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ABSTRACT

Traditionally, description logic has focused on representing and reasoning about classes rather than
relations, which has been justified by the deterioration of the computational properties if expressive
role inclusions are added. The situation is even worse in the temporalised setting, where monodicity
is viewed as an almost necessary condition for decidability. In this paper, we take a fresh look at
the description logic DL-Lite with expressive role inclusions, both with and without a temporal
dimension. While we confirm that full Boolean expressive power on roles leads to FO2-like behaviour
in the atemporal case and undecidability in the temporal case, we show that, rather surprisingly,
the restriction to Krom and Horn role inclusions leads to much lower complexity in the atemporal
case and to decidability (and EXPSPACE-completeness) in the temporal case, even if one admits full
Booleans on concepts. The latter result is one of very few instances breaking the monodicity barrier
in temporal FO. This is also reflected at the data complexity level, where we obtain new FO(RPR)-
and FO(<,+)-rewritability results.

1 Introduction

Description logics (DLs) have often been described as decidable fragments of first-order logic (FO) that model a domain
by introducing complex concept descriptions and subsumptions between them. In fact, the main syntactic difference
between DLs and FO is that, in the former, one can construct new, complex, concept descriptions from atomic concepts
using concept constructors without the explicit use of individual variables. The subsumption relationship between
complex concepts is then expressed using concept inclusions (CIs). Interestingly, corresponding role (binary relation)
constructors taking as input atomic roles and describing complex roles have never become mainstream except for role
composition, thus admitting role inclusions (RIs) of the form R1 ◦ · · · ◦Rn v R, with some appropriate restrictions [6].
The advantages of even a very limited form of Boolean expressivity on roles is well known [21, 25, 28, 29], so one
can only speculate about the reasons for them not becoming more popular. The main issue appears to be that, from a
computational perspective, adding Boolean operators on roles leads to expressivity similar to that of the two-variable
fragment FO2 of FO [24, 26], which, while still decidable, is significantly more challenging for automated reasoning
than typical DL fragments of FO with some form of the tree model property [18, 31]. In temporal DLs, the addition
of expressivity for roles is even more problematic: just declaring a role to remain constant in time often leads to
undecidability [23, 15]. Again, the reason is well understood: if one goes beyond the monodic fragment of first-order
temporal logic and is thus able to represent how relations change in time, one typically can encode the halting problem
for Turing machines by using the relations to represent the tape and time to encode the computation [15].

Our aim here is to revisit Boolean RIs in the context of (temporal) DL-Lite and introduce logics with new expressivity
for roles, for which the knowledge base (KB) satisfiability problem is decidable in the temporal case and of significantly
lower complexity than FO2 in the atemporal one.
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Recall that in DL-LiteR [12], also denoted DL-LiteHcore in the classification of [1], CIs and RIs take the form of binary
Horn (aka core) formulas ϑ1 v ϑ2 or ϑ1 u ϑ2 v ⊥, where the ϑi are either both concepts (that is, concept names or of
the form ∃R) or roles. The DL-Lite languages we consider extend this schema by allowing CIs and RIs of the form

ϑ1 u · · · u ϑk v ϑk+1 t · · · t ϑk+m, (1)

where the ϑi are all concepts or, respectively, roles. We classify ontologies by the form of these inclusions. Let
c, r ∈ {bool, g-bool, horn, krom, core}. Then DL-Literc is the DL whose ontologies contain CIs and RIs of the form (1)
satisfying the following for c and r, respectively:

(core) k +m ≤ 2 and m ≤ 1,

(horn) m ≤ 1,

(krom) k +m ≤ 2,

(g-bool) any k ≥ 1 and m ≥ 0,

(bool) any k ≥ 0 and m ≥ 0.

It follows that core is included in both krom and horn, which are in bool (g-bool stands for guarded bool). The
resulting languages provide a new way of classifying ontologies. While the languages DL-Litebool

c all have essentially
the same expressivity as FO2 and inherit NEXPTIME-completeness of KB satisfiability, the DL-Litekrom

c provide a way
of introducing ‘covering’ RIs > v R1 tR2 and also the complement of a role via disjointness and covering. Rather
surprisingly, these disjunctions come for free as far as the complexity of KB satisfiability is concerned: even combined
with Boolean CIs, satisfiability is still in NP, and combined with Krom CIs, it is even in NL. The full table of our
complexity results is given below.

role concept inclusions
inclusions (g-)bool krom horn core

bool NEXPTIME
g-bool EXPTIME
krom NP NL NP NL
horn NP P P P
core NP NL P NL

Our main aim in this paper is to investigate extensions of these DL-Lite languages with the standard linear temporal
logic (LTL ) operators 2F /2P (always in the future/past) and ©F /©P (in the next/previous moment) interpreted over
the timeline (Z, <). The temporal DLs have an additional parameter o ∈ {2,©,2©}: DL-Liteoc/r allows ontologies
whose axioms (1) may contain operators from o (e.g., o = 2 permits 2F /2P only) and comply with c for CIs and r
for RIs. A CI or RI is satisfied in a model if it holds globally, at all time points in Z. Even in the minimal language
DL-Lite©core/core we can state that a role R is expanding (R v ©FR) or constant (by adding ©FR v R). Using an
auxiliary relation, we can also express R v 2FQ in DL-Lite©core/core. Moving to DL-Lite2©core/horn, we can express that R
is convex or has a finite lifespan, and DL-Lite2©core/krom makes it possible to state that R causes Q to hold eventually; see
Section 2 for more details and discussions.

