
Ontology-Mediated Query Answering over
Temporal Data: A Survey
Alessandro Artale1, Roman Kontchakov2, Alisa Kovtunova1,
Vladislav Ryzhikov1, Frank Wolter3, and Michael Zakharyaschev2

1 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
{artale,alisa.kovtunova,ryzhikov}@inf.unibz.it

2 Department of Computer Science and Information Systems, Birkbeck,
University of London, UK
{roman,michael}@dcs.bbk.ac.uk

3 Department of Computer Science, University of Liverpool, UK
wolter@liverpool.ac.uk

Abstract
We discuss the use of various temporal knowledge representation formalisms for ontology-mediated
query answering over temporal data. In particular, we analyse ontology and query languages
based on the linear temporal logic LTL, the multi-dimensional Halpern-Shoham interval temporal
logic HSn, as well as the metric temporal logic MTL. Our main focus is on the data complexity
of answering temporal ontology-mediated queries and their rewritability into standard first-order
and datalog queries.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods.

Keywords and phrases Description Logic, Temporal Logic, Ontology Mediated Query Answering,
Data Complexity.

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.1

1 Introduction

This paper is a survey of recent developments in applying temporal logics for ontology-
mediated query answering over temporal data.

Ontology-based data access (OBDA) [73] has recently become one of the most successful
applications of description logics (DLs). The chief aim of OBDA is to facilitate access
to possibly heterogeneous, distributed and incomplete data for non-IT-expert users. To
illustrate, suppose that such a user wants to query some data sources D. Under the OBDA
paradigm, the user does not have to know the schemas of D (that is, how the data is
organised). Instead, the user is given an ontology O describing the domain of their interest in
familiar and standard terms that can be used directly to formulate the desired queries q(x)
in, say, the query language SPARQL, possibly with the help of a graphical tool. The OBDA
system relies on a (GAV) mappingM, relating the terms in O with the schemas of D (and
produced by an IT expert), to find tuples a from D such that O,M(D) |= q(a), where
M(D) is the result of applyingM to D. Depending on the language of the ontology-mediated
query (OMQ) Q = (O, q(x)), this can sometimes be done by rewriting Q to a first-order
(FO) or datalog query q′(x) that can be executed over any given data instance D directly
by conventional data management systems. For example, FO-rewritings always exist if O
is an OWL 2 QL ontology (based on the DL-Lite family of DLs) and q(x) is a conjunctive
query (CQ) [37, 6], while datalog rewritings can be constructed for OMQs with ontologies in

© Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter and
a Michael Zakharyaschev;

licensed under Creative Commons License CC-BY
24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 1; pp. 1:1–1:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Temporal Ontology-Mediated Querying: A Survey

OWL 2 EL (based on the EL family of DLs) and CQs [78]. For recent applications of OBDA,
the reader can consult [5, 22, 47, 36, 38, 77, 82].

The W3C standard ontology languages OWL 2 QL and OWL 2 EL mentioned above were
designed to represent knowledge about static domains and are not suitable when the data
and the terms the user is interested in are essentially temporal. Suppose, for example, that
the data comprises sensor readings from some industrial installations, say, gas turbines, or
from weather stations across a country, and that the user—a service engineer or, respectively,
a meteorologist—is interested in detecting events such as

active power trip, which happens when the active power of a turbine was above 1.5MW
for a period of at least 10 seconds, maximum 3 seconds after which there was a period of
at least one minute where the active power was below 0.15MW; or
blizzard, which happens when severe snowstorms with low temperatures and strong winds
last for at least three hours.

To be able to represent these concepts, an ontology language clearly requires various temporal
constructs that have been studied in the context of temporal representation and reasoning [44,
45, 41].

Combinations of DLs with temporal formalisms have been widely investigated since the
pioneering work of Schmiedel [81] and Schild [80] in the early 1990s; we refer the reader
to [45, 21, 7, 62] for surveys and [71, 10, 51, 52, 50, 14] for more recent developments.
However, the main reasoning task targeted in this line of research was concept satisfiability
rather than query answering and the general aim was to probe various combinations of
temporal and DL constructs that ensure decidability of concept satisfiability with acceptable
combined complexity.

In the context of answering OMQs, our main concern is their FO- or datalog-rewritability,
and the data complexity of query evaluation, where the given OMQ is regarded to be
fixed while the data varies. Thus, in this survey we focus on temporal data modelling
and algorithmic properties of OMQ answering and do not discuss in any detail advances
in temporal DLs not related to query answering. The plan for this paper is as follows.
We distinguish three temporal data models and the corresponding languages for ontologies
and queries: the discrete point-based approach where time is discrete and each fact comes
with a time-point in which it holds true, the more general interval-based approach where
facts are stamped with the interval in which they are true, and finally, a model based on a
dense flow of time where the focus is on modelling and querying metric temporal properties.
In Sections 2–4, we discuss the state of the art in point-based ontology-mediated query
answering. The languages considered range from the full two-sorted FOL to time-centric
languages based of LTL, domain-centric languages based on DLs, and combinations of both.
In Section 5, we consider ontology-mediated query answering over interval-based models
focussing on Halpern and Shoham’s modal logic for time intervals. In Section 6, we discuss
dense time and how a combination of datalog and metric operators can be used to model
metric knowledge and support ontology-mediated querying in this case. We close in Section 7
with a discussion of practical issues in temporal ontology-mediated querying and a recent
implementation.

2 Point-Based Temporal Ontology-Mediated Querying

Suppose we have a database on submission, acceptance and publication of papers in the area
of computer science collected from various sources on the web and elsewhere. For instance,

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:3

the database may contain the facts

underSubmissionTo(a, JACM,Feb2016), UnderSubmission(b, Jan2016),
acceptedIn(c, JACM, July2016), Published(c,Oct2016),
authorOf(Bob, c,May2014)

stating that paper a was under submission to JACM in February 2016; paper b was under
submission in January 2016 (to an unknown journal); paper c, authored by Bob in May
2014, was recorded as accepted by JACM in July 2016, and published (in some venue) in
October 2016. Observe that the predicates in the snippet above have a timestamp as their
last argument (e.g., Oct2016) and either one or two domain arguments (e.g., a, JACM).
Following the description logic (DL) tradition, we call predicates with one domain argument
concepts (e.g., Published) and predicates with two domain arguments roles (e.g., authorOf).
A finite set of timestamped facts such as the snippet above is called a temporal ABox. In
general, a temporal ABox, denoted A, consists of assertions of the form

Ak(ai, n), Pk(ai, aj , n),

where Ak is a concept name, Pk a role name, ai and aj individual names, and n ∈ Z a
timestamp.

Now, we introduce models for temporal ABoxes. Let T ⊆ Z be a (possibly infinite)
interval. A T -interpretation I is a structure

I =
(
(T,<), ∆I , P I1 , P I2 , . . . , AI1 , AI2 . . . , aI1 , aI2 , . . .

)
such that < is the standard linear order on Z restricted to T , ∆I 6= ∅ is the interpretation
domain, P Ik ⊆ ∆I × ∆I × T and AIk ⊆ ∆I × T , for each k, and aIi ∈ ∆I , for each i

(we assume rigid, or time-independent, interpretation of individual names) and aIi 6= aIj
whenever i 6= j (thus, we make the unique name assumption). Note that the domain ∆I is
time-independent. Time-dependent domains can be modelled using an ‘existence predicate’;
we refer the reader to [45, 44, 31] and references therein for a discussion of relevant domain
assumptions in the literature on modal and temporal logic. For a temporal ABox A, we say
that a T -interpretation I satisfies A or that I is a model of A if T contains all timestamps
n that occur in A and

(aIi , n) ∈ AIk , for all Ak(ai, n) ∈ A, and (aIi , aIj , n) ∈ P Ik , for all Pk(ai, aj , n) ∈ A.

Let minA and maxA be the minimal and, respectively, maximal integers occurring in A.
We assume without loss of generality that minA = 0. In what follows, we shall mostly
be working with Z-interpretations satisfying A (called Z-models of A), N-interpretations
satisfying A (called N-models of A) and [minA,maxA]-interpretations satisfying A (called
ABox-fitting models of A).

The models I of a temporal ABox A reflect the open-world assumption underpinning
ontology-mediated query answering: rather than assuming that the ABox contains all relevant
domain individuals and time points, one admits additional domain individuals and time
points that might be required to satisfy domain knowledge. Thus, Z-models reflect the
common sense view of time as being infinite in the past and the future. N-models and
ABox-fitting models reflect a more pragmatic approach and assume that the time points not
used as timestamps (or are before/after any timestamped data) are irrelevant for querying
the data.

TIME 2017

1:4 Temporal Ontology-Mediated Querying: A Survey

0 1 2

S

3

S

4

S

5

A

6

A

7

P

8

P

9

P

10

P

Figure 1 A typical timeline for a publication in Example 1: S, A and P stand for Submitted,
Accepted and Published, respectively.

We next introduce the ontology and query languages that have been proposed for ontology-
mediated querying of point-based temporal data. Most of these languages can be regarded
as fragments of the two-sorted first-order language 2-FOL(<) [84] constructed from atoms
Ak(x, t), Pk(x, y, t), t1 < t2, and t1 = t2, where Ak is a concept name, Pk a role name, x
and y are domain variables ranging over the interpretation domain ∆I , and t, t1 and t2 are
temporal variables ranging over the time instants in T . For any 2-FOL(<)-formula ϕ, any
T -interpretation I, and any assignments d of elements of ∆I to the domain variables and t

of elements of T to the temporal variables, we define the truth-relation I |=d,t ϕ by induction
as follows:

I |=d,t Ak(x, t) iff (d(x), t(t)) ∈ AIk , I |=d,t >,
I |=d,t Pk(x, y, t) iff (d(x), d(y), t(t)) ∈ P Ik , I 6|=d,t ⊥,
I |=d,t t1 < t2 iff t(t1) < t(t2), I |=d,t ¬ϕ iff I 6|=d,t ϕ,

I |=d,t t1 = t2 iff t(t1) = t(t2), I |=d,t ϕ1 ∧ ϕ2 iff I |=d,t ϕ1 and I |=d,t ϕ2,

I |=d,t ∀xϕ iff I |=d′,t ϕ, for all d′ that differ from d only on x,

I |=d,t ∀t ϕ iff I |=d,t′ ϕ, for all t′ that differ from t only on t;

other first-order connectives and quantifiers such as →, ↔, ∃ are defined in the standard
way. By an ontology, O, we mean a set of 2-FOL(<)-sentences. We say that I satisfies an
ontology O or I is a model of O if I |= ϕ, for each ϕ ∈ O (since the ontology contains only
sentences, the assignments are irrelevant).

I Example 1. Consider a simple temporal ontology about research papers (as above) with
role names publishedIn, acceptedIn and underSubmissionTo. We state that the domains of the
three roles are mutually disjoint using axioms such as

∀t∀x∀y1∀y2
(
publishedIn(x, y1, t) ∧ acceptedIn(x, y2, t)→ ⊥

)
. (1)

Basic temporal dependencies can be formulated as follows:

∀t∀x∀y
(
publishedIn(x, y, t)→ ∀s

(
(s > t)→ publishedIn(x, y, s)

))
, (2)

∀t∀x∀y
(
publishedIn(x, y, t)→ ∃s

(
(s < t) ∧ acceptedIn(x, y, s) ∧ (3)

∃s′((s < s′) ∧ publishedIn(x, y, s′) ∧ ¬∃s′′
(
(s < s′′) ∧ (s′′ < s′)

)))
,

∀t∀x∀y
(
∃s′ ((s′ < t) ∧ acceptedIn(x, y, s′)) ∧ (4)

∃s′′ ((t < s′′) ∧ acceptedIn(x, y, s′′))→ acceptedIn(x, y, t)
)
,

an analogue of (3) for acceptedIn and underSubmissionTo and the convexity axiom (4) for
underSubmissionTo. The temporal ABox does not always use these role names, but rather
integrates information from various data sources. For example, for a paper to be published
it is necessary and sufficient that it is published in some venue (even if the publication venue
is unknown). So, we use concept names Published, Accepted and UnderSubmission to refer to
all published, accepted and submitted papers, respectively: e.g.,

∀t∀x
(
Published(x, t)↔ ∃y publishedIn(x, y, t)

)
(5)

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:5

and similarly for acceptedIn and underSubmissionTo. It follows from these axioms, in par-
ticular, that Submitted, Accepted and Published form consecutive intervals as depicted in
Fig. 1.

A 2-FOL(<) ontology-mediated query (OMQ) is a pair Q(x, t) = (O, q(x, t)), where O is
an ontology and q(x, t) a 2-FOL(<)-formula with free domain variables x and free temporal
variables t. We call q(x, t) a query and x, t its answer variables. Given a temporal ABox A,
a model I of A, a tuple a of individual names in A of the same length as x, and a tuple n
of time points in A of the same length as t, we write I |= q(a,n) if I |=d,t q(x, t), for the
assignments d : x 7→ a and t : t 7→ n. Let T ∈ {Z,N, [minA,maxA]}. We say that the tuple
(a,n) is a certain answer to Q = (O, q(x, t)) over A and T and write O,A |=T q(a,n) if

I |= q(a,n) for all T -models I of O and A.

I Example 2. In the context of Example 1, we now assume that the unit of time is one
month. Then we can formulate the following queries.

Find all accepted papers and their acceptance dates such that the paper was under
submission for at least a year:

q(x, t) = Accepted(x, t) ∧ UnderSubmission(x, t− 1) ∧ UnderSubmission(x, t− 13). (6)

Since the flow of time is discrete, any formula of the form P (x, t− 1) is simply an abbrevi-
ation for ∃t′

[
P (x, t′) ∧ (t′ < t) ∧ ¬∃t′′

(
(t′ < t′′) ∧ (t′′ < t)

)]
; UnderSubmission(x, t− 13)

can be defined similarly.
Papers that were published within two months after acceptance but had been under
submission for three years:

q(x, t) = ∃s
(
(s < t) ∧ Accepted(x, s) ∧ UnderSubmission(x, s− 1)∧

Published(x, s + 2) ∧ UnderSubmission(x, s − 37)
)
. (7)

Authors of papers that were submitted more than two years ago but have not been
accepted yet:

q(x, t) = ∃y
(
authorOf(x, y, t)∧UnderSubmission(y, t−24)∧UnderSubmission(y, t)

)
. (8)

Recall that UnderSubmission is disjoint with Accepted and can only occur before the paper
is eventually accepted.

