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n Software and Specification Reuse
n Section 20.2 (pp. 585 – 586) 
n Section 8.2 (pp. 234 – 237) 
n Section 8.4 (pp. 246 – 247) 
n Section 8.5.1 – 8.5.2 (pp. 252 – 253)

n Adding Further Structure (to Class Diagrams)
n Section 8.3.1 – 8.3.3 (pp. 237 – 244) 
n Section 14.4.4 (pp. 409 – 410) 

Outline
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Stereotypes: Entity Classes

Campaign

Campaign

title
campaignStartDate
campaignFinishDate

getCampaignAdverts( )
addNewAdvert( )

<<entity>> Campaign

title
campaignStartDate
campaignFinishDate

getCampaignAdverts( )
addNewAdvert( )

n Stereotypes differentiate the roles of objects
n Entity objects represent information and behaviour in the 

application domain
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Stereotypes: Boundary Classes

User Interface::AddAdvertUI

User Interface::AddAdvertUI

startInterface( )
assignStaff( )
selectClient( )
selectCampaign( )

<<boundary>>
User Interface::AddAdvertUI

startInterface( )
assignStaff( )
selectClient( )
selectCampaign( )

n Stereotypes differentiate the roles of objects
n Boundary objects model interaction between the system and 

actors (and other systems), e.g., user interface
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Stereotypes: Control Classes 

AddAvert

Control::AddAdvert

showClientCampaigns( )
showCampaignAdverts( )
createNewAdvert( )

<<control>>
Control::AddAdvert

showClientCampaigns( )
showCampaignAdverts( )
createNewAdvert( )

n Stereotypes differentiate the roles of objects
n Control objects co-ordinate and control other objects 

(often correspond to Use Cases)
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Association Classes



7

n The arguments for reuse are 
n partly economic

n saving time and effort in software development including 
software testing and quality assurance

n partly concerned with quality
n fewer defects

n partly about business flexibility
n faster time to market

Why Reuse?
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How O-O Contributes to Reuse
n Inheritance and Encapsulation

n Two main forms of abstraction that O-O relies on to achieve 
reuse

n Components
n Patterns
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Reuse: Encapsulation

n allows one class or component to be replaced by another 
with different internal details, as long as they adhere to the 
same external interface

n thus classes or components can be used in systems for which 
they were not originally designed

n a group of classes can be encapsulated through aggregation 
or composition to become a reusable subassembly

Universal Serial Bus (USB)
http://en.wikipedia.org/wiki/Universal_Serial_Bus
Plug and Play
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Reuse: Inheritance 

n encourages identifying those aspects of a design or 
specification that has general application to a variety of 
situations or problems 

n allows the creation of new specialised classes when needed,
with little effort

“Do not reinvent the wheel!”
http://en.wikipedia.org/wiki/Wheel
http://images.google.co.uk/images?q=wheel&hl=en
same circular form and central shaft
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Reuse: Components 

n For example, a house (bricks, tiles, doors, windows, pipes, 
etc.), a home theatre (a big screen TV, a DVD player, a 
decoder, an amplifier, speakers, etc.), …

n Software development has concentrated on inventing new 
solutions. Recently, the emphasis has shifted. Much software 
is now assembled from components that already exist.
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Reuse: Patterns  

n next year, Information Systems Management
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Adding Generalization Structure
n A generalization structure can be added when two 

classes are similar in most respects, but differ in 
some details such as
n behaviour (operations or methods)
n data (attributes)
n associations with other classes



14

Adding Generalization Structure0..*1..* allocated

Superclass
associations are 

inherited by
subclasses

calculateBonus ()

StaffMember
{abstract}

staffName
staffNo
staffStartDate
calculate Bonus ()
assignNewStaffGrade ()
getStaffDetails ()

CreativeStaff

qualification

assignStaffContact ()

Grade
gradeName

AdminStaff

calculateBonus ()

A superclass

Two 
subclasses

0..*1..* allocated

Superclass
associations are 

inherited by
subclasses

calculateBonus ()

StaffMember
{abstract}

staffName
staffNo
staffStartDate
calculate Bonus ()
assignNewStaffGrade ()
getStaffDetails ()

CreativeStaff

qualification

assignStaffContact ()

Grade
gradeName

AdminStaff

calculateBonus ()

AdminStaff

calculateBonus ()

A superclass

Two 
subclasses
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Liskov Substitution Principle
n In object interactions, it should be possible to treat a 

derived object as if it were a base object without 
integrity problems.
n If the principle is not applied, then it may be possible to 

violate the integrity of the derived object.

Prof Barbara Liskov

2009 A. M. Turing Award winner
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Disinheritance of debit() means that 
the left-hand hierarchy is not Liskov compliant

Liskov Substitution Principle
ChequeAccount

accountName
balance

credit()
debit()

MortgageAccount

interestRate

calculateInterest()
- debit()

Account

accountName
balance

credit()

ChequeAccount

debit()

MortgageAccount

interestRate

calculateInterest()

Restructuring 
to 

satisfy LSP
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Aggregation and Composition
n Two special types of association

n Aggregation represents a whole-part relationship between 
classes

n Composition expresses a similar relationship but differs in 
showing a stronger form of ownership by the whole

n Each part may belong to only one whole at a time.
n When the whole is destroyed, so are all its parts.
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n A student could be in a number of modules
n If a module is cancelled, students are not destroyed

Notation: Aggregation

Module Student0..*1..*

unfilled diamond denotes aggregation
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Meal Ingredient1..*1

filled diamond denotes composition

Notation: Composition

n An ingredient is in only one meal at a time
n If you drop your meal on the floor, you probably lose the 

ingredients too
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Take Home Messages
n Software and Specification Reuse

n Why Reuse
n How O-O Contributes to Reuse

n Adding Further Structure (to Class Diagrams)
n Generalization/Specialization

n Liskov Substituion Principle
n Aggregation and Composition