Using temporalised RIs we can thus represent temporal knowledge about relations that goes significantly beyond the
expressive power of languages in which only concepts and/or axioms are temporalised [5, 23, 15, 10, 19]. We show that,
nevertheless, KB satisfiability is decidable (in fact, EXPSPACE-complete) for both DL-Lite©bool/krom and DL-Lite2©bool/horn,
that is, even with arbitrary Boolean concepts, neither Krom nor Horn RIs lead to undecidability. This is optimal, as we
also show that satisfiability of DL-Lite©g-bool/g-bool KBs is undecidable.

role concept inclusions
inclusions (g-)bool horn

(g-)bool undecidable
krom ? (EXPSPACE for©-only RBox)
horn EXPSPACE
core PSPACE

We also investigate whether the satisfiability problem for KBs in our languages can be reduced to the query evaluation
problem over the underlying temporal database, which clarifies the data complexity of the former. We show that
DL-Lite2©krom/core ontologies are rewritable to FO(<,+) over finite linear orders (with built-in predicates for order and
plus), which corresponds to the data complexity in AC0. On the other hand, we prove that DL-Lite2©bool/horn ontologies
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can only be rewritten to the extension of FO(<,+) with × and relational primitive recursion, which entails NC1-
completeness for data complexity. The inevitable fly in the ointment is that there is a DL-Lite©g-bool/g-bool ontology for
which consistency with a given input data is undecidable.

2 Preliminaries

We use the standard DL syntax and semantics. Let ai, i < ω, be individual names, Ai concept names and Pi role names.
We define roles S, basic concepts B, temporalised roles R and temporalised concepts C by the following grammar:

S ::= Pi | P−i ,
B ::= Ai | ∃S,
R ::= S | 2FR | 2PR | ©FR | ©PR,
C ::= B | 2FC | 2PC | ©FC | ©PC.

A concept or role inclusion (CI or RI) takes the form (1), where the ϑi are all temporalised concepts or, respectively, all
temporalised roles. (The empty u is > and the empty t is ⊥.) A TBox T and an RBox R are finite sets of CIs and,
respectively, RIs; their union O = T ∪ R is an ontology. The atemporal DL-Literc and temporal DL-Liteoc/r were
defined in the introduction. We also set DL-Liteoc = DL-Liteoc/c.

To illustrate, imagine an estate agency describing properties by their proximity to various amenities, using roles wd
for ‘walking distance’ and dd for ‘driving distance’. Then we can state in DL-Litekrom

core that > v wd t dd, that these
roles are disjoint (wd u dd v ⊥) and symmetric (wd v wd− and dd v dd−), and describe locations using CIs such
as FamilyLocation v ∃wd.School u ∃dd.Pub, which requires fresh auxiliary role names, e.g., wd.Pub is replaced by
∃wdP with ∃wd−P v School and wdP v wd. In DL-Litebool

core , we can say that Station v ∀wd.WellConnected using fresh
role names wdC and wd ′C with CIs Station u ∃wd ′C v ⊥ and ∃wd−C v WellConnected with RI wd v wdC t wd ′C (see
Theorem 1). In DL-Lite©core/krom, we can also express SocialLocation v ∃wdP u©P∃wdP u©P©P∃wdP (over the past
three years, there has been a pub within walking distance).

An ABox, A, is a finite set of atoms of the form Ai(a, `) and Pi(a, b, `), where a, b are individual names and ` ∈ Z. We
denote by ind(A) the set of individual names in A, by minA and maxA the minimal and maximal integers in A, and
set tem(A) = {n ∈ Z | minA ≤ n ≤ maxA}. For simplicity, we assume that minA = 0. A DL-Liteoc/r knowledge
base (KB) is a pair (O,A), where O is a DL-Liteoc/r ontology and A an ABox. The size |O| of O is the number of
occurrences of symbols in it; the size of a TBox, RBox, ABox and KB is defined in the same way, with unary encoding
of numbers in ABoxes.

A (temporal) interpretation is a pair I = (∆I , ·I(n)), where ∆I 6= ∅ and, for each n ∈ Z,

I(n) = (∆I , aI0 , . . . , A
I(n)
0 , . . . , P I(n)

0 , . . . )

is a standard DL interpretation with aIi ∈ ∆I , AI(n)
i ⊆ ∆I and P I(n)

i ⊆ ∆I ×∆I . The DL constructs and temporal
operators are interpreted in I(n) as usual:

(P−i )I(n) = { (u, v) | (v, u) ∈ P I(n)
i },

(∃S)I(n) = {u | (u, v) ∈ SI(n), for some v },
(2Fϑ)I(n) =

⋂
k>n

ϑI(k), (2Pϑ)I(n) =
⋂

k<n
ϑI(k),

(©Fϑ)I(n) = ϑI(n+1), (©Pϑ)I(n) = ϑI(n−1).

CIs and RIs are interpreted in I globally in the sense that inclusion (1) is true in I if

ϑ
I(n)
1 ∩ · · · ∩ ϑI(n)

k ⊆ ϑI(n)
k+1 ∪ · · · ∪ ϑ

I(n)
k+m, for all n ∈ Z.

For an inclusion α, we write I |= α if α is true in I. We call I a model of (O,A) and write I |= (O,A) if I |= α for
all α ∈ O, aI ∈ AI(`) for A(a, `) ∈ A, and (aI , bI) ∈ P I(`) for P (a, b, `) ∈ A. A KB is satisfiable if it has a model.

