLoop←− 4PQ2nn; /* bound on number of iterations */
numNulls←− 0; /* total number of nulls created so far */
while frontier 6= ∅ and countLoop ≤ maxLoop do

countLoop←− countLoop+ 1;
guess one of the 3 options;
if Option 1 then /* map frontier atom to top atom on stack */

α←− top(stack);
guess element (M,β) from frontier;
check homomorphism g from β to α such that g(z) = t for every z 7→ t ∈M and g(x)

appears in α0 for every x ∈ x;
remove (M,β) from frontier;
foreach atom γ that is a child of β in T do /* add children of β to
frontier */
Mγ ←− {z 7→ t | z ∈ vars(β) ∩ vars(γ) and g(z) = t};
frontier←− frontier ∪ {(Mγ , γ)};

else if Option 2 then /* push new atom onto stack */
α←− top(stack);
guess rule ρ that is applicable to α using homomorphism h;
let γ be result of applying ρ to β using h, with fresh nulls starting from numNulls;
push γ (with fresh nulls marked) onto stack;
numNulls←− numNulls+ (number of new nulls used in γ);

else if Option 3 and |stack| > 1 and no marked null in top(stack) occurs in frontier then
pop top atom from stack; /* pop atom from stack */

else return false;

if frontier = ∅ then /* all query atoms have been mapped */
return true;

D Answering Bounded-Leaf OMQs on Single-Atom Data

Theorem 6. Checking whether O, {P (a)} |= q(a) is in LOGCFL for bounded-leaf
acyclic CQs q(x) and O consisting of linear TGDs.

A LOGCFL OMQ answering algorithm is given in Algorithm 1. Intuitively, we
non-deterministically construct a homomorphism from q(x) to CO,D in a step-by-step
manner by traversing its join tree from root to leaves. To track our position in the query
we use variable frontier which records information about the atoms to be mapped at
the current step together with images of the variables that have been passed from the

predecessor nodes. A bound on the number of leaves gives a logarithmic bound on the
size of frontier.

We use the stack to store the anonymous part of the canonical model (which is
not subject to a logarithmic bound). We assume that the data instance consists of a
single atom which we put into stack. Then, we non-deterministically choose one of the
following options:

map an atom in frontier across the top atom of the stack;
push onto the stack a new atom that is generated by the atom that was previously on

the top of the stack;
pop an atom from the stack (available only if the top atom of the stack is not ‘blocked’

by the current position of frontier).

We also need a counter to keep the number of potential steps, which is linear with
respect to the size of the query.

To illustrate, suppose D = {S(a, b, c)} and let O is the set of the following rules:

S(x, y, z)→ ∃v P (z, y, v),
P (x, y, z)→ ∃v S(x, z, v),
S(x, y, z)→ T (z, x),

P (x, y, z)→ R(x, y) ∧Q(z, x).

Consider the CQ q(x0, x5) depicted below:

x0 x1 x2 x3 x4 x5

R R Q T T

Then we have O,D |= q because of the following fragment of the canonical model:

The algorithm discovers that by starting with stack = {S(a, b, c)} and guessing the
following sequence of options:

map x0 to b
push P (c, b, n1)
map x1 to n1
push S(c, n1, n2)
push P (x2, n1, n3)
map x2 to n3
map x3 to n2
pop P (x2, n1, n3)
map x4 to c
pop S(c, n1, n2)
map x5 to a

Now we provide a formal proof of correctness of Algorithm 1 and estimate the resources
required.

D.1 Proof Trees

Definition 1. A proof tree for q(a) with respect to atom α0 and linear TGDs O is a
rooted node-labelled tree with the following properties:

1. the root node is labelled α0;
2. for every node labelled α that has a child labelled β:

– β can be obtained by applying a single rule ρ ∈ O to α;
– if ρ is a rule of the form γ1(x)→ ∃y γ2(x′,y), then fresh nulls are used to in-

stantiate existential positions in β (that is, these nulls cannot be used elsewhere
in the tree as the nulls created by another rule application);

3. there is a homomorphism of q(a) into the set of atoms appearing in the node labels.

Lemma 7. If there is a proof tree for q(a) w.r.t. atom α0 andO, thenO, {α0} |= q(a).