Note that 2-FOL(<)-formulas as we defined them do not use individual constants. This
assumption is for simplicity only; it is straightforward to extend the syntax and semantics of
temporal ontologies and queries to 2-FOL(<) with individual constants.

Given two fragments L and Q of 2-FOL(<), we denote by (L,Q) the class of ontology-
mediated queries Q(x, t) = (O, q(x, t)) such that O is formulated in L and q(x, t) in Q. Let T
be any of Z, N or [minA,maxA]. By (L,Q)-OMQ evaluation over T we understand the
problem of deciding, for a given (L,Q)-OMQ Q(x, t) = (O, q(x, t)), a temporal ABox A and
tuples a and n in A of the same length as x and t, whether O,A |=T q(a,n). The combined
complexity of (L,Q)-OMQ evaluation over T is defined as the computational complexity of
the above problem. As the queries and ontologies are mostly much smaller than the ABox A,
combined complexity is often misleading as a measure of the resources needed for query
evaluation [85]. An alternative and often more appropriate complexity measure is the data
complexity of (L,Q)-OMQ evaluation over T , that is the complexity of deciding, for fixed O
in L and q(x, t) in Q, whether O,A |=T q(a,n) for any given ABox A and tuples a and n.

TIME 2017

1:6 Temporal Ontology-Mediated Querying: A Survey

The data complexity of OMQ evaluation is closely related to the equivalent rewritability
of OMQs into standard query languages. With any temporal ABox A we associate a
[minA,maxA]-interpretation

IA =
(
([minA,maxA], <),∆IA , P IA1 , P IA2 , . . . , AIA1 , AIA2 , . . . , aIA1 , aIA2 , . . .

)
,

where ∆IA is the set of individual names in A, aIAi = ai for all i, and

AIAk = {(ai, n) | Ak(ai, n) ∈ A} and P IAk = {(ai, aj , n) | Pk(ai, aj , n) ∈ A}, for all k.

Now, letQ′ be any query language over [minA,maxA]-interpretations, for example, 2-FOL(<)
itself, a fragment of 2-FOL(<) or even its extension. We say that (L,Q)-OMQs are
Q′-rewritable over T if, for every OMQ (O, q(x, t)) in (L,Q), there exists q′(x, t) in Q′
such that, for every temporal ABox A that has a common model with O, the following
equivalence holds for all tuples a and n in A of appropriate length:

O,A |=T q(a,n) iff IA |= q′(a,n).

If Q′ is 2-FOL(<) over T , then IA |= q′(a,n) is the standard database query evaluation
problem for temporal ABoxes and 2-FOL(<) queries, which is known to be PSpace-complete
for combined complexity; see, e.g., [61]; if, however, one fixes the query and thus considers
the data complexity, then this problem is in AC0, the class of languages computable by
bounded-depth polynomial-size circuits with unary not-gates and unbounded fan-in and-
and or-gates.

Of course, the OMQ evaluation problem for the full 2-FOL(<) is undecidable, and it is
one of the main problems of temporal ontology-mediated query answering to design useful
ontology and query languages for which the query evaluation problem is decidable or, even
better, feasible in practice. The latter requirement is typically interpreted as being at least
in PTime in data complexity, but to query very large data and employ existing query
engines PTime query evaluation often is not sufficient, and one aims at rewritability into
first-order logic (AC0 data complexity). In the following two sections, we discuss a few
known approaches to this problem.

3 Queries Mediated by Domain- or Time-centric Ontologies

An important way of obtaining temporal ontology languages from 2-FOL is simply omitting
(non-trivial) quantification over one of its two sorts. Thus, intuitively, if we disallow all but a
single outermost universal quantifier for a temporal variable, then we obtain a ‘domain-centric’
ontology language, in which one can define a time-independent model of the domain; and
if we disallow all but a sequence of outermost universal quantifiers for domain variables,
then we obtain a ‘time-centric’ ontology language using which one can define a propositional
temporal model. Both approaches have been investigated, and, in the rest of the section, we
shall provide a summary of the obtained results. If a model representing both temporal and
domain knowledge is needed, we have to carefully define the interaction between the domain
and time quantifiers.

3.1 Domain-Centric Ontology Languages
It is straightforward to restrict 2-FOL(<) in such a way that it only defines non-temporal
properties: such an ontology would consist of 2-FOL(<) sentences ∀t ϕ(t), where ϕ does not
contain quantifiers over temporal variables. Of course, query evaluation is still undecidable,

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:7

and so further restrictions of its expressive power are needed. In standard, non-temporal,
ontology-mediated query answering, description logics are the most popular fragments of
first-order logic used to define ontologies. Here, we introduce three basic families of DLs that
have been important in the context of OMQ answering, and from which many others can be
derived in a straightforward way. Namely, we introduce the basic expressive DL ALC [19]
and the lightweight DLs DL-Lite [37, 6] and EL [18]. In ALC, concepts C are constructed
using the grammar

C ::= > | Ak | ¬C | C1 u C2 | ∃Pk.C.

An ALC TBox (ontology) is a finite set of concept inclusions C1 v C2, where C1 and C2 are
ALC concepts. Concepts in the fragment EL of ALC are ALC concepts without occurrences
of negation ¬. An EL TBox is a finite set of concept inclusions C1 v C2, where C1 and
C2 are EL concepts. In DL-Lite, basic concepts B and roles R are constructed using the
grammar

B ::= > | Ak | ∃R.>,
R ::= Pk | P−k .

A DL-LiteHcore TBox is a finite set of concept and role inclusions of the form

B1 v B2, B1 uB2 v ⊥,
R1 v R2, R1 uR2 v ⊥,

where B1 and B2 are basic concepts and R1 and R2 are roles. Concept and role inclusions
of the second type are also called disjointness axioms. In DL-LiteHhorn, one can also form
intersections of basic concepts:

B1 u · · · uBk v B, B1 u · · · uBk v ⊥;

in DL-LiteHkrom, one can use negation (but still any concept inclusion contains only two
concepts): that is, concept inclusions are of the form B1 v B2, B1uB2 v ⊥ and > v B1tB2;
finally, in DL-LiteHbool one can use both conjunction and negation resulting in concept
inclusions of the form D1 v D2, where the Di are defined using the rule

D ::= B | ¬D | D1 uD2.

(We will assume without loss of generality that the concept inclusions in DL-LiteHbool are
given in normal form: B1 u · · · uBk v B′1 t · · · tB′n; as usual, we assume that the empty
union is ⊥ and the empty intersection is >). All of the above languages in the DL-Lite family
contain role inclusions, and the fragment of DL-LiteHc without role inclusions is denoted by
DL-Litec. Two concept (or role) inclusions C1 v C2 and C2 v C1 are often abbreviated as
C1 ≡ C2 and are called a concept (respectively, role) equivalence axiom.

The DLs introduced above can be regarded as fragments of first-order logic (with a single
sort). In the temporal setting, every (basic) concept C can be translated (using the so-called
standard translation) to a 2-FOL(<)-formula C](x, t) with one free domain variable x and
a single temporal variable t, and every role R to a 2-FOL(<)-formula R](x, y, t) with two
domain variables x, y and a single temporal variable t:

(Ak)](x, t) = Ak(x, t), (¬C)](x, t) = ¬C](x, t),

(Pk)](x, y, t) = Pk(x, y, t), (C1 u C2)](x, t) = C]
1(x, t) ∧ C]

2(x, t),
(P−k)](x, y, t) = Pk(y, x, t), (∃R.C)](x, t) = ∃y

(
R](x, y, t) ∧ C](y, t)

)
.

TIME 2017

1:8 Temporal Ontology-Mediated Querying: A Survey

Table 1 Complexity of the satisfiability problem over N.

language combined complexity

no rigid symbols rigid concepts only rigid roles & concepts

ALC-LTL [20] ExpTime NExpTime 2ExpTime
—"— global GCIs [20] ExpTime ExpTime 2ExpTime

EL-LTL [28] PSpace NExpTime NExpTime
—"— global GCIs [28] PSpace PSpace PSpace

Every concept inclusion C1 v C2 is then translated as ∀t∀x
(
C]

1(x, t) → C]
2(x, t)

)
and

every role inclusion R1 v R2 as ∀t∀x∀y
(
R]

1(x, y, t) → R]
2(x, y, t)

)
. Thus, we obtain a first

important type of temporal ontologies by demanding that its (essentially atemporal) concept
and role inclusions hold true at every time point. More formally, given a T -interpretation
I and n ∈ T , we can define an n-slice I(n) of I by taking the standard Tarski-style
interpretation for the respective DL:

I(n) =
(
∆I , P I(n)

1 , P
I(n)
2 , . . . , A

I(n)
1 , A

I(n)
2 , . . . , a

I(n)
1 , a

I(n)
2 , . . .

)
,

where aI(n)
i = aIi , for all i, and

P
I(n)
k = {(u, v) | (u, v, n) ∈ P Ik } and A

I(n)
k = {u | (u, n) ∈ AIk}, for all k.

It follows that I is a T -model of an ontology O iff each of the concept and role inclusions in
the ontology is satisfied in each of the slices I(n), for n ∈ T .

I Example 3. In a domain-centric ontology language in the context of Example 1, we can
express (1) by using a concept disjointness axiom and (5) using a concept equivalence axiom:

∃publishedIn.> u ∃acceptedIn.> v ⊥, (1′)
Published ≡ ∃publishedIn.>. (5′)

It is to be noted that, in the languages just introduced, one cannot represent or reason
about any dependencies between the interpretations I(n) and I(m) for distinct time points n
and m. Examples of such dependencies are sentences (2)–(4) in Example 1. The extension of
any ontology language L with the option to say that a concept name A is time-independent
(that is, AI(n) = AI(m) for all time points n,m) is called L with rigid concepts. The extension
of L with rigid roles is defined analogously. In Example 1, authorOf could be a rigid role. Of
course, if the language has rigid roles, then rigid concepts can be ‘simulated’ by considering
domains of rigid roles: if role R is rigid, then the equivalence axiom C ≡ ∃R ensures that
concept C is also rigid.

Baader et al. [20] proposed domain-centric languages. They introduced ALC-LTL as the
language of ALC axioms (concept inclusions, or GCI as they are often called in description
logic) and ABox assertions with Boolean connectives and temporal operators applied to them.
For example, the temporalised axiom 3F2F (USCitizen v ∃insuredBy.Insurer) says that there
is a future time point, from which on every US citizen will always have a health insurance. It
turns out that without rigid symbols the two components—the domain and the time—have
very little interaction, and so in order to check whether a given formula ϕ in ALC-LTL
is satisfiable, one can check whether (1) the propositional abstraction of ϕ (the result of

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:9

replacing DL axioms with propositional variables) is satisfiable and (2) the satisfying model
yields consistent sets of DL axioms. As a result, the complexity is usually the maximum
of the complexities of the two components; see Table 1. Rigid concepts and/or rigid roles
make the interaction stronger and require additional global guessing/bookkeeping but the
propositional abstraction technique is still applicable. The second set of results in Table 1
refers to the fragment of ALC-LTL in which Boolean connectives and temporal operators
can be applied only to ABox assertions but ALC axioms hold globally in all models (in
precisely the same way as we defined in the standard translation above). Such a restriction
dramatically reduces the complexity for the logic EL-LTL [28].

Note also that the Semantic Web community has developed a variety of extensions of
RDF/S and OWL with validity time [64, 74, 48]. The focus of this direction of research is
on representing and querying timestamped RDF triples or OWL axioms.

3.2 Time-Centric OMQs
One of the main differences between description logics and first-order logic is that the former
do not use individual variables. Instead, description logic constructors such as existential
restrictions express certain quantifier patterns. The situation in reasoning about time is
similar: instead of representing explicitly the temporal precedence relation < using individual
variables, one employs temporal operators encoding certain natural language patterns. A very
well studied language based on temporal operators is linear-time temporal logic (LTL) [72].
In contrast to the description logics introduced above, which are much weaker than first-order
logic, LTL with operators S (‘since’) and U (‘until’) has exactly the same expressive power
as the corresponding time-fragment of 2-FOL(<) (Kamp’s theorem); see, e.g., [44, 75]. We
now introduce the LTL extensions of the concept and role grammars defined above:

D ::= C | ©
PD | ©

FD | D1 S D2 | D1 U D2,

S ::= R | ©
PS | ©

FS | S1 S S2 | S1 U D2.

We will also use common abbreviations: for example, 3PD = > S D (‘sometime in the
past’ for concepts) and 2FS = ¬(> U ¬S) (‘always in the future’ for roles). The standard
translation of concepts can be extended to temporalised concepts as follows:

(©PD)](x, t) = D](x, t− 1),
(©FD)](x, t) = D](x, t+ 1),

(D1 S D2)](x, t) = ∃t1
(
(t1 < t) ∧ D]

2(x, t1) ∧ ∀t2
(
(t1 < t2) ∧ (t2 < t)→ D]

1(x, t2)
))
,

(D1 U D2)](x, t) = ∃t1
(
(t < t1) ∧ D]

2(x, t1) ∧ ∀t2
(
(t < t2) ∧ (t2 < t1)→ D]

1(x, t2)
))
.

Temporalised roles are translated into 2-FOL(<) similarly (but two domain variables are
used rather than one). Recall that (t − 1) is a shortcut for t′ that satisfies the condition
(t′ < t) ∧ ¬∃t′′

(
(t′ < t′′) ∧ (t′′ < t)

)
. So, under the strict interpretation of U and S, the

temporal operators ©F (‘next time’) and ©P (‘previous time’) could be equivalently defined
as ©FD = ⊥ U D and ©PD = ⊥ S D, respectively.

I Example 4. In the context of Example 1, we can represent the ‘concept’ analogues of
sentences (1)– (4) as follows:

Published u Accepted v ⊥, (1′′)
Published v 2F Published, (2′′)
Published v 3P (Accepted u©F Published), (3′′)

3P Accepted u3F Accepted v Accepted. (4′′)

TIME 2017

1:10 Temporal Ontology-Mediated Querying: A Survey

Rigid concepts and roles can be defined in the language introduced above be using
inclusions of the form C v 2F2PC or C ≡ ©FC.

If no relational knowledge is needed for the domain and the focus is on temporal aspects
(as in Example 4), then it suffices to work with ontologies that represent the behaviour of
individual domain elements without formalising any interaction between them. So, in the
remainder of Section 3.2, we concentrate on the concept-only ontology languages and, in
Section 4, we show how these results can be extended to the full setting (under certain
restrictions).