It is to be noted that the LTL operators 3F (eventually), U (until) and their past counterparts can be expressed in bool
using ©P /©F and 2P /2F [14, 2]. In many cases one does not need full Booleans: 3PR v Q is equivalent to R v 2FQ,
which can be expressed in DL-Lite©core/core as R v ©FS, S v ©FS, S v Q, where S is fresh. It immediately follows
that convexity of R (that is, 3PR u3FR v R) can be expressed in DL-Lite©core/horn. Then, R v 3FQ can be simulated
in DL-Lite2©core/krom with > v Q̄ t Q and R u 2F Q̄ v ⊥. That the lifespan of R is bounded can be expressed in
DL-Lite2©core/core using 2PR v ⊥ and 2FR v ⊥.
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We are interested in the combined and data complexities of the satisfiability problem for KBs: for the former, both
the ontology and the ABox of a KB are regarded as input, while for the latter, the ontology is fixed. We assume
that |tem(A)| ≥ |ind(A)| in any input ABox A (if this is not so, we add the required number of dummies with the
missing timestamps to A). Let ind(A) = {a1, . . . , am}. We encode A as a structure SA with domain tem(A) ordered
by < such that SA |= A(k, `) iff A(ak, `) ∈ A and SA |= P (k, k′, `) iff P (ak, ak′ , `) ∈ A.

We establish our data complexity results by ‘rewriting’ ontologies to FO-sentences ‘accepting’ or ‘rejecting’ the input
ABoxes. Let L be a class of FO-sentences interpreted over SA. Say that Φ ∈ L is an L-rewriting of O if, for any
ABox A, the KB (O,A) is satisfiable iff SA |= Φ. Here, we need three classes L: (i) FO(<) with binary and
ternary predicates of the form Ai(x, t) and Pi(x, y, t) as well as < and =; (ii) FO(<,+) with an extra predicate PLUS:
SA |= PLUS(n, n1, n2) iff n = n1 + n2; and (iii) FO(RPR) that also has the predicate TIMES and relational primitive
recursion, which allows us to construct formulas such as[

Q1(z1, t) ≡ Θ1

(
z1, t, Q1(z1, t− 1), . . . , Qn(zn, t− 1)

)
. . .
Qn(zn, t) ≡ Θn

(
zn, t, Q1(z1, t− 1), . . . , Qn(zn, t− 1)

)
]

Ψ,

where [. . . ] defines recursively, via the formulas Θi, the interpretations of the predicates Qi in Ψ. It is known that
evaluation of FO(<,+)-sentences over SA is in LOGTIME-uniform AC0 for data complexity [22] and FO(RPR) =
NC1 [13].

3 Reasoning with Atemporal DL-Lite

To begin with, we establish the complexity of reasoning with the plain DLs underlying the temporal DL-Liteoc/r
introduced above. We denote them by DL-Literc , where as before c, r ∈ {bool, g-bool, horn, krom, core}. The
satisfiability problem for DLs of the form DL-Litecore

c was studied by [12, 1]: it is NP-complete for DL-Litecore
bool,

P-complete for DL-Litecore
horn, and NL-complete for DL-Litecore

krom and DL-Litecore
core KBs.

We show that DL-Litebool
bool can be regarded as a notational variant of the extension ALCI∩,¬ of ALC with inverse roles

and Boolean operators on roles. This logic has, in turn, almost the same expressive power as FO2, except that the
identity role has to be added. In detail, let ALCI∩,¬ be the DL with roles S and concepts C defined by

S, S′ ::= > | Pi | S u S′ | ¬S | S−,
C, C ′ ::= > | Ai | ∃S.C | C u C ′ | ¬C.

AnALCI∩,¬-CI takes the form C v C ′ [26, 24, 16]. We say that a KB K is a model conservative extension of a KB K′
if K |= K′, the signature of K contains the signature of K′, and every model of K′ can be extended to a model of K by
providing interpretations of the fresh symbols of K and leaving the domain and the interpretation of the symbols in K′
unchanged.

Theorem 1. (i) For every DL-Litebool
bool KB, one can compute in logarithmic space an equivalent ALCI∩,¬ KB.

(ii) For every ALCI∩,¬ KB, one can compute in log-space a model conservative extension in DL-Litebool
bool.

Proof. (i) Clearly, any CI in DL-Litebool
bool is anALCI∩,¬-CI (∃R = ∃R.>). Any RI S1u· · ·uSk v Sk+1t· · ·tSk+m

in DL-Litebool
bool is equivalent to theALCI∩,¬-CI ∃R.> v ⊥, whereR abbreviates S1u· · ·uSku¬Sk+1u· · ·u¬Sk+m.