Proof. Immediate. Homomorphism of query into the set of atoms of proof tree, which
can be homomorphically mapped into the canonical model. ut

Lemma 8. Let P be the number of predicates in O, n be the maximum arity of predi-
cates in O, and Q be the number of atoms in q. If O, {α0} |= q(a), then there exists a
proof tree for q(a) with respect to α0 and O of size at most Q · P · (2n)n.

Proof. Consider a match of the query in the Skolem chase and the derivation relation-
ships between the atoms of the chase. If the derivation path between two nodes involved
in the match contains two isomorphic atoms, then we can shorten the path (i.e. change
the match so that the path does not contain any isomorphic atoms). The total number of
non-isomorphic atoms is bounded by P · (2n)n as there are P choices of predicate, and
for every of the (at most n) positions, choose either one of the (≤ n) constants in α0 or
from at most n different nulls. ut

D.2 Proof of Correctness

The following proposition shows that the algorithm is complete.

Proposition 1. If O, {α0} |= q(a), then some execution of the algorithm on input
(O, q(x), {α0},a) returns yes.

Proof. SupposeO, {α0} |= q(a), and let T be a proof tree of size at mostQ ·P ·(2n)n
(which is guaranteed to exist by the lemma), with h the associated homomorphism
of q(a).

We will show how to define an execution of the algorithm that returns yes. At the
start of the algorithm, we fix some joint tree J for q(a), fix some β0 as root of J ,
and initialize frontier to {(∅, β0)}. We then push α0 onto the stack and give the initial
assignments to countLoop, maxLoop, and numNulls.

During the execution of the algorithm, new nulls will be created, with every such
null corresponding to some null in the proof tree T . To this end, we will maintain a
mapping f from the set of terms occurring in stack to the terms occurring in T , which
maps every constant to itself, and every null in stack to some null occurring in T . We
will use f(γ) to denote the result of replacing each term t in a stack atom γ by f(t).
We will show that at every point during the execution of the algorithm, we have the
following invariants:

(I0) The mapping f is injective.
(I1) Let γ1, . . . , γk be the atoms in the stack (from bottom to top). Then there is a branch

of T whose sequence of atoms (starting from the root) begins by f(γ1), . . . , f(γk).
(I2) If γ occurs on the stack and contains a marked null n, then f(γ) is the atom in T in

which f(n) was first created.

We will also incrementally construct a homomorphism g from the subquery q′ of q(a)
consisting of all atoms that have been removed from the frontier at some point so far
into the set of atoms S that have been added to stack at some point so far, satisfying the
following conditions:

(I3) for every z ∈ vars(q′), f(g(z)) = h(z);
(I4) if z 7→ n has appeared in some tuple of the frontier thus far in the execution, then

g is defined for z and g(z) = n.

Before the first iteration of the while loop, we let f be the function mapping each
constant in α0 to itself, and we let g have empty domain. Clearly, f and g thus defined
satisfy the invariants. Let us next suppose that at the current point of execution, the
mappings f and g satisfy the invariants. We need to show which non-deterministic
choices should be made by the algorithm during the next iteration so that the invariants
are preserved. We have the following cases:
Case 1: If α is the atom on the top of the stack and there is a frontier atom β ∈ q such
that h(β) = f(α), then we will choose option 1. We guess the unique element (M,β)
on the frontier that contains the atom β (it is easy to see that an atom can occur in at
most one frontier element). We now argue that the required homomorphism from β to
α exists. First note that since α is on the stack, we know from the invariant (I0) that f

is injective on the terms in α. This, together with our assumption that h(β) = f(α),
allows us to extend g to all variables in β by setting g(z) = f−1(h(z)) for every
variable z in β. Observe that g(β) = α, as required, and that g(z) = n due to (I4).
Further note that if β contains an answer variable x, then h(x) is a constant in α0,
and the same holds for g(x) = f−1(h(x)) = h(x). We have thus shown that the
required mapping g exists, and so we can proceed to remove (M,β) from the frontier.
We will also add to the frontier the new element (Mγ , γ) for every child γ of β, where
Mγ = {z 7→ t | z ∈ vars(β) ∩ vars(γ) and g(z) = t}.

