
7. Extensible Style Language

1. Extensible Style Language (XSL)
2. XSLT example
3. XSLT rules
4. XSLT Program Skeleton
5. Data Model - example document
6. Data Model - example tree
7. Data Model Description
8. XSLT Processing Model
9. RSS Example

10. Example of an XSLT Rule
11. Another Example of an XSLT Rule
12. Example: RSS headlines
13. Saxon and XT
14. Using a stylesheet processing instruction
15. Example: RSS descriptions
16. Example: RSS headlines (again)
17. Some XPath expressions
18. XPath expressions
19. Relative expressions
20. Simple subset of XPath
21. Example: using XPath (1)
22. Example: using XPath (2)
23. Built-in template rules (1)
24. Built-in template rules (2)
25. More XPath examples
26. Predicates
27. Node-Set Functions
28. Examples
29. Some other XSLT instructions
30. Further XSLT elements
31. Querying and transforming JSON
32. Exercises
33. Links to more information

7.1. Extensible Style Language (XSL)
XSL is a W3C Recommendation
rather than rules of CSS like

CDcollection { ... }
CD { ... }

XSL uses template rules like

<xsl:template match="CDcollection">
 ...
</xsl:template>

<xsl:template match="CD">
 ...
</xsl:template>

so XSL uses XML syntax, i.e., XSL is an XML vocabulary

https://www.w3.org/TR/xsl

it uses the namespace https://www.w3.org/1999/XSL/Transform, usually with prefix xsl:
we will only cover a subset of XSL, namely XSLT (XSL transformations)

7.2. XSLT example
consider the CD collection XML file
CSS can be used to provide a presentation
now consider its presentation using XSL with an XSLT file
note that

elements have been reordered: e.g., publisher
elements have been processed more than once: e.g., soloist
a heading has been added

7.3. XSLT rules
unlike CSS, XSLT rules do not just apply styles to elements
XSLT is a language for transforming an input document to an output document (e.g., XHTML)
given an XSLT rule like

<xsl:template match="CD">
 ...
</xsl:template>

the value of the match attribute (e.g., CD) is a pattern for matching part of the input document
the contents of the template element (e.g., ...) is a sequence of instructions for constructing part
of the output document

7.4. XSLT Program Skeleton
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="...">
 ...
 </xsl:template>

 <xsl:template match="...">
 ...
 </xsl:template>

 ...

</xsl:stylesheet>

https://www.w3.org/TR/xslt
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/cd.xml
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/cd-css.xml
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/cd-xsl.xml
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/cd.xsl

7.5. Data Model - example document
<CD publisher="Deutsche Grammophon"
 length="PT1H13M37S" >
 <composer>Johannes Brahms</composer>
 <performance>
 <composition>Piano Concerto No. 2</composition>
 <soloist>Emil Gilels</soloist>
 <orchestra>Berlin Philharmonic</orchestra>
 <conductor>Eugen Jochum</conductor>
 </performance>
 <performance>
 <composition>Fantasias Op. 116</composition>
 <soloist>Emil Gilels</soloist>
 </performance>
</CD>

note that the CD element now has two attributes

7.6. Data Model - example tree
document is viewed as a tree (hierarchy) of nodes

7.7. Data Model Description
6 types of node:

root, element, attribute, text, comment, processing instruction
root of tree is different from (and parent of) root element of the document (CD in example)
in the example slide

the special root node is red
element nodes are yellow
attribute nodes are pink
text nodes are green

element nodes have associated set of attribute nodes
attribute nodes are not children of element nodes
order of child element nodes is significant

file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/slide16.html

7.8. XSLT Processing Model
processor (e.g., browser) reads an input XML document and an XSLT stylesheet
input XML document viewed as a tree (the source tree)
processing starts at root node of source tree
a single node is processed by

finding the template rule with the best matching pattern
once found, executing the template instructions (often selecting more nodes to process) and
creating a fragment of the output document (result tree)
if not found, proceeding with the list of child nodes

a node list is processed by processing each node in order
process continues recursively until no new source nodes are selected