(ii) For any ALCI∩,¬ KB K, we construct in linear time a model conservative extension of K in ALCI∩,¬ with CIs in
normal form:

A v ∀S.B, ∀S.B v A, A1 uA2 v B, A v ¬B, ¬A v B,
where A,B,A1, A2 range over concept names and >. Next, we replace CIs A v ∀S.B and ∀S.B v A by S v Q tR,
∃Q− v B, ∃R v ¬A, and, respectively, ¬A v ∃R, R v S, ∃R− v ¬B, with fresh role names Q, R. Finally, RIs
with a Boolean S are transformed into normal form (1), possibly using fresh role names for Boolean sub-roles, to obtain
a model conservative extension of K in DL-Litebool

bool. q

The NEXPTIME-completeness of ALCI∩,¬ KB satisfiability [26] implies that DL-Litebool
bool KB satisfiability is also

NEXPTIME-complete. To bring down the complexity to EXPTIME, it suffices to avoid unguarded quantification
by admitting only RIs with a non-empty left-hand side, as in the g-bool RIs. Then, for any DL-Liteg-bool

bool KB, it is
straightforward to compute in linear time an equivalent KB in the guarded two-variable fragment GF2 of FO. Using the
fact that KB satisfiability for the latter logic is in EXPTIME [17], we obtain the following:

Theorem 2. KB satisfiability is NEXPTIME-complete for DL-Litebool
bool and EXPTIME-complete for DL-Liteg-bool

bool .
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We now show that the DL-Lite logics with Horn and Krom RIs are reducible to propositional logic. For an ontology O,
let role±(O) = {P, P− | P a role in O}. Let O = T ∪ R. We assume thatR is closed under taking the inverses of
roles in RIs. Denote by subT the set of concepts in T and their negations. A concept type τ for T is a maximal subset τ of
subT that is ‘propositionally’ consistent with T : ifB1, . . . , Bk ∈ τ and T containsB1u· · ·uBk v Bk+1t· · ·tBk+m,
then one of Bk1 , . . . , Bk+m is also in τ (note, however, that τ does not have to be consistent with T as it can contain
∃P even if ∃P− v ⊥ is in T ). Clearly, for an interpretation J and u ∈ ∆J , the set comprising all B ∈ subT with
u ∈ BJ and all ¬B ∈ subT with u /∈ BJ is a concept type for T ; it is denoted τJu and called the concept type of u in
J . Similarly, let subR be the set of roles in R and their negations. A role type ρ for R is a maximal subset of subR
propositionally consistent withR. For (u, v) ∈ ∆J ×∆J , the set comprising all S ∈ subR with (u, v) ∈ SJ and all
¬S ∈ subR with (u, v) /∈ SJ is a role type forR; it is denoted by ρJu,v and called the role type of (u, v) in J . For a
set of role literals (roles and their negations) Ξ, let clR(Ξ) be the set of all role literals L′ such thatR |=

d
L∈Ξ L v L′.

The following lemma plays a key role in the reduction.

Lemma 3. For any satisfiable DL-Litekrom
bool KB K = (O,A),O = T ∪R, there is a model I = (∆I , ·I) of K such that

∆I = ind(A) ∪ {wiS | S ∈ role±(O) and 0 ≤ i < 3 },

and (u, v) ∈ SI , for every u→S v with u ∈ (∃S)I , where

→S = {(a,w0
S) | a ∈ ind(A)} ∪ {(wiR, wi⊕1

S ) | wiR ∈ ∆I}

and ⊕ is addition modulo 3. In particular, DL-Litekrom
bool has the linear model property: |∆I | = |ind(A)|+ 3|role±(O)|.

Proof. Given a model J = (∆J , ·J ) of K, we construct I as follows. For any S ∈ role±(O), if SJ 6= ∅, then we pick
wS ∈ (∃S−)J ; otherwise, we pick any wS ∈ ∆J . We assume that the wS are distinct. Let ∆I comprise ind(A) and
three copies w0

S , w
1
S , w

2
S of each wS ; cf. [9, Proposition 8.1.4]. This also fixes→S . Define f : ∆I → ∆J by taking

f(a) = a, for all a ∈ ind(A), and f(wiS) = wS , for all S and i. We then take concept types τu = τJf(u), for all u ∈ ∆I .
To define ρu,v for u, v ∈ ∆I , we consider the following three cases.

If u, v ∈ ind(A), then we take Ξ = {S | S(a, b) ∈ A}, assuming P−i (a, b) ∈ A whenever Pi(b, a) ∈ A.
If ∃S ∈ τu and u→S v, then we take Ξ = {S}.
Otherwise, we take Ξ = ∅.

We begin with ρu,v = clR(Ξ) and perform the following procedure for each RI > v S1 t S2 inR such that none of Si
and ¬Si is in ρu,v yet. As J |= R, either S1 or S2 is in ρJf(u),f(v). So, ρu,v is extended with the respective clR({Si}).
Since any contradiction derivable from Krom formulas is derivable from two literals, the resulting ρu,v is consistent
with R and both τu- and τv-compatible: that is, ∃R ∈ τu and ∃R− ∈ τv, for all R ∈ ρu,v. One can check that the
constructed τu and ρu,v , for u, v ∈ ∆I , are types for T andR, respectively, and give rise to a model of K. q

The existence of a model I from Lemma 3 can be encoded by a propositional formula ϕK whose propositional variables
take the form B†(u) and P †i (u, v), for u, v ∈ ∆I , assuming that (P−i )†(u, v) = P †i (v, u). The formula ϕK is a
conjunction of the following, for all u, v ∈ ∆I :

B†1(u) ∧ · · · ∧B†k(u)→ B†k+1(u) ∨ · · · ∨B†k+m(u), for CI B1 u · · · uBk v Bk+1 t · · · tBk+m in T , (2)

S†1(u, v)→ S†2(u, v), for RI S1 v S2 inR, (3)

¬S†1(u, v) ∨ ¬S†2(u, v), for RI S1 u S2 v ⊥ inR, (4)

S†1(u, v) ∨ S†2(u, v), for RI > v S1 t S2 inR, (5)

A†(a), for A(a) ∈ A, (6)

P †(a, b), for P (a, b) ∈ A, (7)

(∃S)†(u)→ S†(u, v), for each S with u→S v, (8)

S†(u, v)→ (∃S)†(u), for each S. (9)

Clearly, K is satisfiable iff ϕK is satisfiable. Also, if K is in DL-Litekrom
krom, then ϕK is a Krom formula constructed by a

logspace transducer. Now, since DL-Litekrom
horn can express DL-Litekrom

bool (Krom RIs can simulate Krom CIs, and the latter
can express the complement of concepts), we obtain the following:
Theorem 4. Satisfiability is NP-complete for DL-Litekrom

bool and DL-Litekrom
horn KBs, and NL-complete for DL-Litekrom

krom.