We have now completed the current iteration of the while loop, and it remains to
show that the invariants continue to hold. As both the stack and the mapping f re-
main unchanged, the invariants (I0), (I1), and (I2) will remain true. The subquery q′

now additionally includes the atom β (as the element (M,β) was removed from the
frontier), and we have extended the homomorphism g to this new atom. By setting
g(z) = f−1(h(z)) for new variables z, we ensure that f(g(z)) = h(z), and thus
continue to satisfy (I3). Finally, let us consider a new frontier element (Mγ , γ) where
Mγ = {z 7→ t | z ∈ vars(β)∩vars(γ) and g(z) = t}. If z 7→ t ∈Mγ , then g is defined
for z and such that g(z) = t, as required for (I4).
Case 2: If Case 1 does not apply, but there exists a frontier atom β such that h(β) is
a successor of f(α) in T (with α = top(stack)), then we perform Option 2. If there
are multiple atoms β satisfying the preceding condition, then we choose β so that the
distance between h(β) and f(α) is minimal among all atoms satisfying the property.
We then consider the unique child κ of f(α) that lies along the path from f(α) to h(β)
in T . By the definition of a proof tree, we know that there exists a rule ρ ∈ O such
that κ is obtained from f(α) by applying ρ using homomorphism `. We construct an
atom γ by (i) replacing every term t in κ that is in the range of f by fw−1(t), and
(ii) replacing every null in κ that is not part of the range of f by a fresh null, using
the earliest available identifiers starting from numNulls. We mark these fresh nulls and
push the atom γ onto stack, then update countLoop and numNulls. To keep track of the
new nulls, we extend the mapping f so that each fresh null in γ is mapped to the unique
null in T that it replaced.

We now show that the invariants are preserved. By definition, our extension of f
preserves injectivity (I0). By assumption, prior to the addition of γ, the sequence of
atoms on the stack was mapped by f into an initial segment of a branch of T , ending
in f(α). Since f(γ) = κ is a child of f(α) in T , property (I1) is preserved. Next note
every new marked null n in the stack belongs to γ, and f(γ) = κ is the atom in T in
which f(n) was created, yielding (I2). As the homomorphism g and frontier are left
unchanged, the invariants (I3) and (I4) are trivially preserved.
Case 3: If neither Case 1 nor Case 2 applies, then we will perform Option 3. Note that
first that Option 3 is applicable. Indeed, if the top atom α contains a marked null n that
occurs in some frontier atom β, then we know that f(n) was created in the atom f(α)
of T , and hence h(β) must be a successor of f(α) (and so we would be in Case 2). We
can thus perform Option 3 by popping the atom α from stack. It is easily verified that
this action does not affect the satisfaction of the invariants.

We have just shown how to choose and execute, at every iteration of the while
loop, one of the three options. It remains to show that the frontier will become empty

after at most maxLoop iterations of the while loop, leading the algorithm to return yes.
First observe that whenever we choose Option 1, we ‘advance’ the frontier by replacing
the element corresponding to the selected atom β in T by elements corresponding to
the children of β. It follows that we can perform Option 1 at most Q times (where Q
is the number of query atoms), and that during the Q-th execution of Option 1, the
frontier will become empty. We next aim to bound the maximum number of iterations
of the while loop that may occur prior to the first execution of Option 1, and between
one execution of Option 1 and the subsequent execution of Option 1. To this end, we
observe that once we have chosen Option 2, then we will continue to perform Option 2
until the conditions for choosing Option 1 are satisfied. Indeed, let us define the distance
between the frontier and stack as

min{dβ | (M,β) ∈ frontier, h(β) is successor of f(α)
and dβ is the distance from f(α) to h(β)},