In order to present the fine-grained analysis of the complexity of OMQ evaluation, we
assume that our ontologies are given in a certain normal form. More precisely, it is known that
any LTL formula can be transformed into a polynomial-size LTL formula in separated normal
form (SNF) [42] that has the same models (if restricted to the original vocabulary—the
transformation requires introduction of auxiliary names, but the result is a conservative
extension, which preserves the models restricted to the original vocabulary). The formulas in
SNF are conjunctions of global and initial temporal clauses that only use the operators ©P ,
©

F , 2P and 2F . So, we consider the time-centric ontology language LTL2©
bool with concept

inclusions of the form

L1 u · · · u Lk v L′1 t · · · t L′n,

where the Li and L′i are concept names possibly prefixed by unary temporal operators ©P ,
©

F , 2P or 2F . We also define the core, krom and horn fragments of LTL2©
bool, where the

temporal clauses are restricted to

L1 v L2, L1 u L2 v ⊥, (core)
L1 v L2, L1 u L2 v ⊥, > v L1 t L2, (krom)

L1 u · · · u Lk v L, L1 u · · · u Lk v ⊥, (horn)

respectively, and the ©- and 2-fragments LTL©c and LTL2
c , where only ©P/©F and 2P/2F

operators can be applied. It can be seen that the sub-Boolean fragments of LTL2©
bool are in

fact the concept-only counterparts of the respective fragments of DL-Lite. Recall that the
satisfiability problem is PSpace-complete for LTL2©

bool- and LTL2©
horn-formulas, NP-complete

for LTL2©
krom- and LTL2

krom-formulas, and NLogSpace-complete for LTL©core-, LTL©krom- and
LTL2

core-formulas [9].
Let O be an ontology in a time-centric language. An atomic LTL-OMQ is a pair of the

form (O, Ak(x, t)), where Ak is a concept name. We also consider a larger class of OMQs
based on positive temporal concepts κ, which are defined by the following grammar:

κ ::= ⊥ | > | Ak | κ1 u κ2 | κ1 t κ2 |
2Pκ | 2Fκ | κ1 S κ2 | κ1 U κ2.

Observe that operators ©P , ©F , 3P and 3F can be used in positive temporal concepts as
abbreviations. A positive LTL-OMQ is a pair of the form (O,κ(x, t)). It is to be noted that,
unlike the ontology language, where we used a normal form, one cannot eliminate the binary
temporal operators S and U (and the ‘sometime in the past/future’ operators 3P/3F).

In the context of LTL-OMQs, two types of Q′-rewritability are of interest for the target
language Q′: 2-FOL(<) and 2-FOL(<,+). The second language extends 2-FOL(<) with the
ternary numeric predicate plus that is interpreted in the two-sorted structure IA (defined
in Section 2) as follows:

IA |= plus(n, n1, n2) iff n = n1 + n2, for n, n1, n2 ∈ [minA,maxA].

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:11

Table 2 Data complexity and rewritability of LTL-OMQs over Z.

atomic positive

c LTL2
c LTL©c LTL2©

c LTL2
c LTL©c LTL2©

c

bool

2-FOL(<)

MSO(<) MSO(<)
krom 2-FOL(<,+) MSO(<)∗ MSO(<)
horn MSO(<) 2-FOL(<)
core 2-FOL(<,+) MSO(<)∗ 2-FOL(<,+) MSO(<)∗

∗It is still open whether these can be improved to 2-FOL(<,+); all other results in the table are optimal:
in particular, MSO(<) means NC1-hardness for data complexity and so, no 2-FOL(<,+)-rewritability.

Observe that even though we can express terms such as t+n, for a fixed n ∈ Z, in 2-FOL(<),
terms of the form t+s are not expressible in 2-FOL(<). Evaluation of 2-FOL(<,+)-formulas
is known to be in LogTime-uniform AC0 for data complexity [56] (recall that AC0 is
the class of languages computable by bounded-depth polynomial-size circuits with unary
not-gates and unbounded fan-in and- and or-gates).

I Example 5. Let O be an ontology with the following two axioms:

©
PA v B, ©

PB v A. (9)

Consider the positive LTL-OMQQ(x, t) = (O,©F
©

FB(x, t)) and ABoxA = {A(a, 0), C(a, 1)}.
We have (aI , 2n+ 1) ∈ BI , for any n ≥ 0 and any N- or Z-model I of O and A. It follows
that (a, 1) is the only certain answer to Q(x, t) because only 1 of all odd numbers is within the
interval between minA and maxA (note, however, that the relevant B is true at moment 3).

I Example 6. Consider now the atomic LTL-OMQ Q(x, t) = (O, A(x, t)) with the same O
defined by (9). It is not hard to see that (a, n) ∈ AI for any Z-model I of O and a given
temporal ABox A iff t is either at an even distance t− s from some A(a, s) ∈ A or at an odd
distance t− s from some B(a, s) ∈ A. Thus, the following formula

∃s, n, k, k′ [
(
A(x, s) ∧ plus(k, n, n) ∧ plus(t, s, k)

)
∨(

B(x, s) ∧ plus(k, n, n) ∧ plus(k′, k, 1) ∧ plus(t, s, k′)
)
]

is a 2-FOL(<,+)-rewriting of Q(x, t), where, for example, plus(k, n, n) means k = 2n. Note
that s, n, k and all other quantified variables range between 0 = minA and maxA in any IA;
in particular, t ≥ s. Finally, observe that Q(x, t) is not 2-FOL(<)-rewritable since properties
such as ‘t is even’ are not definable by 2-FOL(<)-formulas [61].

I Example 7. Next, instead of just checking whether the distance is even or odd, we devise
an ontology that checks whether the number of certain symbols in a given interval is even
or odd. More precisely, consider the atomic LTL-OMQ Q(x, t) = (O, B0(x, t)), where O
consists of concept inclusions

©
FBk uA0 v Bk and ©

FBk uA1 v B1−k, for k = 0, 1.

Informally, each occurrence of A0 in the ABox keeps the same subscript k in Bk and each
occurrence of A1 flips the subscript over by replacing B0 with B1 and the other way round.
So, for any word e = (e0, . . . , en−1) ∈ {0, 1}n, let Ae = {B0(a, n) }∪{Aei

(a, i) | 0 ≤ i < n }.

TIME 2017

1:12 Temporal Ontology-Mediated Querying: A Survey

It is not hard to check that (a, 0) is a certain answer to Q(x, t) over Ae iff the number of 1s
in e is even (Parity). As Parity is not in AC0 [43], Q(x, t) is not 2-FOL-rewritable even
if arbitrary numeric predicates (not only plus) are allowed in rewritings.

On the other hand, Parity is a regular language, and so belongs to NC1) AC0, the
class of languages recognisable by logarithmic-depth circuits with unary not-gates and fan-in
two and- and or-gates. Recall also that (i) regular languages coincide with those definable
by monadic second-order (MSO) formulas built from atoms of the form A(t) and t < t′

using the Booleans, first-order quantifiers ∀t and ∃t, and second-order quantifiers ∀A and
∃A [35], and that (ii) MSO(<)-formulas can encode the semantics of propositional temporal
logic see, e.g., [46]. Thus, all LTL2©

bool OMQs are MSO(<)-rewritable, and so answering such
OMQs is in NC1 for data complexity.1 On the other hand, in many cases we can construct
2-FOL(<,+)- or even 2-FOL(<)-rewritings; for details on the results, see Table 2 [8].

3.3 Query Answering with Domain-Centric Ontologies
Even without a temporal dimension, first-order logic is too expressive for effective ontology-
mediated query answering. Instead, research has been focussed on ontologies in description
logic and on queries in small fragments of FO. Most popular are conjunctive queries (CQs),
defined by the grammar

ϕ ::= Ak(x) | Pk(x1, x2) | ϕ1 ∧ ϕ2 | ∃xϕ,

and disjunctions of CQs called unions of conjunctive queries (UCQs). Thus, CQs are
(equivalent to) conjunctions of atoms in which some variables are existentially quantified. We
briefly discuss basic results on the rewritability and data complexity of ontology-mediated
queries in the atemporal classes of OMQs (DL-LiteHhorn,CQ), (EL,CQ), and (ALC,CQ).
We assume for simplicity that ABoxes consist of facts without time stamps and interpret
the description logics in the corresponding single sorted interpretations. Then OMQs in
(DL-LiteHhorn,CQ) are always rewritable into UCQs, a fact which was the main motivation
for the introduction of the DL-Lite family [37, 6].

I Example 8. For O = { ∃publishedIn.> v Published } and the CQ q(x) = Published(x),
a rewriting of (O, q(x)) is given by q′(x) = ∃y publishedIn(x, y) ∨ Published(x). Intuitively,
q′(x) is the disjunction over all possible ‘reasons’ (according to O) for x to be published.

It follows that answering OMQs from (DL-LiteHhorn,CQ) is in AC0 fot data complexity.
In contrast, not all OMQs in (EL,CQ) are rewritable into UCQs or even first-order logic.

I Example 9. For O = { ∃refersTo.Publication v Publication } and CQ q(x) = Publication(x),
one can readily see that O,A |= q(a) iff there is a path from a to some individual b such that
Publication(b) ∈ A along the refersTo-relation in A. Since reachability cannot be expressed
in first-order logic, there is no rewriting of (O, q(x)) in first-order logic.

It can be shown, however, that every OMQ in (EL,CQ) is rewritable into a datalog
program, and so CQ evaluation is in PTime for data complexity [78]. For OMQs in
(ALC,CQ), the situation is even worse: in this case, OMQ answering can be coNP-hard for
data complexity [55]. Bienvenu et al. [24] give a partial classification of OMQs in (ALC,CQ)
into those in PTime and those that are coNP-hard for data complexity.

1 By NC1 we mean the uniform NC1, which coincides with ALogTime.

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:13

We now return to querying temporal data under the assumption that the ontology is
domain-centric. Querying in this framework has mainly been investigated in the context
of ontology-based monitoring of dynamic systems [15, 13, 17]. Suppose that timestamped
data is collected while monitoring a system. The data collected at each time point n forms a
sequence (A(i))0≤i≤n of ABoxes A(i) such that every A(i) contains assertions of the form
Ak(a, i) and Pk(a, b, i). Thus, the temporal ABox A is given as A =

⋃
0≤i≤nA(i), where

minA = 0 and maxA = n is the current time point. Ontology-mediated queries are used to
detect whether an event of interest has occured in A up to the time point n. The following
example illustrates this scenario.

I Example 10. Suppose that a temporal ABox A maintained by a journal editor contains
data about the submission, reviewing, acceptance and publication of articles. Thus, similarly
to the temporal ABox introduced above it contains assertions stating whether an article is
under submission, has been accepted, has been published, and so on. A monitoring query of
interest might be query (8) from Example 2: find the authors of papers that were submitted
more than two years ago but have not been accepted yet.

To query temporal data under domain-centric ontologies, CQs have been extended to
temporalised CQs in which LTL operators can be applied to CQs. Thus, queries in LTL-CQ
are defined by the following grammar:

ψ ::= ϕ | ¬ψ | ψ1 ∧ ψ2 | ψ1 S ψ2 | ψ1 U ψ2,

where ϕ is a CQ. Note that disjunction and the temporal connectives ©P , ©F , 2P , 2F , 3P ,
and 3F can be used as abbreviations in LTL-CQs. Thus, LTL-CQ extends the set of queries
in LTL-OMQs from Section 3.2 by admitting negation and applying LTL connectives to
CQs rather than atomic queries; however, negation can only be applied to a formula all
of whose free variables are answer variables of the query. Observe that LTL-CQs do not
contain temporal variables. To evaluate an LTL-CQ, the user chooses a time point n for
evaluation, typically the last time point of the temporal ABox representing the dynamic
system to be monitored. Formally, LTL-CQs ψ can be translated into 2-FOL(<) formulas
with a single temporal variable t and any number of domain variables as follows (we only
give the translation for CQs, the extension to general LTL-CQs is defined in the same way
as the extension of ·] to temporalised concepts in Section 3.2):

(Ak(x))[= Ak(x, t), (Pk(x, y))[= Pk(x, y, t),

(ϕ1 ∧ ϕ2)[= ϕ[
1 ∧ ϕ[

2, (∃xϕ)[= ∃xϕ[.

Now, given a DL ontology O, a temporal ABox A, a time point n ∈ [minA,maxA], an
LTL-CQ ψ(x), a tuple a in A, and T ∈ {Z,N, [minA,maxA]}, one is interested in whether
(a, n) is a certain answer to (O, ψ[(x, t)) over A and T , or O,A |=T ψ[(a, n) in symbols.

I Example 11. Query (8) cannot be expressed in LTL-CQ. Its natural formalisation using
temporal operators is the following

q(x) = ∃y
(
authorOf(x, y) ∧ UnderSubmission(y) ∧©24

P UnderSubmission(y)
)
,

but the quantifier ∃y is applied to a temporalised formula which is not allowed in LTL-CQ.
By regarding y as an answer variable and considering instead

q(x, y) = authorOf(x, y) ∧ UnderSubmission(y) ∧©24
P UnderSubmission(y),

TIME 2017

1:14 Temporal Ontology-Mediated Querying: A Survey

Table 3 Combined and data complexity of LTL-CQ answering with various DLs over N.

DL combined/data complexity

no rigid rigid concepts rigid concepts & roles

DL-Lite |Hcore|horn [27] PSpace/NC1

DL-Litekrom|bool [27] ExpTime/coNP coNExpTime/coNP 2ExpTime/in ExpTime
DL-LiteHkrom|bool [27] 2ExpTime/coNP 2ExpTime/in ExpTime

EL [28] PSpace/PTime PSpace/coNP coNExpTime/coNP
ALC [15] ExpTime/coNP coNExpTime/coNP 2ExpTime/in ExpTime

one obtains an LTL-CQ. Query (6) from Example 2 can be formulated as an LTL-CQ as
follows:

q(x) = Accepted(x) ∧©P UnderSubmission(x) ∧©13
P UnderSubmission(x).

Table 3 summarises the known results [27, 28, 15] on the data and combined complexity
of LTL-CQ evaluation mediated by domain-centric DL ontologies for N-models (thus, for the
evaluation problem O,A |=N ψ

[(a, n)). It is not difficult to show the same upper bounds for
ABox-fitting models, and we conjecture that the same lower bounds hold for ABox-fitting
models as well. We also conjecture that the same results hold for Z-models. The proofs
generalise the propositional abstraction method employed in the analysis of the complexity
of the satisfiability problem for ALC-LTL ontologies. In fact, since LTL-CQs are closed
under negation, the upper bounds in Table 1 can be proved by a straightforward reduction
using the upper bounds for combined complexity in Table 3. It is of interest to observe
that even for basic DL-Lite dialects, and without rigid concepts and roles one does not
obtain FO-rewritability (because the problem is NC1-hard), which is caused by negation in
LTL-CQs. In contrast, query evaluation for EL without right concept and roles is still in
PTime in data complexity.