5



Boolean Role Inclusions in DL-Lite With and Without Time A PREPRINT

Next, consider a DL-Litehorn
bool KB. It is readily seen that the proof of Lemma 3 goes through, except we need not perform

the saturation step for RIs > v S1 t S2. Thus, the role types in I are minimal in the following sense:
Lemma A. For any consistent DL-Litehorn

bool KB K = (O,A), there is a model I as in Lemma 3 such that in addition

ρIa,b = clR({S | S(a, b) ∈ A}), for a, b ∈ ind(A);

ρIu,v = clR({S}), if ∃S ∈ τIu and u→S v;

ρIu,v = clR(∅), otherwise.

Observe now that the translation ϕK is a Horn formula for K in DL-Litehorn
horn; but it is neither a Horn nor a Krom

formula for DL-Litehorn
krom. Nevertheless, we can compute in polynomial time the set ϕ′R,A comprising all Q†(a, b) for

a, b ∈ ind(A) and Q ∈ clR{S | S(a, b) ∈ A}; note that, ifR,A are inconsistent, then ϕ′R,A will contain a role and its
negation. We then replace (3)–(8) in ϕK by ϕ′R,A with

S†(u, v), for S ∈ clR(∅),
(∃S)†(u)→ Q†(u, v), for Q ∈ clR({S}) and u→S v,

which are also computable in polynomial time. The result is a Krom formula of polynomial size in |K| that is
equisatisfiable with K. Thus, we obtain the following complexity results:
Theorem 5. Satisfiability is NP-complete for DL-Litehorn

bool KBs, and P-complete for DL-Litehorn
horn and DL-Litehorn

krom KBs.

4 Satisfiability of Temporal KBs

We now consider extensions DL-Liteoc/r of DL-Literc with temporal operators in o ∈ {2,©,2©} that can be applied
to concepts and roles. Our first observation is negative:
Theorem 6. Satisfiability in DL-Lite©g-bool/g-bool is undecidable.

Proof. The proof is by reduction of the undecidable N × N-tiling problem [8]. Given a set T = {1, . . . ,m} of tile
types, with the colours on the four edges of tile type i denoted by top(i), bot(i), right(i) and left(i), we define the
following ontology O, where Ri is a role name associated with the tile type i ∈ T:

I v
⊔
i∈T

∃Ri, Ri v
⊔

right(i)=left(j)

©
FRj , ∃R−i v

⊔
top(i)=bot(j)

∃Rj , ∃Ri u ∃Rj v ⊥, for i 6= j. (10)

Then (O, {I(a, 0)}) is satisfiable iff T can tile N× N. q

Fortunately, the temporal DL-Lite languages with Krom, Horn and core RIs turn out to be less naughty. In the remainder
of this section, we develop reductions of these languages to propositional and first-order LTL with one variable.

4.1 Krom RIs

Given a DL-Lite©bool/krom KB K = (T ∪R,A), we construct a first-order temporal sentence ΦK with one free variable x.
We assume that K has no nested temporal operators and that, in RIs of the form > v R1 t R2 from R, both Ri are
plain (atemporal) roles; also, R is closed under taking the inverses of roles in RIs. First, we set ΦK = ⊥ if (R,A)
is unsatisfiable. Otherwise, we treat basic concepts in K as unary predicates and define ΦK as a conjunction of the
following sentences, where 2 = 2F2P :
2∀x [C1(x) ∧ · · · ∧ Ck(x)→ Ck+1(x) ∨ · · · ∨ Ck+m(x)], for C1 u · · · u Ck v Ck+1 t · · · t Ck+m in T , (11)
2∀x [∃S1(x) ∨ ∃S2(x)], for RI > v S1 t S2 inR, (12)

2[∀x ∃S1(x) ∨ ∀x∃S−2 (x)], for RI > v S1 t S2 inR, (13)
©`
FA(a), for A(a, `) ∈ A, (14)
©`
F∃P (a) and ©`F∃P−(b), for P (a, b, `) ∈ A, (15)

2[∃x ∃P (x)↔ ∃x ∃P−(x)], for role name P in T , (16)
and, for every RI ©1S1 v ©2S2 with R |= ©1S1 v ©2S2, where each ©i is ©F , ©P or blank, and ©1S1 can be >
and ©2S2 can be ⊥, the following:

2∀x [©1∃S1(x)→ ©2∃S2(x)]. (17)
We observe that R |= ©1S1 v ©2S2 can be checked in P [4, Lemma 5.3], and so ΦK is constructed in polynomial
time.
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Lemma 7. A DL-Lite©bool/krom KB is satisfiable iff ΦK is satisfiable.

Proof. (⇒) Suppose I |= K. Treating I as a temporal FO interpretation M, we show that M |= ΦK. The only
non-standard axioms are (13). Suppose M |= > v S1 t S2 and M, n 6|= ∃S1(d), for some d and n. Then, for every
e ∈ ∆M, we have M, n |= S2(d, e), and so M, n |= ∃S−2 (e).

