
6. Client-Side Processing

1. Client-side processing
2. JavaScript
3. Client-side scripting
4. Document Object Model (DOM)
5. Document methods and properties
6. Events
7. Calling a function
8. Table of squares function
9. Comments on previous script

10. Defining a function
11. Event handlers
12. Event handlers example
13. Event listeners
14. Functions and form fields
15. Defining the function myTranslate
16. Navigating the DOM tree
17. Finding elements by name
18. Finding elements by name (function body)
19. Using CSS selectors
20. Adding elements
21. Deleting elements
22. Using jQuery
23. Using jQuery to add elements
24. Finding elements by name (jQuery)
25. DOM and XML
26. jQuery method to load an XML file
27. Retrieving RSS item titles
28. Retrieving JSON data
29. JSON country data
30. Code for JSON retrieval (1)
31. Code for JSON retrieval (2)
32. Exercises
33. Links to more information

6.1. Client-side processing
client program (e.g. web browser) can be used to

customise interaction with the user
validate user input (although HTML5 now provides this)
generate (part of) document dynamically
send requests to a server in the background
make interaction with a web page similar to that of a desktop application

this is typically done using JavaScript, since a Javascript interpreter is built into browsers

6.2. JavaScript
interpreted, scripting language for the web
loosely typed

variables do not have to be declared
the same variable can store values of different types at different times

HTML <script> element specifies script to be executed
type attribute has value text/javascript
src attribute specifies URI of external script
usually <script> appears in the <head> and just declares functions to be called later

ECMAScript, 10th edition (June 2019) is the latest standard

6.3. Client-side scripting
Javascript scripts can be executed upon, e.g.,

a script element being encountered in a document (not recommended)
event occurrences

many different events (18 in HTML 4, many more in HTML 5):
window events: load, unload
mouse events: click, mouseup, mousemove
keyboard events: keydown, keyup
form events: submit
media events: play

6.4. Document Object Model (DOM)
DOM is a W3C recommendation (levels 1, 2, 3 and 4)
defines API for HTML and XML documents
defines logical structure (model) of documents
document modelled as a tree (or forest) of nodes
using DOM, programmers can

build documents
navigate their structure
add, modify, delete elements and content

purpose is to provide portability across web browsers
DOM is platform-neutral and language-neutral
language bindings for JavaScript, among others

6.5. Document methods and properties
The following

Document title: Client-Side ProcessingDocument title: Client-Side Processing

was generated by placing the following script

<script type="text/javascript">
 document.write("Document title: ", document.title);
</script>

inside an HTML table cell (not recommended)
document is a special object referring to the document displayed in the browser window
write is a method defined on an HTML document, which writes text into it

http://www.w3.org/TR/html4/interact/scripts.html
https://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.w3.org/TR/html4/interact/scripts.html#h-18.2.3
http://www.w3.org/DOM/DOMTR

title is a property defined on document, which retrieves the title

6.6. Events
more commonly, scripts are executed in response to events, e.g, clicking a button
the following button Click to see a message was produced using (old style):

<button onClick="window.alert('Hello World!')">
 Click to see a message
</button>

the button element creates a button
what is displayed on the button is specified by the contents of the button element
onClick is an event attribute
alert is a method of window, which opens a new window displaying the message given as
argument
here the script is embedded in the value of the onClick attribute
best practice dictates that HTML and Javascript should be separated

6.7. Calling a function
say we want to call a Javascript function when a button is clicked
we can use the following code (still old style):

<button onclick="tableOfSquares()">Click to produce table of squares</button>

this will produce the button Click to produce table of squares which calls the user-defined function
tableOfSquares
we need somewhere on the page to write the table
we use an empty li element with id="tos"