7.9. RSS Example
recall the RSS example, reproduced below

<rss>
 <channel>
 <title> ... </title>
 ...
 <item>
 <title> ... </title>
 <description> ... </description>
 <link> ... </link>
 <pubDate> ... </pubDate>
 </item>
 ...
 <item>
 <title> ... </title>
 <description> ... </description>
 <link> ... </link>
 <pubDate> ... </pubDate>
 </item>
 </channel>
</rss>

7.10. Example of an XSLT Rule
 <xsl:template match="channel">
 <html>
 <xsl:apply-templates select="item"/>
 </html>
 </xsl:template>

template matches channel elements
the value of the match attribute is an XPath expression in general (see later)
the matched element is called the context node
<html> and </html> are instructions to construct output element using literals
<xsl:apply-templates select="item"/> is an instruction to apply templates to all item children of the
context node
the select attribute value is also an XPath expression
patterns allowed in match are a subset of expressions allowed in select

file:///Users/ptw/Documents/teaching/IWT/slides/html-xml-json/html-xml-json.html#(20)
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/notes.html#(29)

7.11. Another Example of an XSLT Rule
 <xsl:template match="item">
 <p>
 <xsl:value-of select="title"/>
 </p>
 </xsl:template>

template matches item elements
<p> and </p> are literals constructing a result element named p
xsl:value-of element is an instruction to output the value of what is selected by select attribute value

7.12. Example: RSS headlines
an XSLT processor will take as input

the XML source rss-fragment.xml
the XML stylesheet rss-headlines.xsl comprising the two previous rules

apply the stylesheet to the source to give
the HTML output

 <html>
 <p>Policewoman shot during burglary</p>
 <p>Lebanon marks Hariri anniversary</p>
 <p>MPs to vote on full smoking ban</p>
 </html>

(see rss-fragment-headlines.html)

7.13. Saxon and XT
Saxon and XT are XSLT processors written in Java
to run xt in the labs, you can use the batch file xt.bat in n:\xmltools
e.g., running the following from the command line

n:\xmltools\xt rss-fragment.xml rss-headlines.xsl rss-fragment-headlines.html

takes rss-fragment.xml and rss-headlines.xsl as input
produces rss-fragment-headlines.html as output
to use Saxon in the labs, you can use the batch file saxon.bat in n:\SaxonHE

n:\SaxonHE\saxon
 rss-fragment.xml rss-headlines.xsl rss-fragment-headlines.html

7.14. Using a stylesheet processing instruction
web browsers have XSL processors built in to them
can be invoked by including a stylesheet processing instruction in the XML source file
processing instruction comes after the XML declaration and before the root element
an example might be:

<?xml-stylesheet href="rss-headlines.xsl" type="text/xsl" ?>

where the value of href is a URI and the value of type is a MIME type
using the above stylesheet in our RSS fragment yields rss-fragment-headlines.xml (view the source to
see the stylesheet processing instruction)

7.15. Example: RSS descriptions

file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-fragment.xml
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-headlines.xsl
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-fragment-headlines.html
http://saxon.sourceforge.net/
http://www.jclark.com/xml/xt.html
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-fragment.xml
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-headlines.xsl
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-fragment-headlines.html
file:///Users/ptw/Documents/teaching/IWT/slides/html-xml-json/html-xml-json.html#(23)
file:///Users/ptw/Documents/teaching/IWT/slides/html-xml-json/html-xml-json.html#(23)
file:///Users/ptw/Documents/teaching/IWT/slides/internet-apps/internet-applications.html#(24)
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-fragment-headlines.xml

applying the stylesheet rss.xsl comprising

 <xsl:template match="channel">
 <html>
 <head>
 <title><xsl:value-of select="title"/></title>
 </head>
 <body>
 <table border="1">
 <xsl:apply-templates select="item"/>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="item">
 <tr>
 <td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="description"/></td>
 </tr>
 </xsl:template>

to rss-fragment.xml yields (rss-fragment.html) rss-fragment-xsl.xml as viewed in a browser with the
correct stylesheet processing instruction