(⇐) Suppose M |= ΦK. We require the following property of M, which follows from (12)–(13): for any n ∈ Z,
d, e ∈ ∆M, and any RI > v S1 t S2 inR,

M, n |= ∃S1(d) and M, n |= ∃S−1 (e) or M, n |= ∃S2(d) and M, n |= ∃S−2 (e). (18)

We construct a model I of K in a step-by-step manner, regarding I as an ABox (a set of ground atoms). To begin with,
we put in I all P (a, b, n) ∈ A. We then proceed in three steps.

Step 1: If > v S1 t S2 is in R with M, n |= ∃S1(a) and either M, n 6|= ∃S2(a) or M, n 6|= ∃S−2 (b), for n ∈ Z and
a, b ∈ ind(A), then, by (18), M, n |= ∃S−1 (b), and we add S1(a, b, n) to I. We do the same for ∃S−1 , ∃S2 and ∃S−2
(recall thatR is closed under role inverses).

We now show that the constructed ABox is consistent with R. Suppose otherwise. Then there are some
P (a, b, n), R(a, b, n) ∈ I and P u R v ⊥ in R. Two cases need consideration. (i) Suppose that both of these
atoms were added at Step 1 because of some RIs > v P tQ and > v R t S. In this case, R |= P v S. But then,
by (17), M, n |= ∃S(a) and M, n |= ∃S−(b), which contradicts the definition of Step 1. (ii) AsA is consistent withR,
the only other possibility is that R(a, b, n) ∈ A and P (a, b, n) was added at Step 1 because of some RI > v P tQ. In
this case,R |= R v Q, whence, by (15), M, n |= ∃Q(a) and M, n |= ∃Q−(b), contrary to the fact that P (a, b, n) was
added at Step 1.

Step 2: If P (a, b, n) ∈ I and R |= P v ©kQ, for some k ∈ Z, then we add Q(a, b, n + k) to I. We do this for all
roles P and R and all n, k ∈ Z. We show that the resulting I is consistent withR. Suppose otherwise, and we have
Q(a, b, n), Q′(a, b, n) ∈ I with Q u Q′ v ⊥ in R. Suppose Q(a, b, n) was added to I because of R |= P v ©kQ
and Q′(a, b, n) because of R |= P ′ v ©mQ′, with both initiating P - and P ′-atoms constructed at Step 1. Since
R |= Q v ¬Q′ andR |= ¬Q′ v ¬©−mP ′, we then arrive to a contradiction with the consistency withR of the ABox
resulting from Step 1.

Step 3: Suppose > v P tQ is inR, M, n |= ∃P (a), M, n |= ∃P−(b), M, n |= ∃Q(a), M, n |= ∃Q−(b), but neither
P (a, b, n) nor Q(a, b, n) are in I. Then we add one of them, say P (a, b, n), to I, which cannot lead to inconsistency
withR. Indeed, if we had P u S v ⊥ inR and S(a, b, n) in I, thenR |= S v Q, and so Q(a, b, n) would have been
added to I at Step 2. We take the closure of P (a, b, n) as at Step 2, and do the same with other RIs of that form and
time instants n.

We conclude the first stage of constructing I by adding to it the atoms B(a, n) with M, n |= B(a), for all n ∈ Z
and a ∈ ind(A). By construction, P (a, b, n) ∈ I implies ∃P (a, n),∃P−(b, n) ∈ I, but not necessarily the other way
round.

So suppose ∃P (a, n) ∈ I but there is no P (a, b, n) in I. Take a fresh individual wP and add it to the domain of I.
By (16), we have M, n |= ∃P−(d), for some d ∈ ∆M. Now, whenever M,m |= B(d), for a basic concept B and
m ∈ Z, we add B(wP ,m) to I. We also add P (a,wP , n) to I. Clearly, the result is consistent with R. We then
apply to I the three-step procedure described above, and repeat this ad infinitum. It is readily seen that the obtained
interpretation I is a model of K. q

Theorem 8. The satisfiability problem for DL-Lite©bool/krom KBs is EXPSPACE-complete.

Proof. The upper bound follows from Lemma 7 since the one-variable fragment of first-order LTL is known to be
EXPSPACE-complete [20, 15]; the lower one is proved by reduction of the N× (2n − 1) corridor tiling problem [30]:
given a finite set T of tile types {1, . . . ,m} with four colours up(i), down(i), left(i) and right(i) and a distinguished
colour W , decide whether T can tile the grid {(t, s) | t ∈ N, 1 ≤ s < 2n} so that (b1) tile 0 is placed at (0, 1), (b2)
every tile i placed at every (c, 1) has down(i) = W , and (b3) every tile i placed at every (c, 2n − 1) has up(i) = W .

Let A = {A(a, 0)} and O contain the following:

A v ©2n

F D, D v ©2n

F D,

A v
l

1≤s<2n

©s
F∃P, ∃P− v

⊔
i∈T

Ti,

7
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Ti v ©2n

F

⊔
right(i)=left(j)

Tj , for i ∈ T,

Ti u ∃S−i v ⊥, for i ∈ T,

> v Si tQi, for i ∈ T,

∃Qi u©F∃Qj v ⊥, for i, j ∈ T with up(i) 6= down(j).

