
1

Information Systems Concepts

Refining the Requirements Model

Roman Kontchakov
Birkbeck, University of London

Based on Chapter 7, 8, 14 and 20 of Bennett, McRobb and Farmer:
Object Oriented Systems Analysis and Design Using UML, (4th Edition), McGraw Hill, 2010

2

n Software and Specification Reuse
n Section 20.2 (pp. 585 – 586)
n Section 8.2 (pp. 234 – 237)
n Section 8.4 (pp. 246 – 247)
n Section 8.5.1 – 8.5.2 (pp. 252 – 253)

n Adding Further Structure (to Class Diagrams)
n Section 8.3.1 – 8.3.3 (pp. 237 – 244)
n Section 14.4.4 (pp. 409 – 410)

Outline

3

Stereotypes: Entity Classes

Campaign

Campaign

title
campaignStartDate
campaignFinishDate

getCampaignAdverts()
addNewAdvert()

<<entity>> Campaign

title
campaignStartDate
campaignFinishDate

getCampaignAdverts()
addNewAdvert()

n Stereotypes differentiate the roles of objects
n Entity objects represent information and behaviour in the

application domain

4

Stereotypes: Boundary Classes

User Interface::AddAdvertUI

User Interface::AddAdvertUI

startInterface()
assignStaff()
selectClient()
selectCampaign()

<<boundary>>
User Interface::AddAdvertUI

startInterface()
assignStaff()
selectClient()
selectCampaign()

n Stereotypes differentiate the roles of objects
n Boundary objects model interaction between the system and

actors (and other systems), e.g., user interface

5

Stereotypes: Control Classes

AddAvert

Control::AddAdvert

showClientCampaigns()
showCampaignAdverts()
createNewAdvert()

<<control>>
Control::AddAdvert

showClientCampaigns()
showCampaignAdverts()
createNewAdvert()

n Stereotypes differentiate the roles of objects
n Control objects co-ordinate and control other objects

(often correspond to Use Cases)

6

Association Classes

7

n The arguments for reuse are
n partly economic

n saving time and effort in software development including
software testing and quality assurance

n partly concerned with quality
n fewer defects

n partly about business flexibility
n faster time to market

Why Reuse?

8

How O-O Contributes to Reuse
n Inheritance and Encapsulation

n Two main forms of abstraction that O-O relies on to achieve
reuse

n Components
n Patterns

9

Reuse: Encapsulation

n allows one class or component to be replaced by another
with different internal details, as long as they adhere to the
same external interface

n thus classes or components can be used in systems for which
they were not originally designed

n a group of classes can be encapsulated through aggregation
or composition to become a reusable subassembly

Universal Serial Bus (USB)
http://en.wikipedia.org/wiki/Universal_Serial_Bus
Plug and Play

10

Reuse: Inheritance

n encourages identifying those aspects of a design or
specification that has general application to a variety of
situations or problems

n allows the creation of new specialised classes when needed,
with little effort

“Do not reinvent the wheel!”
http://en.wikipedia.org/wiki/Wheel
http://images.google.co.uk/images?q=wheel&hl=en
same circular form and central shaft

11

Reuse: Components

n For example, a house (bricks, tiles, doors, windows, pipes,
etc.), a home theatre (a big screen TV, a DVD player, a
decoder, an amplifier, speakers, etc.), …

n Software development has concentrated on inventing new
solutions. Recently, the emphasis has shifted. Much software
is now assembled from components that already exist.

12

Reuse: Patterns

n next year, Information Systems Management

13

Adding Generalization Structure
n A generalization structure can be added when two

classes are similar in most respects, but differ in
some details such as
n behaviour (operations or methods)
n data (attributes)
n associations with other classes

14

Adding Generalization Structure0..*1..* allocated

Superclass
associations are

inherited by
subclasses

calculateBonus ()

StaffMember
{abstract}

staffName
staffNo
staffStartDate
calculate Bonus ()
assignNewStaffGrade ()
getStaffDetails ()

CreativeStaff

qualification

assignStaffContact ()

Grade
gradeName

AdminStaff

calculateBonus ()

A superclass

Two
subclasses

0..*1..* allocated

Superclass
associations are

inherited by
subclasses

calculateBonus ()

StaffMember
{abstract}

staffName
staffNo
staffStartDate
calculate Bonus ()
assignNewStaffGrade ()
getStaffDetails ()

CreativeStaff

qualification

assignStaffContact ()

Grade
gradeName

AdminStaff

calculateBonus ()

AdminStaff

calculateBonus ()

A superclass

Two
subclasses

15

Liskov Substitution Principle
n In object interactions, it should be possible to treat a

derived object as if it were a base object without
integrity problems.
n If the principle is not applied, then it may be possible to

violate the integrity of the derived object.

Prof Barbara Liskov

2009 A. M. Turing Award winner

16

Disinheritance of debit() means that
the left-hand hierarchy is not Liskov compliant

Liskov Substitution Principle
ChequeAccount

accountName
balance

credit()
debit()

MortgageAccount

interestRate

calculateInterest()
- debit()

Account

accountName
balance

credit()

ChequeAccount

debit()

MortgageAccount

interestRate

calculateInterest()

Restructuring
to

satisfy LSP

17

Aggregation and Composition
n Two special types of association

n Aggregation represents a whole-part relationship between
classes

n Composition expresses a similar relationship but differs in
showing a stronger form of ownership by the whole

n Each part may belong to only one whole at a time.
n When the whole is destroyed, so are all its parts.

18

n A student could be in a number of modules
n If a module is cancelled, students are not destroyed

Notation: Aggregation

Module Student0..*1..*

unfilled diamond denotes aggregation

19

Meal Ingredient1..*1

filled diamond denotes composition

Notation: Composition

n An ingredient is in only one meal at a time
n If you drop your meal on the floor, you probably lose the

ingredients too

20

Take Home Messages
n Software and Specification Reuse

n Why Reuse
n How O-O Contributes to Reuse

n Adding Further Structure (to Class Diagrams)
n Generalization/Specialization

n Liskov Substituion Principle
n Aggregation and Composition