7.16. Example: RSS headlines (again)
can use one rule instead of two:

 <xsl:template match="channel">
 <html>
 <xsl:for-each select="item">
 <p>
 <xsl:value-of select="title"/>
 </p>
 </xsl:for-each>
 </html>
 </xsl:template>

xsl:for-each selects all item children of channel
instructions given as contents of xsl:for-each element are applied to each item in turn
note that title selects child elements of item named title

7.17. Some XPath expressions
XPath is a general language for selecting nodes from an XML document tree, used in

match attribute of xsl:template element
select attribute of xsl:apply-templates, xsl:value-of and xsl:for-each elements

we've seen the simplest kinds of expressions: simple element names like channel
can build up paths of names:

channel/title

selects all title children of channel children of the current context node
can select the parent of the context node: ..
can select the the context node itself: .
can select the special extra root node of the tree: /
can select descendants of the root node:

//title

selects all title children of descendants of the root (including itself)

file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss.xsl
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-fragment.xml
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-fragment.html
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-fragment-xsl.xml

7.18. XPath expressions
an XPath expression is either

an absolute expression or
a relative expression

an absolute expression
starts with /
is followed by a relative expression
and is evaluated starting at the root node

a relative expression is
a sequence of location steps
each separated by /

example (absolute expression comprising 2 steps):

/item/title

7.19. Relative expressions
relative expression is evaluated with respect to an initial context (set of nodes)
initial context is defined externally (e.g. by XSLT)

<xsl:template match="item">
 <xsl:value-of select="title"/>
</xsl:template>

context for title given by item
each location step

is evaluated with respect to some context
produces a set of nodes which
provides the context for the next location step

7.20. Simple subset of XPath
subset uses abbreviated syntax
a location step has one of 3 forms:

it is empty, i.e., //
element-name predicates
@attribute-name predicates

an empty step means search all descendants of each node in the context
element-name means find all child elements of each node in the context which have the given name
@attribute-name means find the attribute node of each node in the context which has the given name
optional predicates (each enclosed in [and]) filter out nodes

7.21. Example: using XPath (1)
output all title elements from RSS feed
first rule is

<xsl:template match="/">
 <html>
 <body>
 <xsl:apply-templates select="//title"/>
 </body>
 </html>
</xsl:template>

rule matches only the root node of the document (match="/")

select attribute causes templates to be applied only to title descendents of the root node

7.22. Example: using XPath (2)
other rules are

 <xsl:template match="channel/title">
 <h1><xsl:value-of select="."/></h1>
 </xsl:template>

 <xsl:template match="image/title"/>

 <xsl:template match="item/title">
 <p>
 <xsl:value-of select="."/>

 <xsl:value-of select="../description"/>
 </p>
 </xsl:template>

the first rule matches title elements that are children of channel elements
the matched element (title) is selected using .
the second rule matches title elements that are children of image elements and does nothing (we will
see why later)
the third rule matches title elements that are children of item elements
the description element, which is a sibling of the matched title is selected using ../
the result of applying rss-xpath.xsl is rss-fragment-xpath.xml (rss-fragment-xpath.html)

7.23. Built-in template rules (1)
if an element node is selected by a stylesheet but no rule matches it, the processor tries to find rules to
match each of the node's children
the following rule is effectively built in:

<xsl:template>
 <xsl:apply-templates/>
</xsl:template>

template with no match attribute matches any node, but the above rule has the lowest priority
apply-templates with no select attribute applies rules to all child nodes

7.24. Built-in template rules (2)
if a text or attribute node is selected by a stylesheet but no rule matches it, the processor outputs the
node's value
the following rule is effectively built in:

<xsl:template match="text()|@*">
 <xsl:value-of select="."/>
</xsl:template>

text() matches text nodes
@ matches attribute nodes
* matches any (attribute) name
| matches either of its operands (text() or @*)