Observe that (O,A) is satisfiable iff there is a placement of tiles on the N × (2n − 1) grid: each of the (2n − 1)
P -successors of a created at moments 1, . . . , 2n represents a column of the corridor. Note, however, that the size of the
CIs is exponential in n. We now describe how they can be replaced by polynomial-size CIs.

Consider a CI A v ©2n

F D. We express it using the following CIs:

A v ©F (¬Bn−1 u · · · u ¬B0),

Bn−1 u · · · uB0 v D,
¬Bk uBk−1 u · · · uB0 v ©F (Bk u ¬Bk−1 u · · · u ¬B0), for 0 ≤ k < n,

¬Bj u ¬Bk v ©F¬Bj and Bj u ¬Bk v ©FBj , for 0 ≤ k < j < n,

which have to be converted into normal form (1). Intuitively, they encode a binary counter from 0 to 2n − 1, where ¬Bi
and Bi stand for ‘the ith bit of the counter is 0 and, respectively, 1’. Other CIs of the form C1 v ©2n

F C2 are handled
similarly. For A v

d
1≤s<2n

©s
F∃P , we use the Bk v ∃P , for 0 ≤ k < n, instead of Bn−1 u · · · uB0 v ∃P .

To ensure that (b1)–(b3) are satisfied, we add to O the CIs

A u©F∃Qi v ⊥, for i ∈ T \ {0},
D u©F∃Qi v ⊥, for down(i) 6= W,

©
FD u ∃Qi v ⊥, for up(i) 6= W.

One can show that (O,A) is as required. q

4.2 Horn RIs

Let K = (T ∪ R,A) be a DL-Lite2©bool/horn KB. We assume that R is closed under taking the inverses of roles in RIs
and contains all roles in T . A beam b for T is a function from Z to the set of all concept types for T such that, for all
n ∈ Z,

©
FC ∈ b(n) iff C ∈ b(n+ 1), ©

PC ∈ b(n) iff C ∈ b(n− 1), (19)
2FC ∈ b(n) iff C ∈ b(k), for all k > n, 2PC ∈ b(n) iff C ∈ b(k), for all k < n. (20)

The function bIu : n 7→ {C ∈ subT | u ∈ CI(n) } (we specify only the positive component of types) is a beam, for
any I and u ∈ ∆I ; we will refer to it as the beam of u in I.

A rod r forR is a function from Z to the set of all role types forR such that (19)–(20) and their past-time counterparts
hold for all n ∈ Z with b replaced by r and C by temporalised roles S. For any I and u, v ∈ ∆I , the function
rIu,v : n 7→ {R ∈ subR | (u, v) ∈ RI(n) } is a rod for R. Fix individual names d, e. Since the RIs in R are Horn,
given any ABox A with of atoms of the form S(d, e, `), define the R-canonical rod rA for A (consistent with R):
rA : n 7→ {R ∈ subR | R,A |= R(d, e, n) }. In other words,R-canonical rods are the minimal rods forR ‘containing’
all atoms of A: for any R and n ∈ Z,

R ∈ rA(n) iff R ∈ r(n), for all rods r forR such that S ∈ r(`), for each S(d, e, `) ∈ A. (21)

Finally, given a beam b, we say a rod r is b-compatible if ∃S ∈ b(n) whenever S ∈ r(n), for all n ∈ Z and basic
concepts ∃S. We are now fully equipped to prove the following characterisation of DL-Lite2©bool/horn KBs satisfiability,
where beams can be ‘shifted’ in (23) to achieve a finite representation.
Lemma 9. Let K = (T ∪ R,A) be a DL-Lite2©bool/horn KB. Let ∆ = ind(A) ∪ {wS | S ∈ role±(R) }. Then K is
satisfiable iff there are beams bu, u ∈ ∆, for T such that

A ∈ ba(`), for all A(a, `) ∈ A, (22)

if ∃S ∈ bu(n), then ∃S−∈ bwS−(k), for some k ∈ Z, (23)

for any a, b ∈ ind(A), there is a ba-compatible rod r forR with S ∈ r(`), for all S(a, b, `) ∈ A, (24)
∃S ∈ bu(n) iff there is a bu-compatible rod r forR with S ∈ r(n). (25)
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Moreover, for any beams bw, w ∈ Ξ, for T as above, there is a model I of K such that

for any a ∈ ind(A), the beam bIaI coincides with ba,

for any u ∈ ∆I \ {aI | a ∈ ind(A)}, there is S and n ∈ Z such that bIu(k) = bwS (k + n), for all k ∈ Z, and

for any a, b ∈ ind(A), the rod rIaI ,bI is theR-canonical rod for Aa,b = {S(d, e, `) | S(a, b, `) ∈ A}.

We illustrate the construction by the following example.
Example 1. Let K = (O, {Q(a, b, 0)}), whereO consists of ∃Qu2FA v ⊥, > v At∃P and P− v ©FQ, obtained
by converting ∃Q v 3F∃P and P− v ©FQ into normal form (1). Beams and rods in Lemma 9 are depicted below:

0 1 2 3 4 5 6 7

ra,b rb,a

rP,2

rP,0

bb

ba

gP,2

gP,0

bwP

Q

P Q

P Q

Beams ba, bb and bwP are shown by horizontal lines: the concept type contains ∃P or ∃Q whenever the large node is
grey; similarly, the type contains ∃P− or ∃Q− whenever the large node is white (the label of the arrow specifies the
role); we omit A to avoid clutter. The rods are the arrows between the pairs of horizontal lines. For example, the rod
in (24) for a and b is labelled ra,b: it contains only Q at 0 (only the positive components of types are given); the rod
in (24) for b and a is labelled rb,a, and in this case, it is the mirror image of ra,b. In fact, if we choose R-canonical
rods in (24), then the rod for any b, a will be the mirror image of the rod for a, b. The rod rP,2 required by (25) for ∃P
on ba at moment 2 is depicted between ba and gP,2: it contains P at 2 and Q at 3. In fact, it should be clear that, if we
choose canonicalR-rods in (25), then they will all be isomorphic copies of at most |R| rods: more precisely, they will
be of the form r{S(d,e,n)}, for a role S fromR.

