Information Systems Concepts

WI Refining the Requirements Model

o

Roman Kontchakov

Birkbeck, University of London

Based on Chapter 7, 8, 14 and 20 of Bennett, McRobb and Farmer:

Object Oriented Systems Analysis and Design Using UML, (4th Edition), McGraw Hill, 2010
1

. L IOutline

1
= Software and Specification Reuse
= Section 20.2 (pp. 585 — 586)
= Section 8.2 (pp. 234 — 237)
= Section 8.4 (pp. 246 — 247)
= Section 8.5.1 — 8.5.2 (pp. 252 — 253)

= Adding Further Structure (to Class Diagrams)
= Section 8.3.1 - 8.3.3 (pp. 237 — 244)
= Section 14.4.4 (pp. 409 — 410)

L IStereotypes: Entity Classes
o

<<entity>> Campaign Q
Campaign Palg

campaignFinishDate

getCampaignAdverts()
addNewAdvert()

campaignFinishDate

= Stereotypes differentiate the roles of objects

getCampaignAdverts()
addNewAdvert()

title title
campaignStartDate campaignStartDate

Campaign

= Entity objects represent information and behaviour in the

application domain

L IStereotypes: Boundary Classes
1

<<boundary>>
User Interface::AddAdvertUl @
User Interface::AddAdvertUI

startinterface() startinterface() @

assignStaff() assignStaff()
selectClient() selectClient() User Interface::AddAdvertUl
selectCampaign() selectCampaign()

= Stereotypes differentiate the roles of objects

= Boundary objects model interaction between the system and
actors (and other systems), e.g., user interface

L

L IStereotypes: Control Classes
=

<<control>>
Control::AddAdvert

showClientCampaigns()
showCampaignAdverts()
createNewAdvert()

Control::AddAdvert @

= Stereotypes differentiate the roles of objects

showClientCampaigns()
showCampaignAdverts()
createNewAdvert()

AddAvert

= Control objects co-ordinate and control other objects
(often correspond to Use Cases)

B

‘Association Classes
|

Grade

gradeDescription
gradeName

. 4 allocated to . Sl emier
1.. 0.. staffName
: staffNo
i staffStartDate
: assignStaffContact()
StaffGrade assignNewStaffGrade()
gradeFinishDate
gradeStartDate
assignlLatestGrade()

An association class

L IWhy Reuse?

=
= The arguments for reuse are
= partly economic

= Saving time and effort in software development including
software testing and quality assurance

= partly concerned with quality
= fewer defects

= partly about business flexibility
= faster time to market

L J—Iow O-0 Contributes to Reuse
b

= Inheritance and Encapsulation

= Two main forms of abstraction that O-O relies on to achieve
reuse

= Components
= Patterns

L ﬁeuse: Encapsulation
i —

= allows one class or component to be replaced by another
with different internal details, as long as they adhere to the
same external interface

= thus classes or components can be used in systems for which
they were not originally designed

= a group of classes can be encapsulated through aggregation
or composition to become a reusable subassembly

Universal Serial Bus (USB)

Plug and Play

.

1

ﬁeuse: Inheritance
|

= encourages identifying those aspects of a design or
specification that has general application to a variety of
situations or problems

= allows the creation of new specialised classes when needed,
with little effort

“"Do not reinvent the wheel!”
same circular form and central shaft

10

L

1

ﬁeuse: Components
|

= For example, a house (bricks, tiles, doors, windows, pipes,
etc.), a home theatre (a big screen TV, a DVD player, a
decoder, an amplifier, speakers, etc.), ...

=« Software development has concentrated on inventing new
solutions. Recently, the emphasis has shifted. Much software
is now assembled from components that already exist.

11

L

1

ﬁeuse: Patterns
|

= next year, Information Systems Management

12

L

1

‘Adding Generalization Structure
|

= A generalization structure can be added when two
classes are similar in most respects, but differ in
some details such as
= behaviour (operations or methods)
= data (attributes)
= associations with other classes

13

StaffMember «€---- A superciass
{abstract}
Grade 1." < allocated 0. | staffName
staffNo
gradeName P staffStartDate
ol calculate Bonus ()
al assignNewStaffGrade ()
,/ getStaffDetails ()
Superclass I'wo
associations are sub ,class €s
inherited by !
subclasses _ /I
yicsl v
AdminStaff CreativeStaff
qualification
IculateB
calculateBonus () calculateBonus ()
assignStaffContact ()

14

L J_iskov Substitution Principle
L- -

= In object interactions, it should be possible to treat a
derived object as iIf it were a base object without
integrity problems.

= If the principle is not applied, then it may be possible to
violate the integrity of the derived object.

Prof Barbara Liskov

2009 A. M. Turing Award winner

15

L J_iskov Substitution Principle
=

Disinheritance of debit() means that
the left-hand hierarchy is not Liskov compliant

ChequeAccount ‘\\ Account
\
A
accountName il T\ accountName
balance : . \ balance
1 Restructuring s
E to /
credit() 1 satisfy LSP ! .
debit() I it oredi()
~ AN
/
/
i
MortgageAccount MortgageAccount ChequeAccount
interestRate interestRate
calc.ulatelnterest() calculatelnterest() debit()
- debit()

L

1

‘Aggregation and Composition
|

= Two special types of association

= Aggregation represents a whole-part relationship between
classes

= Composition expresses a similar relationship but differs in
showing a stronger form of ownership by the whole
= Each part may belong to only one whole at a time.
= When the whole is destroyed, so are all its parts.

17

L

1

J\Iotation: Aggregation
_

= A student could be in a number of modules
« If @ module is cancelled, students are not destroyed

Module

<>1..* 0.x| Student

unfilled diamond denotes aggregation

18

L J\Iotation: Composition
o

= An ingredient is in only one meal at a time

= If you drop your meal on the floor, you probably lose the
ingredients too

Meal & 1 1. Ingredient
x

\
\

filled diamond denotes composition

L I'I'ake Home Messages
L

o
= Software and Specification Reuse
= Why Reuse
= How O-O Contributes to Reuse

= Adding Further Structure (to Class Diagrams)
= Generalization/Specialization
= Liskov Substituion Principle
= Aggregation and Composition

20