The complexity landscape presented in Table 3, has been further extended to more
expressive description logics, in particular, containing subroles and transitive roles: the
results for those cases are essentially the same as for ALC [16, 17].

The rewritability properties of OMQs using LTL-CQs are investigated by Borgwardt et
al. [25, 26], where the focus is on query evaluation for ABox-fitting models. If no negation is
present in an LTL-CQs q(x) and the ontology O is in DL-Litecore without rigid symbols,
then LTL-CQ rewriting q′(x) of (O, q(x)) can be obtained by simply replacing any non-
temporal CQ ϕ(x) in q(x) by the UCQ-rewriting of the non-temporal OMQ (O, ϕ(x)). A
general transfer theory is developed [26] with the aim of showing that for a large class of
domain-centric ontology languages rewritability (as well as combined rewritability [57]) is
preserved under moving from non-temporal queries (such as CQs) to temporalised queries
(such as LTL-CQs without negation).

Another major concern of research on the use of LTL-CQs in monitoring applications
is the question whether it is possible to avoid storing the whole sequence A0, . . . ,An to
compute the certain answers to a given LTL-CQ at time-point n but instead keeping only a
tail An−b, . . . ,An of the data. A variety of results in this direction have been obtained [26].
One approach is based on a classical separation result stating that, for every LTL-formula,
there exists an LTL-formula without past-operators, which is equivalent to the original
formula at the time-point 0 in N-models [44].

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:15

Another approach is to add temporal connectives to the query language while keeping a
standard atemporal ontology language [68, 69]. In the streaming data scenario, the relevant
slices of the temporal data (i.e., the finite data history in the form of a sequence of ABoxes to
be considered by the query) are specified with a window operator using a sliding parameter
that determines the rate at which snapshots of the data are taken, and a width parameter
that fixes the size on the window/history. This approach is realised in the Stream-Temporal
Query Language STARQL [70]. Soylu et al. [83] have shown how the evaluation of STARQL
queries is possible using standard SQL engines and report on the performance.

4 Combinations

In many cases, neither a domain nor a time-centric ontology language suffices, but some
combination of them is needed. Designing combinations with good computational properties
is notoriously difficult as the two-dimensional structure of temporal data makes it rather
straightforward to encode the behaviour of Turing machines for even seemingly inexpressive
languages. Thus, straightforward language combinations are often undecidable. In fact,
only under rather intricate restrictions decidability is preserved [45, 54]. In this survey, our
main concern is not decidability, but much stronger conditions such as tractability of OMQ
evaluation and rewritability into 2-FOL. It should thus be clear that the interaction between
temporal and DL constructors has to be pretty much restricted to obtain algorithmically
well behaved combinations. In this section, we discuss three recent approaches to address
this problem.

4.1 A 2-FOL(<)-Rewritable Temporal Extension of DL-Lite
Artale et al. [12] begin with the observation that, for any ontology O, if one wants all OMQs
based on O to be 2-FOL(<)-rewritable, then one has to ensure that O is materialisable (in
the sense that, for any temporal ABox A consistent with O, there exists a model I of A and
O that gives exactly the certain answers to any OMQ with O). Equivalently, one requires
that no disjunction of CQs is entailed if none of it disjuncts is entailed. This excludes the
use of the temporal operators 3F and 3P on the right-hand side of concept inclusions, as
illustrated by the following example.

I Example 12. Let O = {A v 3FB}. Consider the two-sorted CQs

q1(x, t) = ∃t′
(
(t < t′) ∧ C(x, t′) ∧B(x, t′)

)
,

q2(x, t) = ∃t′
(
(t < t′) ∧ C(x, t′) ∧ ∃t′′

(
(t′ < t′′) ∧B(x, t′′)

))
.

For A = {A(a, 0), C(a, 1), D(a, 2)}, either B occurs together with C (for example, at
moment 1), or B occurs after the moment 1, and so O,A |=Z q1(a, 0) ∨ q2(a, 0) but
O,A 6|=Z qi(a, 0) for i = 1, 2. One can use an encoding of 2+2-SAT [79] to show that there is
a two-sorted CQ q such that evaluating (O, q) over Z-models is in fact coNP-hard for data
complexity (and thus, there is no rewriting).

The following combination of DL-Lite and LTL is then suggested so that it avoids non-
materialisability by not admitting any temporal operators 3P and 3F on the right-hand
side of concept or role inclusions. Basic concepts B, temporalised concepts C, roles R and
temporalised roles S are defined by the following grammar:

B ::= Ai | ∃R.>, C ::= B | C1 u C2 | 3FC | 3PC,

R ::= Pi | P−i , S ::= R | S1 u S2 | 3FS | 3PS;

TIME 2017

1:16 Temporal Ontology-Mediated Querying: A Survey

note that ∃R.> can only contain a basic role because temporalised roles can contain 3P

and 3F (which are not allowed to occur on the right-hand side of concept inclusions). The
concept and role inclusions in DL-Litelhs3horn are of the form

C v B, S v R.

A DL-Litelhs3horn ontology is a finite set of inclusions in DL-Litelhs3horn. The following ontology
illustrates expressiveness of the language.

I Example 13. In the context of Example 1, DL-Litelhs3horn can represent all 2-FOL(<)-
sentences except (3):

∃publishedIn.> u ∃acceptedIn.> v ⊥, (1′)
3P publishedIn v publishedIn, (2′)

3P acceptedIn u3F acceptedIn v acceptedIn. (4′)

Note that (2′) and (4′) are role inclusions expressing convexity (also known as existential
rigidity) of publishedIn and acceptedIn, respectively. We can also say that authorOf is a rigid
role: 3P3F authorOf v authorOf.

As the query language we take the obvious extension of single-sorted CQs to two-sorted
CQs, 2-CQ(<), defined by the following grammar:

ϕ ::= Ak(x, t) | Pk(x1, x2, t) | (t1 < t2) | (t1 = t2) |
ϕ1 ∧ ϕ2 | ∃xϕ | ∃t ϕ.

The query language 2-CQ(<) is rather expressive allowing an arbitrary nesting of domain
and temporal quantifiers as illustrated by the following example.

I Example 14. Assuming that authorOf is rigid and using the fact that UnderSubmission is
convex, query (8) can now be expressed as follows (cf. Example 11):

q(x, t) = ∃y
(
authorOf(x, y, t) ∧ ∃t1∃t2 . . . ∃t24

(
(t24 < t23) ∧ · · · ∧ (t2 < t1) ∧

(t1 < t) ∧ UnderSubmission(y, t24)
)
∧ UnderSubmission(y, t)

)
,

On the other hand, unlike LTL-CQ, 2-CQ(<) does not allow the ©P ,©F operators, and it
is not known whether the addition of these operators to 2-CQ(<) will preserve rewritibility.

Using the fact that ontologies in DL-Litelhs3horn are materialisable, one can show that OMQs
with DL-Litelhs3horn ontologies and two-sorted CQs are 2-FOL(<)-rewritable over Z-models.

I Example 15. A 2-FOL(<)-rewriting for OMQ ({(4′)}, acceptedIn(x, y, t)) over Z is

acceptedIn(x, y, t) ∨[
∃t′
(
(t′ < t) ∧ acceptedIn(x, y, t′)

)
∧ ∃t′

(
(t′ > t) ∧ acceptedIn(x, y, t′)

)]
.

4.2 Towards a Classification for Temporal DL-Lite
A more systematic investigation into the data complexity and rewritability of OMQs based on
temporal DL-Lite was launched by Artale et al. [8]; see also [59]. The considered languages
are based on the time-centric ontology languages introduced in Section 3.2. Thus, in contrast
to DL-Litelhs3horn, the operators 3P and 3F do not occur explicitly in ontologies but, instead,

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:17

the basic temporal operators are ©P , ©F , 2P , and 2F . Now, temporal operators can occur
both on the left- and right-hand side of concept and role inclusions. Formally, basic concepts
B, temporalised concepts C, roles R and temporalised roles S are defined by the following
grammar:

B ::= Ai | ∃R.>, C ::= B | 2FC | 2PC | ©FC | ©PC

R ::= Pi | P−i , S ::= R | 2FS | 2PS | ©FS | ©PS.

Concept and role inclusions in normal form are as follows:

C1 u · · · u Ck v C ′1 t · · · t Cn and S1 u · · · u Sk v S′1 t · · · t S′n.

The next example shows how concept and role inclusions in DL-Litelhs3horn can be expressed
using the operators 2P and 2F .

I Example 16. Role inclusion (2′) from Example 13 can equivalently be expressed using 2F :

publishedIn v 2F publishedIn. (2′′)

Note that 3P on the left-hand side is replaced by 2F on the right-hand side. To express (4′),
however, fresh role names acceptedInF and acceptedInP are required, and the following three
role inclusions are, in fact, a model conservative extension of (4′):

acceptedIn v 2F acceptedInF, (4′′1)
acceptedIn v 2P acceptedInP, (4′′2)

acceptedInF u acceptedInP v acceptedIn. (4′′3)

It is not difficult to generalise this argument to arbitrary concept and role inclusions in
DL-Litelhs3horn.

We classify ontologies depending on the shape of their inclusions and the temporal operat-
ors in them similarly to the fragments of LTL2©

bool in Section 3.2. For c ∈ {bool, horn, krom, core}
and o ∈ {2,©,2©}, we denote by DL-Liteo

c the ontology language whose (concept and
role) inclusions have the shape specified by c (for example, the core fragments only contain
inclusions and disjointness axioms between temporalised concepts/roles, whereas c = horn
allows, in addition, intersection u to be applied to concepts/roles) and only use the (future
and past) operators indicated in o (for example, o = 2 means that only 2F and 2P can be
used).

The main ingredients of the query language are positive temporal concepts κ and positive
temporal roles % given by the grammars

κ ::= > | Ak | ∃R.κ | κ1 u κ2 | κ1 t κ2 | op1 κ | κ1 op2 κ2,

% ::= S | %1 u %2 | %1 t %2 | op1 % | %1 op2 %2,

where op1 ∈ {©F ,3F ,2F ,©P ,3P ,2P} and op2 ∈ {U ,S}. Note that we can only use non-
temporalised roles in ∃R.κ. A DL-Liteo

c positive OMQ is a pair of the form Q(x, t) =
(O,κ(x, t)) or Q(x, y, t) = (O, %(x, y, t)), where O is a DL-Liteo

c ontology, κ is a positive
temporal concept and % a positive temporal role (which can use all temporal operators, not
necessarily only those in o). If κ and % are concept and role names, we refer to Q as an
atomic OMQ.

Most of the data complexity and rewitability results reported in Table 4 are obtained by
extending the constructions from LTL-OMQs. A surprising result here is that answering

TIME 2017

1:18 Temporal Ontology-Mediated Querying: A Survey

Table 4 Data complexity and rewritability of positive OMQs over Z.

DL-Lite2c DL-Lite©c DL-Lite2©c

bool and krom coNP-hard

horn NC1-hard NC1-hard
horn with monotone RIs 2-FOL(<)
core 2-FOL(<) 2-FOL(<,+) ?

positive OMQ with DL-Lite2horn ontologies turns out to be NC1-hard (in contrast to LTL2
horn,

which is 2-FOL(<)-rewritable). The class of DL-Lite2horn ontologies with monotone role
inclusions (the precise definition of which is too elaborate for this survey) includes, in
particular, all DL-Lite2horn ontologies whose role inclusions contain no 2P and 2F operators
on the left-hand side. As demonstrated in Example 16, such ontologies are sufficient for
encoding the language DL-Litelhs3horn from Section 4.1. It is still an open problem whether
OMQs with DL-Lite2©core are 2-FOL(<,+)-rewritable or NC1-hard.

Query (8) from Example 1 is expressible as a positive concept query if we assume that
authorOf is a rigid role:

q(x, t) = ∃authorOf.(UnderSubmission u©24
P UnderSubmission)(x, t)

(however, it is not expressible otherwise). In general, the query language of positive temporal
concepts and roles is incomparable with 2-CQ(<): the former, for example, allows union
t and 2P/2F , but the latter contains not necessarily tree-shaped queries. It is still open
whether the results of Table 4 hold for 2-CQ(<) queries.

4.3 Temporal EL
The description logic EL is another tractable language, but since CQ answering in (atem-
poral) EL is PTime-complete, a more expressive than 2-FOL(<) target language for rewritings
in its temporal extension would be required. One candidate could be Datalog1S , a de-
cidable extension of Datalog with one unary successor function. Evaluating Datalog1S

programs is known to be in ExpTime in combined complexity and PSpace-complete for
data complexity [40].

Gutiérrez-Basulto et al. [49] considered a temporal extension TEL of EL, in which concepts
are defined by the following grammar:

C ::= Ak | ∃Pk.C | C1 u C2 | 3PC | 3FC | ©
PC | ©

FC.

(Note that EL has no role inverses, P−k .) Ontologies in TEL are finite sets of concept inclusions
of the form C1 v C2 (and contain no role inclusions). In terms of expressivity, observe that
the ‘concept’ analogues (2′) and (4′) of sentences (2) and (4) in Example 1 belong to TEL
(note that (1) strictly speaking does not belong to TEL, but such an extension would be
straightforward). Rigid concepts are also expressible in TEL, and the language has rigid
roles.

As the query language, Gutiérrez-Basulto et al. [49] chose atomic queries of the form
A(x, t). We mention, however, that queries (6), (7) and (8) can all be defined as TEL-concepts
in the ontology: for example,

∃authorOf.
(
UnderSubmission u©24

P UnderSubmission
)
v Q, (8′)

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:19

and then Q could be used as an atomic query.
Answering atomic OMQs in the full TEL turns out to be undecidable (here and below,

all the results over Z-models), but this is essentially due to the 3P/3F operators on the
right-hand side of concept inclusions. In the fragment with only 3P/3F and only on the
left-hand side of concept inclusions (like the language in Section 4.1), which is similar to
the inflationary Datalog1S [39], query answering is PTime-complete for both data and
combined complexity.