6.8. Table of squares function
the following function produces a table of squares of the first n integers, where n is entered by
the user:

function tableOfSquares() {
 // Display a prompt with a zero in it
 var num = window.prompt("Enter an integer", "0");
 var myTable = "<table class='border figure'>";
 var count = 0;
 while(count < num) {
 // Each row of the table is an integer and its square
 myTable = myTable + "<tr><td>" + count + "</td><td>"
 + count*count + "</td></tr>";
 count++;
 }
 document.getElementById("tos").innerHTML = myTable + "</table>";
}

6.9. Comments on previous script
var declares a variable
variables do not need to be declared before use, nor are they statically typed

a variable can be initialised with a value, e.g., count is set to zero
a JavaScript comment is indicated by //
prompt is a method of window, which opens a dialog box with the given message and default
value for the input; it returns the value entered by the user
myTable is used to store a string representing an HTML table
JavaScript provides the usual while and for loop constructs
+ is used for string concatenation
count++ adds one to the value of the variable count
getElementById is a document method returning a reference to the identified element
innerHTML is a property of DOM nodes which can be set by assigning to it a string representing
HTML

6.10. Defining a function
function tableOfSquares has to be defined somewhere, either

in a script element in the head of the document, or
in an external file with the extension js

in our case, all functions are defined in the external file client.js
this file is referenced in the head of this document as follows:

<script type="text/javascript" src="client.js" />

6.11. Event handlers
the value of an onclick attribute is an event handler
rather than embedding the event handler code in the HTML, it is preferable to

bind the click event to the button, and
associate a handler function with the event

in Javascript code separate from the HTML
now the code for the button (which we need to be able to identify) is:

<button id="hello-button">Click to produce message</button>

the code for binding the click event to the button and associating an event handler function is:

document.getElementById("hello-button").onclick = helloAgain;

note that helloAgain is simply the name of the function to be called

6.12. Event handlers example
one problem is that the element with id hello-button is only available after the page has
loaded
so we need to delay binding the click event to the button, as follows:

window.onload = function() {
 document.getElementById("hello-button").onclick = helloAgain;
 }

this binds the load event to the window object
it also associates an anonymous function with the event
when button Click to produce message is clicked, the event handler calls the user-defined
function helloAgain
function helloAgain is defined as follows:

function helloAgain() {
 window.alert("Hello again world!");
}

6.13. Event listeners
rather than setting the onclick property (attribute) of an element:

document.getElementById("hello-button").onclick = helloAgain;

we could add an event listener to the button element as follows:

document.getElementById('hello-button').addEventListener('click', helloAgain);

this calls helloAgain when the click event occurs
this provides the most flexible form of event handling, e.g.:

multiple functions can be called for a single event
event listeners can be removed using removeEventListener

6.14. Functions and form fields

Enter a word: Translate

the above was generated by the following:

<form>
 <label>Enter a word:</label>
 <input type="text" id="myWord" />
 <input type="button" id="myButton" value="Translate" />
 <input type="text" id="myResult" />
</form>

the form element indicates an HTML form
an HTML form is usually used for submitting information to a server, but not here
the input element (with type="text") creates a single-line textbox
the input element (with type="button") creates a button with the given value displayed on it
myWord, myButton and myResult identify the input elements of the form
in the Javascript file

 document.getElementById("myButton").onclick = myTranslate;

will call myTranslate (next slide) when the button is clicked

6.15. Defining the function myTranslate
function myTranslate is defined (in client.js) as follows:

function myTranslate() {
 var word = document.getElementById("myWord").value;
 var result = "unknown";
 if (word === "hello")
 result = "buongiorno";
 else if (word === "goodbye")
 result = "arrivederci";
 document.getElementById("myResult").value = result;
}

word contains the word the user entered

value refers to the contents of the identified input elements
JavaScript has two equality operators: == and ===
== tests if two values are equal (possibly after type coercion)
=== tests if both the types and values are equal, so is considered safer
e.g., (1 == true) is true, while (1 === true) is false