where α = top(stack). Then it is easy to see that our strategy for choosing the frontier
atom β in Option 2 ensures that the distance decreases by 1 every time we perform
Option 2. Thus, we will continue to select Option 2 until the distance is equal to zero
(i.e. we have h(β) = f(α)), in which case Option 1 can be applied. It follows that the
number of consecutive applications of Option 2 is bounded by the longest branch in T .
As for Option 3, we know that each application of this option pops a symbol from the
stack, and that the stack always corresponds, symbol for symbol, to an initial portion
of a branch in T . It follows that the maximal number of consequence applications of
Option 3 cannot exceed the length of the longest branch in T . Putting this altogether,
we have that before the first execution of Option 1, and between every subsequent pair
of executions of Option 1, there can be at most |T | executions of Option 3 and |T |
executions of Option 2. Thus, the total number of iterations of the while loop cannot
exceed 2Q|T |. Since we have chosen T so that |T | ≤ Q · P · (2n)n, this yields a total
of at most 4PQ2nn iterations, as required. ut

Proposition 2. If some execution of the algorithm on input (O, q(x), {α0},a) returns
yes, then O, {α0} |= q(a).

Proof. Suppose that some execution of the algorithm on input (O, q(x), {α0},a) re-
turns yes, and fix one particular successful execution. Without loss of generality, we
may suppose that the execution has the fewest number of iterations, say N , of the while
loop among all successful executions. We show how to use the execution of the algo-
rithm to build a proof tree T for q(a) w.r.t. atom α0 and O, along with a witnessing
homomorphism h from q(a) to the set of atoms appearing in the node labels of T .

We will use the notation Ti and hi respectively to refer to the proof tree T and
mapping h that we have defined based upon the first i iterations of the while loop, and
we will denote by q′i the set of atoms in q(a) that have been removed from the frontier
within the first i iterations. Initially, we let T0 be the proof tree consisting of a single
node labelled α0, h0 be the empty mapping, and q′0 be the empty query. We prove by
induction on 0 ≤ i ≤ N that

(a) Ti satisfies the first two conditions of being a proof tree

(b) hi is a homomorphism of q′i ⊆ q(a) into (the set of labels of) Ti
(c) if (M,β) belongs to frontier at the end of iteration i:

– if z 7→ t ∈M , then hi is defined for z and hi(z) = t;
– if hi is defined for z and z appears in β, then M contains z 7→ hi(z);

(d) if α has been added to stack at any time before the end of iteration i, then there is
a node in Ti labelled α.

These properties clearly hold when i = 0, and we will show that they hold for i = j+1
assuming that they hold when i = j. We have three cases, depending on which option
was used for the (j + 1)st iteration of the while loop.

Option 1 In this case, let α be the atom that was on the top of the stack at the beginning
of this iteration, and let (M,β) be the element that was guessed from the frontier. We
know that there is a homomorphism g from β to α such that g(z) = t for every z 7→ t ∈
M and g(x) appears in α0 for every x ∈ x. We define hj+1 as follows: hj+1(z) = g(z)
for every z occurring in β, and hj+1(z) = hj(z) for every z in the domain of hj . We
note that hj+1 is well defined, since if z occurs both in β and in the domain of hj , then
M contains z 7→ hj(z), and thus g(z) = hj(z).

We set Tj+1 = Tj and note that this means that (a) and (d) continue to hold (for
(d), we use the fact that stack is not modified by Option 1). Next we observe that
q′j+1 = q′j ∪ {β}. We know from our induction hypothesis that hj is a homomorphism
of q′j ⊆ q(a) into Tj . Since hj+1 agrees with hj on their common domain, it follows
that hj+1 is a homomorphism of q′j ⊆ q(a) into Tj+1 = Tj . Moreover, we know from
(d) that Tj contains a node labelled α. As g is a homomorphism from β to α, and hj+1

agrees with g on their common domain, it follows that hj+1 is a homomorphism of {β}
into Tj+1. Putting this together, we can infer that hj+1 is a homomorphism of q′j+1 into
Tj+1, so (b) is satisfied.

To show (c), observe that at the end of iteration j+1, frontier contains all elements
(M, δ) that were present after iteration j, as well as the new elements correponding to
the children of β that were added to the frontier during the application of Option 1.
More precisely, for every atom γ that is a child of β in the join tree for q(a), we will
have added the pair (Mγ , γ) to frontier, where

Mγ = {z 7→ t | z ∈ vars(β) ∩ vars(γ) and g(z) = t}.