The fragment TEL© of TEL that uses only ©P/©F operators can express (as a model
conservative extension) all axioms of the inflationary TEL. For example, the concept analogue
of (4′) (expressing convexity) can be encoded using two additional concept names and the
following concept inclusions:

Accepted v ©F AcceptedInF, AcceptedInF v ©F AcceptedInF,
Accepted v ©P AcceptedInP, AcceptedInP v ©P AcceptedInP,

AcceptedInP u AcceptedInF v AcceptedInF;

see also (4′′1)–(4′′3). It is not known whether query answering in the full TEL© is decidable.
However, it is PTime-complete for data and PSpace-complete for combined complexity
in its sublanguage without rigid roles, and PSpace-complete in data and in ExpTime for
combined complexity in the sublanguage where rigid roles can only occur on the left-hand
side of concept inclusions. These results are proved by translating the query answering
problem into Datalog1S . Moreover, acyclic TEL-OMQs can be rewrtitten into 2-FOL(<,+),
and the evaluation problem for such OMQs is in PTime in combined complexity. Making
the ontology acyclic in one of the dimensions only (either time or DL), gives the following
results: for temporally acyclic ontologies, which include all atemporal EL ontologies, it is
PTime-complete in both combined and data complexity; for DL-acyclic ontologies, OMQ
answering is non-elementary for combined complexity but NC1-complete for data complexity.

5 Interval-Based Temporal Ontology-Mediated Query Answering

In the ontology and query languages considered in Sections 2–4, time was assumed to be
point-based and discrete. It is well-known, however, that both features may cause difficulties
for modelling certain application domains.

We begin with the view of time as intervals, that is, sequences of points. The standard way
of storing temporal information in databases is by attaching a validity time interval to tuples.
For example, a relational table EmployeeSalaries with columns EmployeeID, MonthlySalary,
FromTime and ToTime contains tuples such as (e007,£3000, 01/01/2008, 05/01/2014). The
simplest and most intuitive way of representing this information in the point-based setting is
to stipulate that such a tuple is a shorthand for the sequence of tuples

(e007,£3000, 01/01/2008), (e007,£3000, 02/01/2008), . . . , (e007,£3000, 05/01/2014)

provided that it is known a priori that a day is the minimal unit of time required in the
application. Such a conversion of intervals to points, performed explicitly or implicitly by a
query-answering engine, is known to cause an exponential blow-up to the worst-case execution
time (since timestamps are encoded in binary, see, e.g., [4]). At the same time, this conversion
is not always sound. Consider, for instance, the tuple (tb007, 1500, 11:25, 11:29) from a table
for a turbine performance monitoring system with columns TurbineID, AverageRotationSpeed,
FromTime and ToTime. Clearly, the tuple (tb007, 1500, 11:27) would not make much sense

TIME 2017

1:20 Temporal Ontology-Mediated Querying: A Survey

since 1500 is the average rotation speed over the given interval. These examples suggest
replacing the point-based setting with an interval-based view of time, where the truth-values
of predicates are assigned to time intervals rather than points.

We discuss two interval-based temporal logics and related formalisms for ontology-
mediated query answering.

5.1 Halpern-Shoham Interval Temporal Logic
In the interval temporal logic HS introduced by Halpern and Shoham [53], formulas are
interpreted over the set of intervals of any given linear order. More precisely, let T = (T,≤)
be a linear order, that is, ≤ is a reflexive, transitive, antisymmetric and connected binary
relation on T . (As usual, x < y is a shortcut for ‘x ≤ y and x 6= y’.) For example, the
rationals (Q,≤) and reals (R,≤) are dense linear orders, while the integers (Z,≤) and the
natural numbers (N,≤) are discrete ones. By an interval in T we mean any ordered pair
〈i, j〉 such that i ≤ j, and denote by int(T) the set of all intervals in T. Note that int(T)
contains all the punctual intervals of the form 〈i, i〉, which is often referred to as the non-strict
semantics. Under the strict semantics adopted by Allen [2], punctual intervals are disallowed.

Temporal ABoxes in the interval-based paradigm consist of assertions such as

A(a, ι) and S(a, b, ι)

saying that, respectively, A(a) and S(a, b) hold true at the interval ι ∈ int(T). For example,
an ABox containing timetabling data of a summer school can have the assertions:

TutorialDay(‘Semantic Web’, 〈07/26/2017 08:00, 07/26/2005 16:00〉),
LunchBreak(‘Semantic Web’, 〈07/26/2017 11:30, 07/26/2005 12:30〉).

A de facto standard way of defining a language expressing statements (constraints) over
intervals is by incorporating Allen’s [2] interval relations defined as shown in Fig. 2.2 Since
all of these relations are irreflexive, we refer to this definition as the irreflexive semantics.
As an alternative, the reflexive semantics is obtained by replacing each < in Fig. 2 with ≤.
We write T(≤) or T(<) to indicate that the semantics is reflexive or, respectively, irreflexive.

Equipped with Allen’s relations, we can express, for example, the query asking for the
names of the tutorials that are followed by a lunch break and the times of those lunch breaks:

q(x, χ) = ∃ρ
(
LunchBreak(x, χ) ∧ TutorialDay(x, ρ) ∧ Ā(χ, ρ)

)
,

where χ and ρ are variables ranging over time intervals. Over the ABox with the two
statements above, this query would not return any answers because the lunch break is in
the middle of the Semantic Web tutorial (D) rather than after it (Ā). In fact, such queries
are supported by the SQL:2011 standard [60], which adopts the strict semantics for some of
Allen’s relations and the non-strict for others.

The Halpern-Shoham interval temporal logic HS [53] is a propositional modal logic with
diamond operators of the form 〈R〉 for Allen’s interval relations R. The propositional variables
of HS are interpreted by sets of intervals of a given linear order T where they are assumed
to hold true, and a formula 〈R〉ϕ is true at an interval ι ∈ int(T) iff ϕ is true at some interval
ι′ such that ι R ι′. This semantics can be extended to first-order or description logic in a

2 It is to be noted that there are two slightly different versions of A and Ā in the literature.

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:21

〈i, j〉A〈i′, j′〉 i ji′ j′
j = i′ and i′ < j′ (After)

〈i, j〉Ā〈i′, j′〉 i ji′ j′
j′ = i and i′ < j′ (inverse of After)

〈i, j〉B〈i′, j′〉 i ji′ j′
i = i′ and j′ < j (Begins)

〈i, j〉B̄〈i′, j′〉 i ji′ j′
i = i′ and j < j′ (inverse of Begins)

〈i, j〉E〈i′, j′〉 i ji′ j′
i < i′ and j = j′ (Ends)

〈i, j〉Ē〈i′, j′〉 i ji′ j′
i′ < i and j = j′ (inverse of Ends)

〈i, j〉D〈i′, j′〉 i ji′ j′
i < i′ and j′ < j (During)

〈i, j〉D̄〈i′, j′〉 i ji′ j′
i′ < i and j < j′ (inverse of During)

〈i, j〉L〈i′, j′〉 i ji′ j′
j < i′ (Later)

〈i, j〉L̄〈i′, j′〉 i ji′ j′
j′ < i (inverse of Later)

〈i, j〉O〈i′, j′〉 i ji′ j′
i < i′ < j < j′ (Overlaps)

〈i, j〉Ō〈i′, j′〉 i ji′ j′
i′ < i < j′ < j (inverse of Overlaps)

Figure 2 Allen’s interval relations under the irreflexive semantics.

natural way. For example, we can give the following definition of ‘a morning session’ in a DL
version of HS:

[U]
(
〈B̄〉TutorialDay u 〈A〉LunchBreak v MorningSession

)
, (10)

where U is the universal relation between intervals, and [U] means ‘at all intervals’. In English,
this axiom says that an object d is a MorningSession in an interval ι—MorningSession(d, ι) in
symbols—if there is an interval ι′ such that ι B̄ ι′ and TutorialDay(d, ι′), and also there is an
interval ι′′ such that ι A ι′′ and LunchBreak(d, ι′′). The query q(x, χ) = MorningSession(x, χ)
mediated by ontology {(10)} over the ABox above would return the certain answer

(‘Semantic Web’, 〈07/26/2017 08:00, 07/26/2017 11:30〉)

meaning that Semantic Web in the time slot between 8:00 and 11:30 is a morning session.
The elegance and expressive power of HS have attracted attention of many areas of

computer science and AI. However, promising applications have been hampered by the fact,
already discovered by Halpern and Shoham [53], that HS is highly undecidable (for example,
validity over Z and R is Π1

1-hard). For recent studies of the computational complexity
of reasoning with various fragments of HS, we refer the reader to [34, 33, 63, 1, 32] and
references therein.

A tractable fragment of HS and its DL-Lite and datalog extensions that can be used
for temporal ontology-mediated query answering have recently been suggested [11, 58]. We
briefly discuss these two formalisms in the remainder of Section 5.

TIME 2017

1:22 Temporal Ontology-Mediated Querying: A Survey

i

j

.

.

.

〈0, 0〉
A

[Ē]A

AA

〈1, 1〉
[Ē]C

CCCC

〈2, 2〉
[Ē]A

AAAAA

Figure 3 Deriving A(ι) from O and A in Example 17.

5.2 Description logic HS-LiteH
horn

The language of HS-LiteHhorn is an extension of DL-LiteHhorn [6]. It contains individual
names a1, a2, . . . , concept names A1, A2, . . . , and role names P1, P2, Basic roles R, basic
concepts B, temporal roles S and temporal concepts C are given by the following grammar:

B ::= > | Ak | ∃R.>, C ::= B | [R]C | 〈R〉C,
R ::= Pk, | P−k S ::= R | [R]S | 〈R〉S,

where R is one of Allen’s interval relations or the universal relation U and [R] is the dual
of 〈R〉, that is, [R]ϕ holds at an interval ι iff ϕ holds at all intervals ι′ such that ι R ι′. An
HS-LiteHhorn TBox is a finite set of concept and role inclusions and disjointness constraints
of the form

C1 u · · · u Ck v C+, C1 u · · · u Ck v ⊥,
S1 u · · · u Sk v S+, S1 u · · · u Sk v ⊥,

where C+ and S+ denote temporal concepts and roles without occurrences of diamond
operators 〈R〉; cf. Section 4.2. (The consequences of allowing 〈R〉 on the right-hand side of
inclusions will be discussed in the sequel). An HS-LiteHhorn ABox is a finite set of atoms of
the form Ak(a, ι) and Pk(a, b, ι), where ι is an interval of the linear order in question.

It was shown [11] that answering atomic OMQs in HS-LiteHhorn is PTime-complete for
both combined and data complexity provided that either concept inclusions contain no
∃R.> on the right-hand side, or role inclusions contain no temporal relations apart from U.
Originally, the result was shown for (Z,≤) only; however, in the light of later findings [32],
it can also be extended to any dense linear order (T,≤) and (T,<). A failure to prove
decidability for discrete linear orders under the irreflexive semantics, say, (Z, <), even for the
language without roles, led to a separate systematic investigation of the propositional fragment
HS2horn of HS. Formally, this fragment can be defined as pairs of the form (O, {A(a, ι)}),
where O is an HS-LiteHhorn TBox without any occurrence of role names. The satisfiability
problem for HS2horn was shown [32] to be undecidable for unbounded discrete linear orders
such as (N, <) and (Z, <) under the irreflexive semantics (in contrast to PTime-completeness
for dense orders under any semantics). We illustrate the expressiveness of HS2horn over (N, <)
by the following example.

I Example 17. Let A = {A(〈0, 0〉)} and O be an HS2horn ontology with the following axioms:

[E]A u 〈E〉> v A, [E]C u 〈E〉> v C, 〈Ē〉[B][Ē]A v C, 〈Ē〉[B][Ē]C v A,

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:23

Under the irreflexive semantics over N, we have O,A |= A(ι), for any ι = 〈n, 2m〉 with
n,m ∈ N; see Fig. 3, where intervals 〈i, j〉 are represented as the points (i, j) on the Euclidean
plane. Under the reflexive semantics, we have O,A |= A(ι) for ι = 〈0, 0〉 only.

Furthermore, by admitting 〈R〉-operators on the right-hand side of concept inclusions
of HS2horn, we make it undecidable under any semantics and any unbounded linear orders.
In fact, this extended logic remains undecidable under the irreflexive semantics even when
restricted to binary concept inclusions (that is, the core fragment).

5.3 Multidimensional datalogHS2
n

The former of the two tractable fragments of HS-LiteHhorn mentioned above can be generalised
in two directions [58]. First, we extend DL-LiteHhorn TBoxes without ∃ on the right-hand
side of concept inclusions to arbitrary datalog programs. Second, following [23], we extend
the interval logic HS to a multidimensional hyperrectangle (or block) logic HSn. Let
T = (T,�) be either (Z,≤) or (R, <). (In fact, one can take any discrete order under the
reflexive semantics and any dense order under the reflexive or irreflexive semantics.) Fix
some n ≥ 1 and a linear order T` = (T`,�`) as above, for 1 ≤ ` ≤ n. A hyperrectangle in the
n-dimensional space T =

∏n
`=1 T` is any n-tuple ι = (ι1, . . . , ιn) such that ι` ∈ int(T`), for

1 ≤ ` ≤ n. The set of hyperrectangles in T is denoted by hyp(T). Given ι,κ ∈ hyp(T) and
an interval relation R, we write ι R` κ if ι` R κ` and ιi = κi, for i 6= `.

A data instance (ABox), A, is now a finite set of facts of the form P (c, ι), where P
is an m-ary predicate symbol, c an m-tuple of individual constants, for some m ≥ 0, and
ι ∈ hyp(T). This fact says that P (c) is true in the hyperrectangle ι. We denote by num`(A)
the set of i, j ∈ T` with ι` = 〈i, j〉, for some ι mentioned in A, and by int(A) the set of
〈i, j〉 ∈ int(T`) with i, j ∈ num`(A), for 1 ≤ ` ≤ n.

An individual term, τ , is an individual variable, x, or a constant, a. A datalogHS2n
program, Π, is a finite set of rules of the form

A+ ← A1 ∧ · · · ∧Ak, ⊥ ← A1 ∧ · · · ∧Ak, (11)

where k ≥ 1, each Ai is either an inequality (τ 6= τ ′) with individual terms τ and τ ′ or
defined by the grammar

A ::= P (τ1, . . . , τm) | [R]`A | 〈R〉`A, (12)

for an m-ary predicate P and individual terms τj , and A+ does not contain any diamond
operators 〈R〉`. As usual, the atoms A1, . . . , Ak constitute the body of the rule, while A+

or ⊥ its head. We also impose other standard datalog restrictions on datalogHS2n programs.
(Clearly, we cannot allow 〈R〉` in the heads as this would make our logic undecidable, as
discussed above.)

