
1

Information Systems Concepts

 Problems in Information
Systems Development

Roman Kontchakov

Birkbeck, University of London

Based on Chapter 2 of Bennett, McRobb and Farmer:
Object Oriented Systems Analysis and Design Using UML, (4th Edition), McGraw Hill, 2010

2

Outline

 What Are the Problems?
 Section 2.2 (pp. 44 – 52)

 Why Things Go Wrong?
 Section 2.3 (pp. 52 – 56)

 Essence and Accidents of Software Development

4

70% of software projects fail
(The Standish Group report, 2005)

An Exaggeration?

6

Three types of players in IS project

 end-users
– those who will benefit from the system’s outputs, directly or

indirectly
 clients

– managers, those who have control or influence over
the initiation, direction or progress of the project

 developers
– those who are responsible for the development of the IS

 “What system? I haven’t seen a system.”
 vapourware -- projects that are never finished

 “It might work, but its dreadful to use!”
poor interface, incomprehensible error messages,

unhelpful 'help', poor response time, unreliability

 “It’s very pretty, but does it do anything useful?”

7

End-user’s perspective

8

Client’s perspective

 “If I’d known the real price, I’d never have agreed.”
 “It’s no use delivering it now, we needed it last April!”
 “OK, so it works, but the installation was such a mess my

staff will never trust it.”
 “I didn’t want it in the first place.”
 “Everything has changed now, we need a completely

different system.”

9

Developer’s perspective

 “We built what they said they wanted.”
 “There wasn’t enough time to do it any better.”
 “Don’t blame me, I’ve never done OO analysis before!”
 “How can I fix it? I don’t know how it’s supposed to work.”
 “We said it was impossible, but no-one listened.”
 “The system is fine. The users are the problem.”

10

Why Things Go Wrong?

We are better!We are faster!

11

Why Things Go Wrong?

 Quality Problems
 The wrong problem is addressed

 System conflicts with business strategy
 The context is neglected

 Organization culture may be ignored
 The system analysis or design is performed incorrectly

 Team is poorly skilled or inadequately resourced (e.g., not
enough time allowed)

 The project is carried out for the wrong reason
 Technology pull or political push (e.g., the dot.com crashes)

12

Why Things Go Wrong?

 Productivity Problems
 Customers change their minds about the requirements

 Requirements drift
 External events change the environment

 e.g., new legislation, introduction of the Euro currency, etc.
 Implementation is not feasible

 May not be known until the project has started
 Poor project management

 Inexperienced management or political difficulties

13

Geoffrey James: The Tao of
Programming (chapter 5.2)

A manager asked a programmer how long it would take him to finish the program
on which he was working.

“It will be finished tomorrow,” the programmer promptly replied.

“I think you are being unrealistic,” said the manager, “Truthfully, how long will it
take?”

The programmer thought for a moment. “I have some features that I wish to add.
This will take at least two weeks,” he finally said.

“Even that is too much to expect,” insisted the manager, “I will be satisfied if you
simply tell me when the program is complete.”

The programmer agreed to this.

Several years later, the manager retired. On the way to his retirement luncheon,
he discovered the programmer asleep at his terminal. He had been programming
all night.

http://www.canonical.org/~kragen/tao-of-programming.html

http://www.canonical.org/~kragen/tao-of-programming.html

14

Geoffrey James: The Tao of
Programming (chapter 3.4)

A manager went to the master programmer and showed him the requirements
document for a new application.

The manager asked the master: “How long will it take to design this system if I
assign five programmers to it?”

“It will take one year”, said the master promptly.

“But we need this system immediately or even sooner! How long will it take if I
assign ten programmers to it?”

The master programmer frowned. “In that case, it will take two years.”

“And what if I assign a hundred programmers to it?”

The master programmer shrugged. “Then the design will never be completed,” he
said.

http://www.canonical.org/~kragen/tao-of-programming.html

http://www.canonical.org/~kragen/tao-of-programming.html

15

Why Things Go Wrong?

 That Sinking Feeling
 Debugging the Development Process by Steve Maguire,

Chapter 8

If your project is slipping, something is wrong.
Don’t ignore the causes and demand long hours
of the team members. Find and fix the problems.

16

Brooks' Law

Adding manpower to
a late software project
makes it later.

17

The Mythical Man-Month

 100 Man-Month?
 1 Man x 100 Month
 10 Man x 10 Month
 100 Man x 1 Month

Group Intercommunication Formula:

n(n−1)/2

e.g., 50 developers give 50·(50–1)/2=1225
channels of communication

18

No Silver Bullet

“Essence and Accidents of
Software Engineering”

by F.P. Brooks

19

The essence of software development

 Difficulties defined by the issues inherent in the
software itself
 software is a product of a creative act (not a result of a

repetitive act of manufacturing)
 Software development inherent properties
 (not amenable to ‘silver bullets’ or breakthroughs):

 complexity (no repetitive elements)
 conformity (to old interfaces, no redesign)
 changeability (is often used beyond the original domain)
 invisibility (no geometric representation)

20

The accidents of software development

 Difficulties due to software production practices
 Software development variables: amenable to human

intervention
 attributed mostly to the fact that an information system is a

social system
 the software solution must not be adding to the inherent

complexity of the software product
 adaptiveness (supportability) is the challenge

 = understandability + maintainability + scalability
(extensibility)

 related to
 stakeholders, process and modelling

21

Linus' Law

Given enough eyeballs,
all bugs are shallow.

22

Measuring programming progress by
lines of code is like measuring aircraft
building progress by weight.

Lines of Code

23

Take Home Messages

 What Are the Problems?
 3 types of main players  3 perspectives

 Why Things Go Wrong?
 Quality Problems
 Productivity Problems

 Essence and Accidents of Software Development

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