6.16. Navigating the DOM tree
each DOM node object has a number of properties for navigation, e.g.:

firstChild
nextSibling
parentNode
childNodes

which return, respectively, the first child, next sibling, parent and all children of the node
other properties include

nodeName
nodeValue

for returning the name of an element node and the textual content of a text node, respectively
often easier to navigate using the getElementsByTagName method, which takes an element
name as argument and returns a collection of all element nodes with that name

6.17. Finding elements by name
say we want to output the value of all h1 elements from the current document
we want them to appear as a list below when the following button is clicked: Click for headings

6.18. Finding elements by name (function body)
we can use the following script:

var headings = document.getElementsByTagName("h1");
var output = "";
for (i = 0; i < headings.length; i++)
 output = output + "" + headings[i].firstChild.nodeValue + "";
document.getElementById("headingList").innerHTML = output + "";

getElementsByTagName returns a collection of nodes
length is a property of a collection; it returns the number of items in the collection
the i'th item in a collection can be retrieved using item(i) as a method call or using array-like
indexing
firstChild is a property of a node; it returns the first child of the node if it exists, otherwise it
returns null
nodeValue is a property of a node; it returns the text value of the node if it is a text node,
otherwise it returns null
an element with textual contents is represented by an element node having a single text node as
a child

6.19. Using CSS selectors
the DOM also provides the methods

querySelector
querySelectorAll

which take CSS selectors as argument and are more flexible
querySelector returns the first matching node, while querySelectorAll returns all matching
nodes
instead of getElementsByTagName("h1") we could use querySelectorAll("h1")
instead of getElementById("headingList") we could use querySelector("#headingList")
but we could also use selectors

div.slide to find all div elements with class value slide
div li to find all li elements within div elements
div.slide > h1 to find all h1 elements which are children of div elements with class
value slide
a[href^='http'] to find all a elements with an href attribute whose value starts with
http

6.20. Adding elements

the button Add li element is defined as follows:

<button id="addButton">Add li element</button>

with click event handler is assigned as follows:

document.getElementById("addButton").onclick = addElement;

the ul element on this slide is identified by id="target1"
function addElement is defined as follows (in client.js):

function addElement() {
 var elem = document.getElementById("target1");
 var node = document.createElement("li");
 var text = document.createTextNode("Hello");
 node.appendChild(text);
 elem.appendChild(node);
}

which appends a new li element to the identified ul element
createElement is a method which creates an element with the given name
createTextNode is a method which creates a text node with the given value
appendChild is a method of a node; it appends the given node to the list of the node's children

6.21. Deleting elements

the button Delete ul element is defined as follows:

<button id="deleteButton">Delete ul element</button>

with click event handler is assigned as follows:

document.getElementById("deleteButton").onclick = deleteElement;

the ul element on this slide is identified by id="target2"
function deleteElement is defined as follows (in client.js):

function deleteElement() {
 var elem = document.getElementById("target2");
 elem.parentNode.removeChild(elem);
}

which deletes the identified ul element

removeChild is a method of a node; it removes the given node from the list of the node's
children

6.22. Using jQuery
jQuery is a popular JavaScript library which simplifies DOM operations
it also takes care of differences among browsers
the jQuery file jquery-3.3.1.min.js is referenced by these pages
instead of using the deleteElement function, we could use

function() {$('#target2').remove();}

jQuery defines the object/method named $
which can take a CSS selector as an argument
and returns the collection of elements selected

the remove method deletes the elements on which it is invoked

6.23. Using jQuery to add elements
instead of using the addElement function, we could use

function() {$('#target1').append($('', {'text':'Hello'}));}

the append method adds a new last child to elements on which it is invoked
the function $ creates a new element when passed a string representing an empty element as
first argument
the second argument is an object comprising property-value pairs:

the text property is interpreted as the textual contents of the element
other properties are interpreted as attribute names