7.25. More XPath examples
consider file cd.xml

file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-xpath.xsl
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-fragment-xpath.xml
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/rss-fragment-xpath.html
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/cd.xml

view results using
XPath Expression Testbed (available online)
XPath Tool (available online)

/CDlist/CD: all child CD elements of the CDlist element that is the child of the root
//composer: all composer elements that are descendants of the root
//performance/composer: all composer child elements of performance elements which are descendants
of the root
//performance[composer]: all performance elements that have a composer element as a child
//CD[performance/date]: all CD elements that have a performance element as a child that has a date
element as a child
//performance[conductor][date]: all performance elements that have both conductor and date
elements as children

7.26. Predicates
predicates filter out nodes from an ordered node-set S
evaluate predicate on each node x in node-set S with

x as the context node
the size of S as the context size
the position of x in S as the context position

predicate comprises
Boolean expressions: using and, or, not, =, ...
numerical expressions: using +, -, ...
node-set expressions: location paths filtered by predicates
node-set functions

7.27. Node-Set Functions
last(): returns context size
position(): returns context position
count(S): returns number of nodes in S
name(S): returns name of first node in S
id(S): returns nodes who have an ID-type attribute with a value in S
e.g.

position()=2: true if node is 2nd in the context
position()=last(): true if node is last in the context

7.28. Examples
count(//performance): the number of performance elements
//performance[not(date)]: performance elements that do not have a date element as a child
all CD elements that have "Deutsche Grammophon" as publisher and have more than one performance
element as child:

//CD [publisher="Deutsche Grammophon"
 and count(performance) > 1]

or

//CD [publisher="Deutsche Grammophon"]
 [count(performance) > 1]

or

//CD [count(performance) > 1]
 [publisher="Deutsche Grammophon"]

http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm
http://www.qutoric.com/xslt/analyser/xpathtool.html

7.29. Some other XSLT instructions
<xsl:choose>
 <xsl:when test="...">
 ...
 </xsl:when>
 <xsl:otherwise>
 ...
 </xsl:otherwise>
</xsl:choose>
...
<xsl:if test="...">
 <xsl:copy-of select="..."/>
</xsl:if>

use choose for conditional processing:
contents of when processed if result of test expression is true
contents of otherwise processed if result of every test expression is false
if element is used for conditional processing where there is no "else" part
copy-of copies the selected input (whole tree rooted at node) to output

7.30. Further XSLT elements
xsl:variable element names a variable and assigns a value to it
xsl:element element allows an element to be created with a computed name
xsl:attribute element can be used to add attributes to result elements
literal data characters may also be wrapped in an xsl:text element
xsl:comment element is instantiated to create a comment node in the result tree
sorting specified by adding xsl:sort elements as children of xsl:apply-templates or xsl:for-each
element

7.31. Querying and transforming JSON
W3C has extended its XQuery and XPath Data Model 3.1 (W3C Recommendation, 21 March 2017)
this is the data model of Path 3.1, XSLT 3.0, and XQuery 3.1
the model supports JSON by adding maps and arrays
a map is just a collection of key/value pairs (JSON object)
XSLT 3.0 provides two functions, json-to-xml() and xml-to-json(), to convert between JSON and
XML
XPath 3.1 (and XQuery 3.1) can query maps and arrays
JSONiq is a query language for JSON, based on XQuery

7.32. Exercises
1. Consider an XML representation of information about students on an MSc programme. All information

should be represented using elements rather than attributes. The root element of the document is
programme. A programme has a degree, whose value might be "MSc", and a year, whose value might be
"2018/2019". These elements are followed by the results for the programme. The results are
partitioned into distinction, merit, pass and fail. Within each is a sequence of name elements, each
containing the name of a person having achieved the corresponding result for the programme.

Write an XSL template rule that, when matched against an XML document described above, produces an
HTML document comprising a list of names of those students who obtained distinctions. The title of the
document should be assembled from the contents of the degree and year elements, so that the answer
when run on the document with the values suggested above would be "MSc (2018/2019)". There should
be a level-2 heading "List of Distinctions", followed by an unnumbered list of names of students who

https://www.w3.org/TR/xpath-datamodel-31/
https://www.w3.org/TR/xpath-31/
http://www.jsoniq.org/

obtained a distinction.

