
Information Systems Concepts

eXtreme Programming

Roman Kontchakov

Birkbeck, University of London

Based on Chapter 21 of Bennett, McRobb and Farmer:

Object Oriented Systems Analysis and Design Using UML, (4th Edition), McGraw Hill, 2010



Outline

XP

Section 21.6 (pp. 625–627)

ISC 2018-10 1



What is XP?

eXtreme Programming (XP) is probably
the most prominent agile development methodology

(first publicized by Kent Beck)

ISC 2018-10 2



eXtreme

Young Programmer: Wow! Cool! Let’s try it!
Senior Manager: Isn’t it silly, tricky and dangerous?

ISC 2018-10 3



What is XP?

XP is a novel combination of
best practices in software development

each knob is a ‘best practice’
known to work well

in software development

turn all knobs up to 10 (the extreme)
and leave out everything else

ISC 2018-10 4



Embracing Change

XP emphasises that embracing change is important
and key to systems development

everything in development changes:
business, technology, team, requirements, etc.

the problem is not change,
because change is going to

happen anyway
the problem is our inability

to cope with change

ISC 2018-10 5



Underlying Principles:
1. Communication

Poor communication is a significant factor in failing projects
XP highlights the importance of good communication

among developers

between developers and users

Developers work in open workspaces
and rely on oral communication

ISC 2018-10 6



Underlying Principles:
2. Simplicity

Developers are sometimes tempted to use technology
for technology’s sake

rather than seeking the simplest effective solution
and justify complex solutions as

a way of meeting possible future requirements

XP focuses on the simplest solution
for the immediate known requirements

“Measuring programming progress by lines of
code is like measuring aircraft building

progress by weight.”
Bill Gates

ISC 2018-10 7



Underlying Principles:
3. Feedback

Unjustified optimism is common in systems development

Developers tend to underestimate the time
required to complete any particular programming task

This results in poor estimates of project completion,
constant chasing of unrealistic deadlines, stressed developers

and poor productivity

XP is geared to giving the developers frequent and
timely feedback from users and from test results

Work estimates are based on the work actually completed
in the previous iteration

ISC 2018-10 8



Underlying Principles:
4. Courage

The exhortation to be courageous urges the developer
to throw away code that is not quite correct

and start again, rather than trying to fix the unfixable

Essentially the developer has to abandon
unproductive lines of code,

despite the personal emotional investment in work done

ISC 2018-10 9



12 Best Practices

Planning Game

Small Releases

Metaphor

Simple Design

Testing

Refactoring

Pair Programming

Collective Ownership

Continuous Integration

40-Hour Week

On-Site Customer

Coding Standards

ISC 2018-10 10



Best Practices:
1. Planning Game

The planning game involves quickly defining the scope of
the next release from user priorities and technical estimates
The plan is updated regularly as the iteration progresses

ISC 2018-10 11



User Stories

Requirements capture in XP is based on user stories
that describe the requirements

written by the user
form the basis of project planning and the development of tests

A user story is very similar to use cases,
though there are key differences in granularity:

A typical user story is about three sentences long
and does not include any detail of technology

When the developers are ready to start work,
they get detailed descriptions of the requirements

by sitting face-to-face with their customer

ISC 2018-10 12



User Story: Examples

As a user, I want to search for my customers
by their first and last names.

As a non-administrative user, I want to modify my
own schedules but not the schedules of other users.

Starting Application: The application begins by
bringing up the last document

the user was working with.

As a user closing the application, I want to be
prompted to save if I have made any change

in my data since the last save.