An interpretation, M, for datalogHS2n programs is based on a domain ∆ 6= ∅ (for the
individual variables and constants) and the space T. For any m-ary predicate P , m-tuple
c from ∆ and ι ∈ hyp(T), M specifies whether P is true on c in ι, in which case we write
M, ι |= P (c). Let d be an assignment of elements of ∆ to the individual variables (we adopt
the standard name assumption: d(a) = a, for every individual constant a). We then set
inductively:

M, ι |=d P (τ) iff M, ι |= P (d(τ)), M, ι 6|=d ⊥,
M, ι |=d τ 6= τ ′ iff d(τ) 6= d(τ ′),
M, ι |=d [R]`A iff M,κ |=d A for all κ with ι R` κ,

M, ι |=d 〈R〉`A iff M,κ |=d A for some κ with ι R` κ.

TIME 2017

1:24 Temporal Ontology-Mediated Querying: A Survey

a) ι

ι′
κ

b) ι

ι′

κ

Figure 4 Configurations for Int and Cov in Example 18.

(Z,≤)

(R, <)

ι−1

ι1

ι+
1

ι2

ι+
2

ι−2 ι−

ι+

ι

Figure 5 Rule for TemperatureRise in Example 19.

We say that M satisfies Π under d if

M, ι |=d A whenever M, ι |=d Ai for 1 ≤ i ≤ k,

for all ι ∈ hyp(T) and all rules A ← A1 ∧ · · · ∧ Ak in Π. M is a model of Π and A if it
satisfies Π under every assignment, and M, ι |= P (c), for every fact P (c, ι) in A. Π and A
are consistent if they have a model.

I Example 18. Denote by 〈Int〉 the binary modal operator such that A〈Int〉A′ holds at a
hyperrectangle κ iff A holds at some ι, A′ at some ι′, and κ = ι ∩ ι′. One can show that
rules such as B ← A〈Int〉A′ are expressible as datalogHS2n programs. For example, for n = 2,
there are 132 = 169 different relative positions of two rectangles; see, e.g., [65, Fig. 4] for
an illustration. Those configurations where the rectangles have non-empty intersection are
encoded by datalogHS2n rules such as B ← 〈Ē〉1〈B̄〉2A ∧ 〈B̄〉1〈Ē〉2A′ for the configuration in
Fig. 4a. Similarly, one can express the rule B ← A〈Cov〉A′ such that A〈Cov〉A′ holds at κ iff
κ is the smallest hyperrectangle containing some ι with A and ι′ with A′; see Fig. 4b.

An interval term, ϑ, is either an interval or an interval variable. A conjunctive query
(CQ) is a formula of the form q(x,χ) = ∃x′∃χ′Φ(x,x′,χ,χ′), where Φ is a conjunction
of atoms P (τ ,ϑ) for tuples τ and ϑ of individual and interval terms, respectively, and
R(ϑ, ϑ′), for an interval relation R, such that all individual and interval variables in Φ are
from x∪x′ and χ∪χ′, respectively. A datalogHS2n program Π and a CQ q(x,χ) constitute
an ontology-mediated query (OMQ) Q(x,χ) = (Π, q(x,χ)).

I Example 19. Suppose T = T1 × T2, where T1 = (Z,≤) represents time and T2 = (R, <)
temperature. Imagine that a turbine monitoring system is receiving from sensors a stream of
data of the form Blade(ID140, (ι1, ι2)), where ID140 is a blade ID and ι2 ∈ int(R, <) is the
observed temperature range during the time interval ι1 ∈ int(Z,≤). Then the rule

TemperatureRise(x)← 〈Ā〉1〈Ō〉2Blade(x) ∧ 〈A〉1〈O〉2Blade(x)

says that the temperature of blade x is rising over a rectangle (ι1, ι2) if Blade(x, (ι−1 , ι
−
2))

and Blade(x, (ι+
1 , ι

+
2)) hold at some (ι−1 , ι

−
2) and (ι+

1 , ι
+
2) located as shown in Fig. 5. The

temperature drop is defined analogously:

TemperatureDrop(x)← 〈Ā〉1〈O〉2Blade(x) ∧ 〈A〉1〈Ō〉2Blade(x).

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:25

To find the blades x and the time intervals χ such that the temperature of x was rising
before χ, reaching 1500◦ in χ, and dropping after that, we can use the following CQ:

∃ρ∃χ−∃ρ−∃χ+∃ρ+
[
Blade(x, (χ, ρ)) ∧ TemperatureRise(x, (χ−, ρ−)) ∧ A(χ−, χ) ∧

TemperatureDrop(x, (χ+, ρ+)) ∧ A(χ, χ+) ∧ O(ρ, 〈1500, 1600〉)
]
.

Let Q(x,χ) = (Π, q(x,χ)) be an OMQ and A a data instance. A certain answer to
Q(x,χ) over A is any pair (a, δ) of a tuple a of individual constants in A and a tuple δ
from int(A) of the same length as x and χ, respectively, satisfying the following condition:
for every model M of Π and A, there is a map h of the individual terms in q to ∆ and
the interval terms to

⋃
` int(T`) preserving constants and dimensions such that h(x) = a,

h(χ) = δ, and

M, h(ϑ) |= P (h(τ)), for every atom P (τ ,ϑ) in q, and
R(h(ϑ), h(ϑ′)) holds in the corresponding T`, for every atom R(ϑ, ϑ′) in q.

The problem of checking whether (a, δ) is a certain answer to Q(x,χ) over A is shown to
be PTime-complete for data complexity and ExpTime-complete for combined complexity;
for propositional datalogHS2n programs, the problem is PTime-complete for combined
complexity [58]. Any datalogHS2n OMQ Q(x,χ) = (Π, q(x,χ)) can also be rewritten to a
standard polynomial-size datalog program Π† with a goal G(x,χ) such that, for any data
instance A, a tuple (a, δ) is a certain answer to Q(x,χ) over A iff Π†,A |= G(a, δ). We
refer the reader to [58] for some initial experiments on the expressive power and efficiency of
ontology-based query answering with datalogHS2n using two real-world scenarios.

6 Dense Time and Metric Temporal Logics

The problems with discreteness of time are related to the fact that a minimal unit of time in
some cases may be unknown or inconvenient to use. Suppose, for example, that the time
unit is set to be ‘a minute’ for the turbine performance monitoring system with timestamped
data of the form (tb007, 1500, 11:27). When a newer model of turbine is installed with
measurements taken at the rate of one per second, we shall have to redefine the minimal
unit accordingly. This means, in particular, that the timestamps of the old data will also
have to be multiplied by 60 together with all the operators used in the ontology and queries
(e.g.,

∧60
i=0©

i
P LowSpeed v Alert saying that an alert is to be issued if a turbine maintained

low speed for 1 hour). On the other hand, if we assume that time is dense and use rational
numbers to refer to time instants, then we can represent timestamps such as 11:27:30 of the
new turbine as i+ 1

2 (assuming that 11:27 and 11:28 correspond to integer numbers i and i+1,
respectively), keeping the old timestamps and the ontology intact. However, for dense time,
we cannot use the inherently discrete LTL operators in the ontology and queries any longer,
and shall have to switch to a different temporal formalism with, say, metric interval operators,
in which case the axiom above will have to be rewritten as �[0,60]LowSpeed v Alert, where
�[0,60]LowSpeed is true at a moment i iff LowSpeed holds at every j such that i− j ∈ [0, 60].

6.1 datalogMTL2

In the standard metric temporal logic MTL [3], the temporal domain is the real numbers R,
while the intervals % in the constrained temporal operators such as �% (always in the past
within the interval % from now) have natural numbers or ∞ as their endpoints. For various

TIME 2017

1:26 Temporal Ontology-Mediated Querying: A Survey

applications, it would be more appropriate to assume that the endpoints of % are non-negative
rational numbers or ∞, while the temporal domain is the rational numbers Q (however, in
theory, not much will change if we take R as the temporal domain). Thus, by an interval,
ι, we mean in this section any nonempty subset of Q of the form [i, j], [i, j), (i, j] or (i, j),
where i, j ∈ Q ∪ {−∞,∞} and i ≤ j. (We identify (i,∞] with (i,∞), [−∞, i] with (−∞, i],
etc.) The set of all intervals in Q is denoted by int(Q). A range, %, is an interval with
non-negative endpoints.

As in Section 5.3, we take datalog as the domain ontology language and combine it with
MTL. Thus, a data instance (ABox), A, is a finite set of facts of the form P (a)@ι, where P
is an m-ary predicate symbol, a an m-tuple of individual constants, for some m ≥ 0, and
ι ∈ int(Q). This fact says that P (a) is true at each point of time in the interval ι. To reflect
this subtle semantical difference from Section 5, we write P (a)@ι rather than P (a, ι). The
following facts are an example of a data instance:

Turbine(tb0)@(−∞,∞), ActivePowerAbove1.5(tb0)@[13:00:00, 13:00:10), (13)
ActivePowerAbove1.5(tb0)@[13:00:08, 13:00:15),
ActivePowerBelow0.15(tb0)@[13:00:17, 13:01:25).

Brandt et al. [29] consider atomic queries of the form q(x, χ) = P (τ)@χ, where P is a
predicate name, x is a tuple of all individual variables occurring in the terms τ , and χ an
interval variable. For example, the answers to the query q(χ) = ActivePowerAbove1.5(tb0)@χ
over the data instance above contain (among others) the intervals [13:00:00, 13:00:10),
(13:00:05, 13:00:10), and [13:00:00, 13:00:15) (the semantics will be defined below), as this
information is contained, explicitly or implicitly, in A. In a practical OBDA system, however,
the returned result should be limited to the last interval only, [13:00:00, 13:00:15), because it
includes all other answers.

The temporal ontology language datalogMTL2 uses the rules of the form (11), where the
atoms A are defined by the grammar

A ::= > | P (τ1, . . . , τm) | �%A | �%A | A1 S% A2 | A1 U% A2

and A+ is as above but without any ‘non-deterministic’ operators U% and S%; cf. (12). We
also use standard abbreviations −3%A = >S%A and +3%A = >U%A. A datalogMTL2 program
is a finite set of rules.

I Example 20. For instance, the rule

ActivePowerTrip(x)← Turbine(x) ∧ �[0,1m] ActivePowerBelow0.15(x) ∧
−3[60s,63s] �[0,10s]ActivePowerAbove1.5(x) (14)

says that an active power trip happens when the active power of a turbine was above 1.5MW
for a period of at least 10 seconds, maximum 3 seconds after which there was a period of at
least one minute where the active power was below 0.15MW, as shown in Fig. 6.

The semantics of query answering in datalogMTL2 is essentially point-based. Thus, an
interpretation, M, is based on a domain ∆ 6= ∅ for the individual variables and constants. For
any m-ary predicate P , m-tuple c from ∆, and any moment of time i ∈ Q, the interpretation
M specifies whether P is true on c at i, in which case we write M, i |= P (c). As before, d is
an assignment of elements of ∆ to the individual variables (we adopt the standard name

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:27

ActivePowerTrip
ActivePowerBelow0.15ActivePowerAbove1.5

x

1m

63s

10s

Figure 6 ActivePowerTrip.

i

�%A

j

A
d

e
i

+3%A

j

A•

d

e

i

A U% A
′

j

A′•

d

e
A

Figure 7 Semantics of metric temporal operators for % = [d, e].

assumption: d(a) = a, for every individual constant a). We then set inductively:

M, i |=d >, and M, i 6|=d ⊥,
M, i |=d P (τ) iff M, i |= P (d(τ)),
M, i |=d (τ 6= τ ′) iff d(τ) 6= d(τ ′),
M, i |=d �%A iff M, j |=d A for all j with j − i ∈ %,
M, i |=d �%A iff M, j |=d A for all j with i− j ∈ %,
M, i |=d A1 U% A2 iff M, i′ |=d A2 for some i′ with i′ − i ∈ % and

M, j |=d A1 for all j ∈ (i, i′),
M, i |=d A1 S% A2 iff M, i′ |=d A2 for some i′ with i− i′ ∈ % and

M, j |=d A1 for all j ∈ (i′, i).

Figure 7 illustrates the semantics of the future-time operators for % = [d, e]. Note that ranges
% in the temporal operators can be punctual [d, d], in which case �[d,d]A is equivalent to
+3[d,d]A, and �[d,d]A to −3[d,d]A. We say that M satisfies a datalogMTL2 program Π under
an assignment d if, for all i ∈ Q and all the rules A← A1 ∧ · · · ∧Ak in Π, we have

M, i |=d A whenever M, i |=d An for 1 ≤ n ≤ k.

We call M a model of Π and A and write M |= (Π,A) if M satisfies Π under every assignment,
and M, i |= P (a) for any P (a)@ι in A and any i ∈ ι. Π and A are consistent if they have a
model.

A datalogMTL2 ontology-mediated query is of the form (Π, q(x, χ)), where Π is a
datalogMTL2 program and q(x, χ) is an atomic query P (τ)@χ. A certain answer to
(Π, q(x, χ)) over a data instance A is a pair (a, ι) such that a is a tuple of constants from A
of the same length as x, ι an interval and, for any i ∈ ι, any model M of Π and A, and any
assignment d mapping x to a, we have M, i |=d P (τ). In this case, we write M, i |= q(a).
To illustrate, the datalogMTL2 query (Π,ActivePowerTrip(tb0)@χ), where Π consists of
rule (14), returns [13:01:17, 13:01:18) as a certain answer over the data instance above.

TIME 2017

1:28 Temporal Ontology-Mediated Querying: A Survey

Right&LeftSupportMiddlePlace Right&LeftSupportLowPlace
SupportBending

3s

−3[0,3s]Right&LeftSupportMiddlePlace

Figure 8 SupportBending in Example 21.

I Example 21. We illustrate the importance of the operators S% and U% using an example
inspired by the ballet moves ontology [76]. Suppose we want to say that SupportBending is a
move spanning from the beginning to the end of Right&LeftSupportLowPlace provided that
it is preceded by Right&LeftSupportMiddlePlace, which ends within 3s from the beginning of
the Right&LeftSupportLowPlace, as shown in Fig. 8. We can define the SupportBending move
using the following rule:

SupportBending← Right&LeftSupportLowPlace S[0,∞)−3[0,3s]Right&LeftSupportMiddlePlace.