First, consider some pair (M, δ) that was already in frontier after iteration j. It follows
from the induction hypothesis and our definition of hj+1 that if z 7→ t ∈M , then hj+1

is defined for z and hj+1(z) = t. Next, suppose that hj+1 is defined for z which occurs
in δ. If hj is defined for z, then the induction hypothesis and definition of hj+1 yield
z 7→ hj+1(z). If hj+1(z) is defined, but hj(z) is not defined, then z must occur in β.
Because δ 6= β and δ cannot be a descendant of β (since atoms are visited from root
to leaves), the connectivity condition on join trees implies that the parent atom of β in
the join tree, call it β′, contains the variable z. By the way the algorithm is defined, a
pair containing the atom β′ must already have been added and then later removed from
frontier by the end of iteration j. It follows then from the induction hypothesis that hj
is defined for z, and thus M contains z 7→ hj(z), which is the same as z 7→ hj+1(z).
We have thus shown that (c) holds for all pairs (M, δ) that was already in frontier after

iteration j, and it remains to show that the condition holds for the new pairs added
during iteration j + 1. Consider some such pair (Mγ , γ). If z 7→ t occurs in Mγ , then
by construction, z ∈ vars(β) ∩ vars(γ) and g(z) = t. Since g and hj+1 coincide on
their shared domain, we obtain hj+1(z) = t, so the first half of (c) is satisfied. To show
the second part, suppose that hj+1 is defined for z and z appears in γ. Since hj+1 is
defined for z, the variable z must belong to some atom that has already been removed
from the frontier, and given the order in which the join tree is explored, this atom cannot
be a descendant of γ. Because of the connectivity condition for join trees, it must be
the case that z occurs in β. Since z ∈ vars(β) ∩ vars(γ), we know that Mγ contains
z 7→ g(z), which is equal to z 7→ hj+1(z). We have thus shown that conditions (a)–(d)
all continue to hold at the end of iteration j + 1.
Option 2 Let α be the atom on that was on the top of the stack at the beginning of
this iteration, ρ be the guessed rule that is applicable to α using homomorphism f ,
and γ be result of applying ρ to β using h, with fresh nulls starting from numNulls.
By (d), we know that there is a node n in Tj that is labelled α. We let Tj+1 be the
result of adding a new node n′ to Tj as a child of n and labelling this node by γ.
Condition (a) holds because of the induction hypothesis and the fact that the label of
the new node corresponds to a rule application, with existential variables replaced by
fresh nulls, not used anywhere else in Tj . Condition (d) also holds since stack now
contains one additional atom, γ, which occurs as a label in Tj+1. As Option 2 does not
modify frontier, we can trivially satisfy conditions (b) and (c) by setting hj+1 = hj .
Option 3 If Option 3 is chosen, then we set Tj+1 = Tj and hj+1 = hj . Since this
option does not modify frontier nor add any new elements to stack, it follows from the
induction hypothesis that conditions (a)–(d) continue to hold after iteration j + 1.

To complete the proof, we observe that q′N must be equal to q(a) (as every query
atom must be added and later removed from the frontier at some point during the exe-
cution), and thus TN is a proof tree for q(a) with respect to {α0} andO. By Lemma 7,
O, {α0} |= q(a). ut

D.3 Membership in LogCFL

Proposition 3. The algorithm can be made to run on a logspace-bounded NAuxPDA.

Proof. The maximum number of iterations of the while-loop is bounded by 4PQ2nn,
where P is the number of predicates in O, n is the maximum arity of predicates in O,
andQ is the number of atoms in q. As we assume that n is bounded by a fixed constant,
this gives a polynomial bound on the number of iterations. Next we note that the max-
imum values of the counters countLoop and numNulls are also bounded polynomially
in the input, as they increase a constant amount with each iteration of the while loop.
Thus, the values of these counters can be stored using logarithmic space. We also note
that the algorithm only manipulates a polynomial number of different constants and
null values, so each tuple on the frontier can be stored using logarithmic space. Finally,
we note that because we are considering tree-shaped queries whose number of leaves
is bounded by a fixed constant, there can be at most a constant number of tuples on the
frontier at any point during the algorithm. Thus, the whole frontier can be stored using
logarithmic space.