ISC 2018-10 13



Best Practices:
2. Small Releases

The information system should be delivered in small releases
that incrementally build functionality through rapid iteration

Each release is as small as possible,
but still delivering business value

Get customer feedback early and often

ISC 2018-10 14



Best Practices:
3. Metaphor

A unifying metaphor or high-level shared story
focuses the development

provides the view from 10k feet above

helps to guide the team, e.g., when naming objects

visualizes the information system in terms of something both sim-
ple and concrete

For example, in the C3 payroll project:
the paycheque goes down the assembly line

and pieces of information are added to it

ISC 2018-10 15



Best Practices:
4. Simple Design

The system should be based on a simple design
No Big Design Up Front (BDUF)

Do the simplest thing that could possibly work
You Ain’t Gonna Need It (YAGNI)

ISC 2018-10 16



Best Practices:
5. Testing

Developers prepare unit tests in advance
of software construction

Test-Driven Development (TDD)

tests are automated, often using the xUnit framework

must run at 100% before proceeding

Customers define acceptance tests
written together with the customer

acts as ‘contracts’

a measure of progress

late, expensive testing leaves many defects

frequent testing reduces costs and defects

ISC 2018-10 17



Best Practices:
6. Refactoring

Restructuring the existing program code
(without changing its functionality) to

remove duplication
simplify the code
improve flexibility

Refactor Mercilessly:
XP developers can rely on testing to ensure

nothing breaks in the process of refactoring

ISC 2018-10 18



Best Practices:
7. Pair Programming

Two developers write code together using one workstation
One developer, the driver, has control of the keyboard

and mouse and creates the implementation
The other developer, the
passenger, watches the driver’s
implementation to identify
defects and participates in
on-demand brainstorming
The roles of driver and
passenger are periodically
rotated between the two
developers
ISC 2018-10 19



Best Practices:
7. Pair Programming

An empirical study by Laurie Williams (NCSU)

Pairs produced higher quality code
15% less defects

Pairs completed their tasks in about half the time
58% of elapsed time

Most programmers reluctantly embark on pair
programmingpairs enjoy their work more (92%)

pairs feel more confident in their work products (96%)

India Technology Company

24% increase in productivity (kloc/person-month)

10-fold reduction in defectsISC 2018-10 20



Best Practices:
8. Collective Ownership

The code is owned collectively and
anyone can change any code

Cleaner code
developers are not required to work around deficiencies in objects they do not own

Faster progress
no need to wait for someone else to fix something

ISC 2018-10 21



Best Practices:
9. Continuous Integration

The system is integrated and built frequently each day
This gives the opportunity for regular testing and feedback

Do it often
integrate and test every few hours, at least once per day

All tests must pass
easy to tell who broke the code

Only one pair integrates code into the base at a time
simplifies issues arising from parallel integration

Eliminates need for an integration team

ISC 2018-10 22



Best Practices:
10. 40-hour Week

Normally staff should work no more than 40 hours a week
Kent Beck: “. . . fresh and eager every morning,

and tired and satisfied every night”

Burning the midnight oil kills performance
Tired developers make more mistakes,

which slows you down more in the long run

If you mess with people’s personal lives (by taking it over),
in the long run the project will pay the consequences

ISC 2018-10 23



Best Practices:
11. On-Site Customer

A user should be a full-time member of the team

The customer available on site clarifies user stories
and makes critical business decisions

developers don’t make assumptions

developers don’t have to wait for decisions

Face to face communication minimizes
the chances of misunderstanding

ISC 2018-10 24



Best Practices:
12. Code Standards

All developers should write code according to
agreed standards that emphasize good communication

through the code

Consistency saves time and money

makes it easier to understand other people’s code

avoids code changes because of syntactic preferences

The code should be intention-revealing

if you can’t explain your code with a comment,
rewrite it

if your code needs a comment to explain it, rewrite it
ISC 2018-10 25



Using XP

The effectiveness of XP comes from using
the 12 best practices together

You can use a practice outside of the XP context,
but you will not receive maximum benefits in productivity or quality

XP is not sympathetic
to using UML for system analysis and design

The code itself is its own design documentation

XP relies on clear communicative code
and rapid feedback

If these are not possible then XP would be problematic

XP is best suited to projects with a relatively
small projects (e.g., no more than 10 programmers)

ISC 2018-10 26



Take Home Messages

XP

4 Underlying Principles

12 Best Practices

ISC 2018-10 27