2. Write an XSLT program which will transform an XML document of the form:

<teaches>
 <teaches-tuple course="IWT" lecturer="Peter Wood"/>
 <teaches-tuple course="CS" lecturer="Szabolcs Mikulas"/>
</teaches>

into one of the form:

<teaches>
 <teaches-tuple>
 <course>IWT</course>
 <lecturer>Peter Wood</lecturer>
 </teaches-tuple>
 <teaches-tuple>
 <course>CS</course>
 <lecturer>Szabolcs Mikulas</lecturer>
 </teaches-tuple>
</teaches>

You can assume that teaches is the root element, and that the course and lecturer attributes are
required. Obviously your program should work for any number of occurrences of the teaches-tuple
element.

3. For this exercise the source XML document is booker.xml. This file contains information about winners
of the Booker prize. You should save a copy of this file in the directory where you intend to do the
exercise. You will need to look at the document in order to see how the elements are structured.

Write an XSLT program to extract the titles of all books that have won the Booker prize. The output
should be in HTML and each book title should be inserted inside double quote marks and should
constitute a separate HTML paragraph.
Write an XSLT program to produce a table of winners of the Booker prize. The output should be in
HTML, with a heading "Winners of the Booker Prize" (excluding the quotes). This should be
followed by a table with column headings "Author", "Book title" and "Year" (excluding the
quotes). Each row of the table should include the author, title and year of a Booker prize winner.

Note that the rows in the table are ordered by author name. You can change this ordering by using
the xsl:sort element. This empty element is placed as the contents of an xsl:apply-templates
element or as the first child of an xsl:for-each element. Attributes include order, with values
"ascending" (the default) and "descending", data-type, with values "text" (the default) and
"number", and select, to order elements by the values of, for example, one of its child elements.

Modify your program to order the table by descending year of award.

7.33. Links to more information
The notes for the course are produced by applying

the stylesheet in notes.xsl
to the source XHTML, e.g. for this section xsl.html
giving the result notes.html

www.w3.org/Style/XSL/
W3C's XSL home page
www.w3.org/TR/xslt
W3C's XSLT page
hands-on-xsl.pdf
hands-on XSL: a simple exercise demonstrating the principles of XSLT (previously available from IBM

file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/booker.xml
file:///Users/ptw/Documents/teaching/IWT/slides/notes.xsl
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/xslt.html
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/notes.html
https://www.w3.org/Style/XSL/
https://www.w3.org/TR/xslt
file:///Users/ptw/Documents/teaching/IWT/slides/xslt-2019/hands-on-xsl.pdf
http://www-106.ibm.com/developerworks/

developerWorks)
nwalsh.com/docs/tutorials/xsl/
an XSL tutorial by Paul Grosso and Norman Walsh
www.zvon.org/xxl/XSLTreference/Output/
an XSLT reference using examples; links to other XML tutorials
metalab.unc.edu/xml/books/bible/updates/14.html
a chapter from the XML Bible on XSL Transformations (and XPath)
saxon.sourceforge.net/
SAXON, an XSLT implementation written in Java
chris.photobooks.com/xml/default.htm
an online resource for evaluating XPath expressions and XSLT stylesheets
github.com/ghislainfourny/jsoniq-tutorial
a tutorial on JSONiq and link to an online sandbox for testing

XSLT is covered in Chapter 6 and 7 of [Jacobs] and in Chapter 5 of [Moller and Schwartzbach].

http://www-106.ibm.com/developerworks/
http://nwalsh.com/docs/tutorials/xsl/
http://www.zvon.org/xxl/XSLTreference/Output/
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://saxon.sourceforge.net/
http://chris.photobooks.com/xml/default.htm
https://github.com/ghislainfourny/jsoniq-tutorial