6.24. Finding elements by name (jQuery)
using jQuery, the example of finding headings could be done as follows:

 var ul = $('#headingList').append($(''));
 $('h1').each(function() {
 ul.append($('', {'text': $(this).text()}));
 });

each iterates over a set of elements; the function it takes as argument is called for each element
this returns the element on which the function is called
text returns the textual contents of an element

6.25. DOM and XML
JavaScript can use DOM objects, properties and methods to read and navigate through an XML
document like rss-fragment.xml
recall its structure is as follows

<rss>
 <channel>
 <title> ... </title>
 ...
 <item>
 <title> ... </title>

http://jquery.com/
file:///Users/ptw/Documents/teaching/IWT/slides/client-2019/notes.html#(19)
file:///Users/ptw/Documents/teaching/IWT/slides/client-2019/rss-fragment.xml

 <description> ... </description>
 <link> ... </link>
 <pubDate> ... </pubDate>
 </item>
 ...
 <item>
 <title> ... </title>
 <description> ... </description>
 <link> ... </link>
 <pubDate> ... </pubDate>
 </item>
 <channel>
</rss>

uses the XML parser built into the browser to construct a DOM tree

6.26. jQuery method to load an XML file
$.get("rss-fragment.xml",
 function(xml) {
 ...
 },
 "xml"
);

this uses the get method of jQuery
allows you to retrieve an XML file from the same domain as the loaded page (same origin
policy)
the method takes (at least) 3 arguments:

the first is the URL
the second is a function to be called on successful retrieval; it is passed the data retrieved
(the root of the DOM tree)
the third is the type of the data retrieved (XML)

6.27. Retrieving RSS item titles
say we want to return a list of RSS item titles when the following button is clicked:

List item titles

the id of the above button is listButton
in client.js we bind a function name to the click event for the button:

document.getElementById("listButton").onclick = findItemTitles;

there is an empty div element below, with id="TitleList"
findItemTitles simply executes the code on the previous slide where the body of the function
is:

var titles = xml.querySelectorAll("item > title")
var output = "";
for (i = 0; i < titles.length; i++)
 output = output + "" + titles[i].firstChild.nodeValue + "";
document.getElementById("TitleList").innerHTML = output + "";

Address

6.28. Retrieving JSON data
consider the following form:

Please select a country County/Province/State:

the code for the form is as follows:

<form>
 <fieldset>
 <legend>Address</legend>
 <select id='addressCountry'>
 <option value='na'>Please select a country</option>
 <option value='ca'>Canada</option>
 <option value='gb'>United Kingdom</option>
 <option value='us'>United States</option>
 </select>
 <label for='addressState'>County/Province/State:</label>
 <select id='addressState'></select>
 </fieldset>
</form>

say we want to populate the drop-down list of counties/provinces/states by retrieving a list for
the selected country from the server
we also want to overwrite County/Province/State with the term appropriate for the country
selected
(This example is taken from the book "Web Development with jQuery" by Richard York, Wrox
Press, 2015.)

6.29. JSON country data
there are JSON files for each country: ca.json, gb.json and us.json
the one for the UK (gb.json) looks as follows:

{
 "name" : "United Kingdom",
 "iso2" : "GB",
 "iso3" : "GBR",
 "label" : "County",
 "states" : {
 "0" : " ",
 "794" : "Angus",
 ...
 "988" : "York"
 }
}

label gives the correct term for County/Province/State
states will be used to populate the drop-down list

6.30. Code for JSON retrieval (1)
the code is as follows:

 $('#addressCountry').change(
 function() {
 // Remove all of the options
 $('#addressState').empty();
 if (this.value === 'na') return;
 $.getJSON(
 this.value + '.json',
 function(json) {
 // Change the label
 $('label[for="addressState"]').text(
 json.label + ':'
);
 ... see next slide
 }
);
 }
);

change (rather than click) event is needed for select in Chrome and Safari
jQuery provides a getJSON function which retrieves a JSON file from the server

first argument is the name of the file
second argument is a function to be called on success and passed the JSON data