Note that defining SupportBending in datalogMTL2 would be problematic if only the 2 and
3 operators were available.

Atomic OMQ evaluation with datalogMTL2 has been studied by Brandt et al. [29]. In
particular, it was shown to be decidable and ExpSpace-complete for combined complexity.
This result holds even with punctual temporal operators (with range [d, d]), in which case
the propositional MTL is known to be undecidable [4]; on the other hand, the propositional
MTL is ExpSpace-complete if the punctual operators are not allowed [3]; see also [66, 67].
In fact, the undecidability result in the presence of punctual operators holds even for the
propositional (predicates of arity 0 only) fragment of datalogMTL2 extended by −3% and +3%

operators in the head of rules [29] (cf. HS2horn in Section 5.2). Furthermore, it was shown
that, for nonrecursive datalogMTL2 programs, query answering is PSpace-complete for
combined complexity and in AC0 for data complexity.

6.2 Use Cases
The metric temporal ontology language datalogMTL2 has been used to construct ontologies
and support query answering in three practical use-cases [29, 76], which will be briefly
discussed below.

Turbine Monitoring at Siemens At Siemens, service centres store aggregated turbine sensor
data instances such as (13). A datalogMTL2 ontology has been designed [29] to define events
(representing normal or abnormal behaviour) that are of interest to engineers monitoring the
performance of turbines. One such event is active power trip defined by (14). As another
example, we show a (partial) definition of normal restart:

NormalRestart(x)← NormalStart(x) ∧ −3(0,1h]NormalStop(x),
NormalStop(x)← CoastDown1500to200(x) ∧ −3(0,9m]

[
CoastDown6600to1500(x) ∧

−3(0,2m]
(
MainFlameOff(x) ∧ −3(0,2m] ActivePowerOff(x)

)]
,

MainFlameOff(x)← �[0s,10s]MainFlameBelow0.1(x).

(The complete definition of normal restart contains 12 rules.) The purpose of this ontology is
to enable a convenient access to temporal information for an engineer who can pose succinct
queries such as q(x, χ) = NormalRestart(x)@χ (find the turbines that had a normal restart)
without having to write explicitly (or even to know) the complex definition of this event.

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:29

Weather Monitoring The MesoWest3 project makes publicly available historical records of
the weather stations across the US showing such parameters of meteorological conditions as
temperature, wind speed and direction, amount of precipitation, etc. From this data, one
can extract facts such as

NorthWind(KBVY)@(15:14, 15:24], HurricaneForceWind(KMNI)@(15:21, 15:31],
Precipitation(KBVY)@(15:14, 15:24], TempAbove0(KBVY)@(15:14, 15:24],
TempAbove0(KMNI)@(15:21, 15:31],
LocatedInCounty(KBVY,Essex)@(−∞,∞), LocatedInState(KBVY,MA)@(−∞,∞),

where KBVY,KMNI are IDs of the stations (according to the standard definition, the hurricane
force wind is above 118 km/h). A snippet of a weather ontology giving meteorological
definitions (such as ‘a hurricane is a hurricane force wind lasting one hour or longer’) is
shown below:

�[0,1h] Hurricane(x)← �[0,1h]HurricaneForceWind(x),
ShoweryCounty(x)← LocatedInCounty(u1, x) ∧ LocatedInCounty(u2, x) ∧

Precipitation(u1) ∧ NoPrecipitation(u2) ∧ −3(0,30m] Precipitation(u2),
HurricaneAffectedState(x)← LocatedInState(u, x) ∧ Hurricane(u),
�[0,24h] ExcessiveHeat(x)← �[0,24h]TempAbove24(x) ∧ −3[0,24h] TempAbove41(x),
HeatAffectedCounty(x)← LocatedInCounty(u, x) ∧ ExcessiveHeat(u),
CyclonePatternState(x)← LocatedInState(u1, x) ∧ LocatedInState(u2, x) ∧

LocatedInState(u3, x) ∧ LocatedInState(u4, x) ∧ EastWind(u1) ∧
NorthWind(u2) ∧WestWind(u3) ∧ SouthWind(u4).

The purpose of using the temporal ontology in the weather use-case is to enable a weather
expert to find information about complex meteorological events by using succinct queries.

BalOnSe: Ontology of Dance Movements This use-case is concerned with user annota-
tions of ballet videos such as

LeftLegGestureMiddleBack(video1)@[12s, 13s]

saying that the movement LeftLegGestureMiddleBack is shown in video1 from 00:12:00 to
00:13:00. The ballet ontology [76] reflects the terminology developed by ballet researchers
and contains rules such as

�[0,3s]PlieReleve(x)↔�[0,1s] RightSupportMidPlace(x) ∧�[0,1s]LeftSupportMidPlace(x) ∧
�[1,2s] RightSupportLowPlace(x) ∧�[1,2s]LeftSupportLowPlace(x) ∧
�[2,3s] RightSupportHighPlace(x) ∧�[2,3s]LeftSupportHighPlace(x)

defining the composite movement plie releve as a sequence of simpler movements occurring
simultaneously or in a sequence. The video annotations together with the ontology are
then used to enhance the search capabilities of a video search system for ballet learners and
scholars. Thus, searching the term plie releve will return the videos (and time spans in them)
showing this movement, even if the annotation for this sequence is not explicitly present in
the database, but is deducible from the ontology and other annotations.

3 http://mesowest.utah.edu/

TIME 2017

http://mesowest.utah.edu/

1:30 Temporal Ontology-Mediated Querying: A Survey

7 Ontology-Based Data Access and Implementations

In real-world applications, the data instances (ABoxes) are not created from scratch. In fact,
they are obtained from existing relational or RDF databases by means of mappings (queries
in the language of a data source) in order to produce a high-level conceptual view of the data.
Such ABoxes can be materialised and stored as, e.g., RDF triples, or remain virtual (as a
potential result of applying the mapping to the data), in which case an ontology-mediated
query may be evaluated by rewriting it into a set of queries in the language(s) of the data
sources. In the this section, we briefly address the problem of converting raw data to an ABox
in the context of temporal data. After that we present some prototypical implementations of
temporal ontology-based data access and evaluations of their performance.

7.1 From Raw to Conceptual Temporal Data
Suppose turbine sensor measurements are stored in a relational table TB_Sensor:

turbineId dateTime activePower rotorSpeed mainFlame . . .
tb0 2015-04-04 12:20:48 2 1550 0
tb0 2015-04-04 12:20:49 1.8 1400 null
tb0 2015-04-04 12:20:52 1.7 1350 1

. . .

There are three major options for conceptualising this data if, for instance, we are interested
in the situations when the rotor speed was below 1500:

RotorSpeedBelow1500(tb0, i), RotorSpeedBelow1500(tb0, i+ 1), where i is the timestamp
in the first row of the table, and so i+ 1 is the number of the second timestamp. This is
the most simplistic approach that ignores the distance between the timestamps, but it
is suitable if the timestamps are present in the database at regular intervals (which is
not the case above), or only the sequence of events rather than the duration of the gap
between them is important.
RotorSpeedBelow1500(tb0, i), RotorSpeedBelow1500(tb0, i+ 3), where i is the timestamp
in the first row of the table. Here, we obviously make an assumption that the time unit in
our application domain is ’a second’, and so this approach takes into account the duration
of the gap between the events.
RotorSpeedBelow1500(tb0, 〈i, i + 3〉), where 〈i, i + 3〉 is a time interval. Here, we use a
real-world assumption that a rotor speed sensor sends its measurements only when the
current value of the speed is sufficiently different from the previous measurement, and
this value is assumed to hold for all the times until the next one is produced. Note also
that some sensors may produce aggregated (e.g., average) value taken over some period.

The choice of how to conceptualise the data depends on the application domain. Below, we
follow the third approach and show a mapping (in the syntax similar to the standard R2RML
mapping language, where in the body we use standard SQL with window operators) that
extracts the data instance related to the situations when active power was above 1.5MW:

ActivePowerAbove1.5(tbid)@[ledge, redge)←
SELECT tbid, ledge, redge FROM (

SELECT turbineId AS tbid, LAG(dateTime, 1) OVER (w) AS ledge,
LAG(activePower, 1) OVER (w) AS lag_activePower, dateTime AS redge

FROM TB_Sensor
WINDOW w AS (PARTITION BY turbineId ORDER BY dateTime)) tmp

WHERE lag_activePower > 1.5

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:31

●
●

●
●

●
●

● ●
●

●

0

500

1000

1500

32
0.7

64
1.4

96
2.2

128
2.9

159
3.7

191
4.4

223
5.2

255
5.9

287
6.7

319
7.4

number of months and database size (GB)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

● active−power−trip
normal−restart
normal−start
normal−stop

Figure 9 Performance of queries in the Siemens use-case.

The mapping above applied to TB_Sensor will produce the following instance:

ActivePowerAbove1.5(tb0)@[12:20:48, 12:20:49),
ActivePowerAbove1.5(tb0)@[12:20:49, 12:20:52).

Note that we use the definition of interval from Section 6 and make an assumption (reflecting
our intuition on how sensors produce their measurements) that the intervals involved are all of
the form [i, j). Clearly, we can add similar mappings for the concepts RotorSpeedAbove1500
and MainFlameBelow0.1.

7.2 Implementation

We report on the implementation of temporal ontology-based data access and its evalu-
ation [29]. The ontology language supported by this implementation is datalognrMTL2

consisting of nonrecursive datalogMTL2 programs, and the system rewrites datalognrMTL2

OMQs to standard SQL queries with views. The performance the rewritings for the Siemens
use-case described in Section 6.2 was evaluated on an HP Proliant server with 24 Intel Xeon
CPUs (@3.47GHz), 106GB of RAM and five 1TB 15K RPM HD, which used PostgreSQL as
a database engine. The maximum physical memory consumption in the experiments was
12.9GB.

Siemens supplied a sample of data for one running turbine, denoted tb0, over 4 days in the
form of the table TB_Sensor. This sample was replicated to imitate the data for one turbine
over 10 different periods ranging from 32 to 320 months. Four queries ActivePowerTrip(tb0)@χ,
NormalStart(tb0)@χ, NormalStop(tb0)@χ, and NormalRestart(tb0)@χ were evaluated with a
timeout of 30 minutes. The execution times are given in Fig. 9, which shows their linear
growth in the number of months and, consequently, in the size of data. Note that the normal
restart (start) query timeouts on the data for more than 15 (respectively, 20) years, which
is more than enough for the monitoring and diagnostics tasks at Siemens, where the two
most common application scenarios for sensor data analytics are daily monitoring (that
is, analytics of high-frequency data of the previous 24 hours) and fleet-level analytics of

TIME 2017

1:32 Temporal Ontology-Mediated Querying: A Survey

key-performance indicators over one year. In both cases, the computation time of the results
is far less a crucial cost factor than the lead-time for data preparation.

The evaluation was performed for the weather OMQs with MesoWest data (see Section 6.2)
as well. On the other hand, the system SPARK capable of parallel query processing, in place
of PostgreSQL, was evaluated showing large performance improvements in some cases; for
details consult [30].

References
1 Luca Aceto, Dario Della Monica, Valentin Goranko, Anna Ingólfsdóttir, Angelo Montanari,

and Guido Sciavicco. A complete classification of the expressiveness of interval logics of
Allen’s relations: the general and the dense cases. Acta Inf., 53(3):207–246, 2016.

2 James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

3 Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.
J. ACM, 43(1):116–146, 1996.

4 Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness.
Inf. Comput., 104(1):35–77, 1993.

5 Natalia Antonioli, Francesco Castanò, Spartaco Coletta, Stefano Grossi, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Emanuela Virardi, and Patrizia Castracane. Ontology-
based data management for the Italian public debt. In Proc. of the 8th Int. Conf. on Formal
Ontology in Information Systems, FOIS 2014, pages 372–385. IOS Press, 2014.

6 Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The
DL-Lite family and relations. J. Artif. Intell. Res. (JAIR), 36:1–69, 2009.

7 Alessandro Artale and Enrico Franconi. Temporal description logics. In Handbook of Tem-
poral Reasoning in Artificial Intelligence, volume 1 of Foundations of Artificial Intelligence,
pages 375–388. Elsevier, 2005.

8 Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank
Wolter, and Michael Zakharyaschev. First-order rewritability of temporal ontology-
mediated queries. In Proc. of the 24th Int. Joint Conf. on Artificial Intelligence, IJCAI’15,
pages 2706–2712. IJCAI/AAAI, 2015.

9 Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
The complexity of clausal fragments of LTL. In Proc. of the 19th Int. Conf. on Logic
for Programming, Artificial Intelligence, and Reasoning, LPAR’13, volume 8312 of LNCS,
pages 35–52. Springer, 2013.

10 Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
A cookbook for temporal conceptual data modelling with description logics. ACM Trans.
Comput. Log., 15(3):25:1–25:50, 2014.

11 Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
Tractable interval temporal propositional and description logics. In Proc. of the 29th Conf.
on Artificial Intelligence, AAAI’15, pages 1417–1423. AAAI Press, 2015.

12 Alessandro Artale, Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Tem-
poral description logic for ontology-based data access. In Proc. of the 23rd Int. Joint Conf.
on Artificial Intelligence, IJCAI’13, pages 711–717. IJCAI/AAAI, 2013.

13 Franz Baader. Ontology-based monitoring of dynamic systems. In Proc. of the 14th Int.
Conf. on Principles of Knowledge Representation and Reasoning, KR’14, pages 678–681.
AAAI Press, 2014.

14 Franz Baader, Stefan Borgwardt, Patrick Koopmann, Ana Ozaki, and Veronika Thost.
Metric temporal description logics with interval-rigid names (extended abstract). In Proc.
of the 30th Int. Workshop on Description Logics, DL’17. CEUR-WS, 2017.

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:33

15 Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporalizing ontology-based
data access. In Proc. of the 24th Int. Conf. on Automated Deduction, CADE-24, volume
7898 of LNCS, pages 330–344. Springer, 2013.

16 Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal conjunctive queries in
expressive description logics with transitive roles. In Proc. of the 28th Australasian Joint
Conf. on Advances in Artificial Intelligence, AI’15, volume 9457 of LNCS, pages 21–33.
Springer, 2015.

17 Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal query entailment in
the description logic SHQ. J. Web Semantics, 33:71–93, 2015.

18 Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence, IJCAI-05, pages 364–369. IJCAI/AAAI,
2005.

19 Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

20 Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over description logic axioms. In
Proc. of the 11th Int. Conf. on Principles of Knowledge Representation and Reasoning, KR
2008, pages 684–694. AAAI Press, 2008.