6.31. Code for JSON retrieval (2)
the code for setting the options is as follows:

 // Set the options ...
 $.each(
 json.states,
 function(id, state) {
 $('#addressState').append(
 $('<option/>')
 .attr('value', id)
 .text(state)
);
 }
);

each iterates over each key/value pair of the states
for each one, the function is called and passed the key and value (id and state)
a new option is added each time, with its value attribute set to the id of the state and its text
set to the value of state

6.32. Exercises
1. Implement the following functions:

Function celsius returns the Celsius equivalent of a Fahrenheit temperature using the
calculation C= 5.0/9.0 * (F-32)
Function fahrenheit returns the Fahrenheit equivalent of a Celsius temperature using
the calculation F = 9.0/5.0 * C + 32

2. Use the functions from (1) to write a script that enables the user to enter either a Fahrenheit
temperature and display the Celsius equivalent or enter a Celsius temperature and display the
Fahrenheit equivalent. You can either write two new functions that call your functions from (1)

or modify those functions instead. Your HTML document should contain a form with two
buttons and two input fields. The one button initiates the conversion from Fahrenheit to Celsius,
while the other initiates the conversion from Celsius to Fahrenheit. The input fields hold the two
temperatures: one as input, the other as output. For simplicity, call the functions using onClick
attributes. (see slide 15 and slide 16.)

3. Now modify the code in (2) so that it does not use onClick attributes but instead binds events
to the buttons. Remember to use window.onload to delay the bindings until after the page has
loaded (as in slide 13).

4. Reproduce the code to output information from the RSS document fragment as on slide 27 and
slide 28, but outputting item descriptions rather than titles. For this, you will need to save a
copy of the RSS document in your own web space (see the intranet for instructions). Your
HTML page will also need to be there and you will need to access it over the web, using
titan.dcs.bbk.ac.uk/~..., where ... is your username. Your HTML page will also need to
reference the jQuery library, either remotely or by saving a copy in your web space. The version
I use is here.

6.33. Links to more information
www.webteacher.com/javascript/
JavaScript Tutorial for the Total Non-Programmer
www.w3schools.com/js/default.asp
JavaScript Tutorial
www.w3.org/DOM/
W3C's DOM web page
www.w3.org/TR/2000/WD-DOM-Level-1-20000929/ecma-script-language-binding.html
W3C DOM objects, properties and methods in JavaScript
www.w3schools.com/dom/default.asp
DOM Tutorial
Introduction to events (MDN web docs)
a good introductory book on jQuery is: Beginning jQuery, by Jack Franklin, Apress, 2013
a more comprehensive book on jQuery is: Web Development with jQuery, by Richard York,
Wrox Press, 2015

There are many books devoted to Javascript and/or jQuery. DOM is covered in Chapter 7 of
[Moller and Schwartzbach] and Chapter 8 of [Jacobs]. See above for books on jQuery.

file:///Users/ptw/Documents/teaching/IWT/slides/client-2019/notes.html#(15)
file:///Users/ptw/Documents/teaching/IWT/slides/client-2019/notes.html#(16)
file:///Users/ptw/Documents/teaching/IWT/slides/client-2019/notes.html#(13)
file:///Users/ptw/Documents/teaching/IWT/slides/client-2019/rss-fragment.xml
file:///Users/ptw/Documents/teaching/IWT/slides/client-2019/notes.html#(27)
file:///Users/ptw/Documents/teaching/IWT/slides/client-2019/notes.html#(28)
file:///Users/ptw/Documents/teaching/IWT/slides/client-2019/jquery-3.3.1.min.js
http://www.webteacher.com/javascript/
http://www.w3schools.com/js/default.asp
http://www.w3.org/DOM/
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/ecma-script-language-binding.html
http://www.w3schools.com/dom/default.asp
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events