21 Franz Baader, Ralf Küsters, and Frank Wolter. Extensions to description logics. In The
Description Logic Handbook, pages 219–261. Cambridge University Press, 2003.

22 Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman, Mark Van Harmelen,
Rafael S. Goncalves, and Cristina Garilao. Fishmark: A linked data application benchmark.
In Proc. of SSWS+HPCSW 2012, pages 1–15. CEUR-WS, 2012.

23 Philippe Balbiani, Jean-François Condotta, and Luis Fariñas del Cerro. Tractability results
in the block algebra. J. Log. Comput., 12(5):885–909, 2002.

24 Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive datalog, CSP, and MMSNP. ACM Trans. on Database
Systems, 39(4):33:1–33:44, 2014.

25 Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporal query answering in
the description logic DL-Lite. In Proc. of the 9th Int. Symposium on Frontiers of Combining
Systems, FroCoS’13, volume 8152 of LNCS, pages 165–180. Springer, 2013.

26 Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporalizing rewritable query
languages over knowledge bases. J. Web Semantics, 33:50–70, 2015.

27 Stefan Borgwardt and Veronika Thost. Temporal query answering in DL-Lite with negation.
In Proc. of the Global Conf. on Artificial Intelligence, GCAI15, volume 36 of EPiC Series
in Computing, pages 51–65, 2015.

28 Stefan Borgwardt and Veronika Thost. Temporal query answering in the description logic
EL. In Proc. of the 24h Int. Joint Conf. on Artificial Intelligence, IJCAI’15, pages 2819–
2825. AAAI Press, 2015.

29 Sebastian Brandt, Elem Güzel Kalayci, Roman Kontchakov, Vladislav Ryzhikov, Guohui
Xiao, and Michael Zakharyaschev. Ontology-based data access with a horn fragment of
metric temporal logic. In Proc. of the 31st AAAI Conf. on Artificial Intelligence, AAAI’17,
pages 1070–1076. AAAI Press, 2017.

30 Sebastian Brandt, Elem Güzel Kalayci, Vladislav Ryzhikov, Guohui Xiao, and Michael
Zakharyaschev. Querying log data with metric temporal logic. CoRR, abs/1703.08982,
2017.

31 Torben Braüner and Silvio Ghilardi. First-order modal logic. In Handbook of Modal Logic,
volume 3 of Studies in Logic and Practical Reasoning, pages 549–620. Elsevier, 2007.

TIME 2017

1:34 Temporal Ontology-Mediated Querying: A Survey

32 Davide Bresolin, Agi Kurucz, Emilio Muñoz-Velasco, Vladislav Ryzhikov, Guido Sciavicco,
and Michael Zakharyaschev. Horn fragments of the Halpern-Shoham interval temporal
logic. ACM Trans. Comput. Log., 18(3), 2017.

33 Davide Bresolin, Dario Della Monica, Valentin Goranko, Angelo Montanari, and Guido
Sciavicco. The dark side of interval temporal logic: marking the undecidability border.
Ann. Math. Artif. Intell. (AMAI), 71(1-3):41–83, 2014.

34 Davide Bresolin, Dario Della Monica, Angelo Montanari, and Guido Sciavicco. The light
side of interval temporal logic: the Bernays-Schönfinkel fragment of CDT. Ann. Math.
Artif. Intell. (AMAI), 71(1-3):11–39, 2014.

35 Richard J. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für Math-
ematische Logik und Grundlagen der Mathematik, 6(1–6):66–92, 1960.

36 Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
The MASTRO system for ontology-based data access. Semantic Web, 2(1):43–53, 2011.

37 Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

38 Diego Calvanese, Pietro Liuzzo, Alessandro Mosca, José Remesal, Martin Rezk, and
Guillem Rull. Ontology-based data integration in EPNet: Production and distribution
of food during the Roman Empire. Eng. Appl. of AI, 51:212–229, 2016.

39 Jan Chomicki. Polynomial time query processing in temporal deductive databases. In Proc.
of the 9th ACM Symposium on Principles of Database Systems, PODS’90, pages 379–391.
ACM Press, 1990.

40 Jan Chomicki and Tomasz Imielinski. Temporal deductive databases and infinite objects.
In Proc. of the 7th ACM Symposium on Principles of Database Systems, PODS’88, pages
61–73. ACM, 1988.

41 Stéphane Demri, Valentin Goranko, and Martin Lange. Temporal Logics in Computer
Science. Cambridge University Press, 2016.

42 Michael Fisher, Clare Dixon, and Martin Peim. Clausal temporal resolution. ACM Trans.
Comput. Log., 2(1):12–56, 2001.

43 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

44 Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal Logic: Mathematical
Foundations and Computational Aspects, volume 1. Oxford University Press, 1994.

45 Dov M. Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Many-
Dimensional Modal Logics: Theory and Applications. Elsevier North Holland, 2003.

46 Dov M. Gabbay, Mark A. Reynolds, and Marcelo Finger. Temporal Logic: Mathematical
Foundations and Computational Aspects, volume 2. Oxford University Press, 2000.

47 Martin Giese, Ahmet Soylu, Guillermo Vega-Gorgojo, Arild Waaler, Peter Haase, Ernesto
Jiménez-Ruiz, Davide Lanti, Martín Rezk, Guohui Xiao, Özgür L. Özçep, and Riccardo
Rosati. Optique: Zooming in on big data. IEEE Computer, 48(3):60–67, 2015.

48 Claudio Gutierrez, Carlos A. Hurtado, and Alejandro A. Vaisman. Introducing time into
RDF. IEEE Trans. Knowl. Data Eng., 19(2):207–218, 2007.

49 Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Roman Kontchakov. Temporalized
EL ontologies for accessing temporal data: Complexity of atomic queries. In Proc. of the
25th Int. Joint Conf. on Artificial Intelligence, IJCAI’16, pages 1102–1108. IJCAI/AAAI,
2016.

50 Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Ana Ozaki. On metric temporal de-
scription logics. In Proc. of the 22nd European Conf. on Artificial Intelligence, ECAI 2016,
volume 285 of FAIA, pages 837–845. IOS Press, 2016.

A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev 1:35

51 Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Thomas Schneider. Lightweight de-
scription logics and branching time: A troublesome marriage. In Proc. of the 14th Int.
Conf. on Principles of Knowledge Representation and Reasoning, KR’14, pages 278–287.
AAAI Press, 2014.

52 Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Thomas Schneider. Lightweight tem-
poral description logics with rigid roles and restricted TBoxes. In Proc. of the 24th Int.
Joint Conf. on Artificial Intelligence, IJCAI 2015, pages 3015–3021. IJCAI/AAAI, 2015.

53 Joseph Y. Halpern and Yoav Shoham. A propositional modal logic of time intervals. J.
ACM, 38(4):935–962, 1991.

54 Ian M. Hodkinson, Roman Kontchakov, Agi Kurucz, Frank Wolter, and Michael Za-
kharyaschev. On the computational complexity of decidable fragments of first-order lin-
ear temporal logics. In Proc. of the 10th Int. Symposium on Temporal Representation and
Reasoning and the 4th Int. Conf. on Temporal Logic, TIME-ICTL 2003, pages 91–98. IEEE
Computer Society, 2003.

55 Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reasoning in very
expressive description logics. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence,
IJCAI-05, pages 466–471. IJCAI/AAAI, 2005.

56 Neil Immerman. Descriptive complexity. Springer, 1999.
57 Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Za-

kharyaschev. The combined approach to query answering in DL-Lite. In Proc. of the
12th Int. Conf. on Principles of Knowledge Representation and Reasoning, KR 2010, pages
247–257. AAAI Press, 2010.

58 Roman Kontchakov, Laura Pandolfo, Luca Pulina, Vladislav Ryzhikov, and Michael Za-
kharyaschev. Temporal and spatial OBDA with many-dimensional Halpern-Shoham logic.
In Proc. of the 25th Int. Joint Conf. on Artificial Intelligence, IJCAI’16, pages 1160–1166.
IJCAI/AAAI, 2016.

59 Alisa Kovtunova. Ontology-Mediated Query Answering with Lightweight Temporal Descrip-
tion Logics. PhD thesis, KRDB research centre, Faculty of Computer Science, Free Univer-
sity of Bozen-Bolzano, 2017.

60 Krishna G. Kulkarni and Jan-Eike Michels. Temporal features in SQL:2011. SIGMOD
Record, 41(3):34–43, 2012.

61 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

62 Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description logics: A
survey. In Proc. of the 15th Int. Symposium on Temporal Representation and Reasoning,
TIME’08, pages 3–14. IEEE Computer Society, 2008.

63 Jerzy Marcinkowski and Jakub Michaliszyn. The undecidability of the logic of subintervals.
Fundam. Inform., 131(2):217–240, 2014.

64 Boris Motik. Representing and querying validity time in RDF and OWL: A logic-based
approach. J. Web Semantics, 12:3–21, 2012.

65 Isabel Navarrete, Antonio Morales, Guido Sciavicco, and M. Antonia Cárdenas Viedma.
Spatial reasoning with rectangular cardinal relations — the convex tractable subalgebra.
Ann. Math. Artif. Intell. (AMAI), 67(1):31–70, 2013.

66 Joël Ouaknine and James Worrell. On the decidability of metric temporal logic. In Proc. of
the 20th Annual IEEE Symposium on Logic in Computer Science, LICS’05, pages 188–197.
IEEE Computer Society, 2005.

67 Joël Ouaknine and James Worrell. Some recent results in metric temporal logic. In Proc.
of the 6th Int. Conf. on Formal Modeling and Analysis of Timed Systems, FORMATS’08,
pages 1–13, 2008.

TIME 2017

1:36 Temporal Ontology-Mediated Querying: A Survey

68 Özgür L. Özçep, Ian Horrocks, Ralf Möller, Thomas Hubauer, Christian Neuenstadt,
Mikhail Roshchin, Dmitriy Zheleznyakov, and Evgeny Kharlamov. Deliverable D5.1: A
semantics for temporal and stream-based query answering in an OBDA context. Technical
report, October 2013.

69 Özgür L. Özçep and Ralf Möller. Ontology based data access on temporal and streaming
data. In Proc. of the 10th Int. Summer School on Reasoning on the Web in the Big Data
Era (Reasoning Web’14), volume 8714 of LNCS, pages 279–312. Springer, 2014.

70 Özgür L. Özçep, Ralf Möller, and Christian Neuenstadt. A stream-temporal query language
for ontology based data access. In Proc. of the 37th Annual German Conf. on AI, KI’14,
pages 183–194. Springer, 2014.

71 Francesco Pagliarecci, Luca Spalazzi, and Gilberto Taccari. Reasoning with temporal
aboxes: Combining DL-Litecore with CTL. In Proc. of the 26th Int. Workshop on De-
scription Logics, DL’13, pages 885–897. CEUR-WS, 2013.

72 Amir Pnueli. The temporal logic of programs. In Proc. of the 18th Annual Symposium on
Foundations of Computer Science, FOCS’77, pages 46–57. IEEE Computer Society, 1977.

73 Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. Data Semantics, 10:133–
173, 2008.

74 Andrea Pugliese, Octavian Udrea, and V. S. Subrahmanian. Scaling RDF with time. In
Proc. of the 17th Int. Conf. on World Wide Web, WWW’08, pages 605–614. ACM, 2008.

75 Alexander Rabinovich. A proof of Kamp’s theorem. Logical Methods in Computer Science,
10(1), 2014.

76 Katerina El Raheb, Theofilos Mailis, Vladislav Ryzhikov, Nicolas Papapetrou, and Yan-
nis E. Ioannidis. Balonse: Temporal aspects of dance movement and its ontological repres-
entation. In Proc. of the 14th Int. Conf., ESWC 2017, Part II, pages 49–64, 2017.

77 Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. Ontology-
based data access: Ontop of databases. In Proc. of the 12th Int. Semantic Web Conf.,
ISWC’13, Part I, volume 8218 of LNCS, pages 558–573. Springer, 2013.

78 Riccardo Rosati. On conjunctive query answering in EL. In Proc. of the Int. Workshop on
Description Logics, DL’07, volume 250. CEUR-WS, 2007.

79 Andrea Schaerf. On the complexity of the instance checking problem in concept languages
with existential quantification. J. Intelligent Information Systems, 2(3):265–278, 1993.

80 Klaus Schild. Combining terminological logics with tense logic. In Proc. of the 6th Por-
tuguese Conf. on Progress in Artificial Intelligence, EPIA’93, volume 727 of Lecture Notes
in Computer Science, pages 105–120. Springer, 1993.

81 Albrecht Schmiedel. Temporal terminological logic. In Proc. of the 8th National Conf. on
Artificial Intelligence, AAAI’90, pages 640–645. AAAI Press / The MIT Press, 1990.

82 Juan F. Sequeda and Daniel P. Miranker. A pay-as-you-go methodology for ontology-based
data access. IEEE Internet Computing, 21(2):92–96, 2017.

83 Ahmet Soylu, Martin Giese, Rudolf Schlatte, Ernesto Jiménez-Ruiz, Evgeny Kharlamov,
Özgür L. Özçep, Christian Neuenstadt, and Sebastian Brandt. Querying industrial stream-
temporal data: An ontology-based visual approach. J. Ambient Intelligence & Smart En-
vironments, 9(1):77–95, 2017.

84 David Toman. On incompleteness of multi-dimensional first-order temporal logics. In Proc.
of the 10th Int. Symposium on Temporal Representation and Reasoning and the 4th Int.
Conf. on Temporal Logic, TIME-ICTL 2003, pages 99–106. IEEE Computer Society, 2003.

85 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Proc.
of the 14th Annual ACM Symposium on Theory of Computing, STOC’82, pages 137–146.
ACM, 1982.

	Introduction
	Point-Based Temporal Ontology-Mediated Querying
	Queries Mediated by Domain- or Time-centric Ontologies
	Domain-Centric Ontology Languages
	Time-Centric OMQs
	Query Answering with Domain-Centric Ontologies

	Combinations
	A 2-FOL(<)-Rewritable Temporal Extension of DL-Lite
	Towards a Classification for Temporal DL-Lite
	Temporal EL

	Interval-Based Temporal Ontology-Mediated Query Answering
	Halpern-Shoham Interval Temporal Logic
	Description logic HS-LiteHhorn
	Multidimensional datalogHSn

	Dense Time and Metric Temporal Logics
	datalogMTL
	Use Cases

	Ontology-Based Data Access and Implementations
	From Raw to Conceptual Temporal Data
	Implementation