In the proof of Lemma 9, we show how this collection of beams andR-canonical rods can be used to obtain a model I
of K shown below (again, with A omitted):

0 1 2 3 4 5 6 7 8 9 10 11 12 13

ra,b rb,a

rP,2

rP,6

rP,10

b

a

aP2

aP2P6

aP2P6P10

Q

P Q

P Q

P Q

· · ·

Proof. (⇐) Suppose that we have the required collection of beams bu for T . We construct by induction a sequence
Im = (∆Im , ·Im(n)), form < ω, of temporal interpretations in the following way. To begin with, we set ∆I0 = ind(A),
f0(a, n) = (a, n), for all a ∈ ind(A) and n ∈ Z, AI0(n) = {a | A ∈ ba(n)} and P I0(n) = {(a, b) | P ∈ ra,b(n)},
where ra,b is theR-canonical rod for Aa,b, which exists by (24), and which, by (21), is compatible with ba (its inverse
is compatible with bb). Suppose next that Im, for m ≥ 0, has already been defined, that the elements of ∆Im are words
of the form λ = aSn1

1 . . . Snll , for a ∈ ind(A), ni ∈ Z and l ≥ 0, and that we have a map fm : ∆Im × Z → ∆ × Z.
We call a pair (λ, n) an S-defect in Im if (i) fm(λ, n) = (w, n′), (ii) ∃S ∈ bw(n′) and (iii) (λ, λ′) /∈ SIm(n) for any
λ′ ∈ ∆Im . For any role S and any such S-defect (λ, n) in Im, we add the word λSn to ∆Im and denote the result
by ∆Im+1 . By (23), we have ∃S− ∈ bwS− (l), for some l ∈ Z. We fix one such l and extend fm to fm+1 by setting
fm+1(λSn, k) = (wS− , k − n + l), for any k ∈ Z. We also define AIm+1(k) by extending AIm(k) with those λSn

for which A ∈ bwS− (k − n+ l), and we define P Im+1(k) by extending P Im(k) with (λ, λSn) for which P ∈ rS,n(k)

and with (λSn, λ) for which P− ∈ rS,n(k), where rS,n is theR-canonical rod for {S‡(n)}, which exists by (25) and
which, by (21), is compatible with the beams.

Finally, let I and f be the unions of all Im and fm, for m < ω, respectively. We show that I is a model of K. It follows
immediately from the construction that I is a model of R and A. To show that I is also a model of T , it suffices

9
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to prove that, for any λ ∈ ∆I and any role Q, we have λ ∈ (∃Q)I(k) iff ∃Q ∈ bw(l), where f(λ, k) = (w, l). The
implication (⇐) follows directly from the procedure of ‘curing defects’. Let λ ∈ (∃Q)I(k), and so (λ, λ′) ∈ QI(k), for
some λ′ ∈ ∆I . Two cases are possible now.

– If λ, λ′ ∈ ind(A), then Q ∈ rλ,λ′(k). Then, by (24), ∃Q ∈ bλ(k). It remains to recall that f(λ, k) = (λ, k).

– If λ′ /∈ ind(A), then λ′ = λSn, for some S and n, and Q ∈ rS,n(k). We also have ∃S ∈ bu(n′), where
f(λ, n) = (u, n′). By (25), there is a rod r forR such that S ∈ r(n′), and so, we must have Q ∈ r(l). Since
r is compatible with bu, we obtain ∃Q ∈ bu(l), as required.

(⇒) Given a model I of K, we construct beams bu for T as follows. Set ba = bIaI , for all a ∈ ind(A). For
each S, if SI(n) 6= ∅, for some n ∈ Z, then set bwS = bIu, for u ∈ (∃S)I(n); otherwise, set bwS = bIaI , for an
arbitrary a ∈ ind(A). It is straightforward to check that these beams are as required. q

We now reduce existence of the required collection of beams to the satisfiability problem for the one-variable fragment
of first-order LTL, which is known to be EXPSPACE-complete [20, 15] and thus establish decidability and the upper
complexity bound for DL-Lite2©bool/horn, which turns out to be tight.
Theorem 10. The satisfiability problem for DL-Lite2©bool/horn KBs is EXPSPACE-complete.

Proof. We first show decidability and the upper complexity bound. Let K = (O,A) be a DL-Lite2©bool/horn KB with
O = T ∪ R. We assume thatR is closed under taking the inverses of roles in RIs.

We define a translation ψK of K into first-order LTL with a single individual variable x. We treat elements of ∆ as
constants in the first-order language, basic concepts B as unary predicates and roles P as binary predicates, assuming
that P−i (u, x) = Pi(x, u), and let ψK be a conjunction of the following sentences, for all constants u ∈ ∆:

2
(
C1(u) ∧· · ·∧ Ck(u)→Ck+1(u) ∨· · ·∨ Ck+m(u)

)
, for CI C1 u · · · u Ck v Ck+1 t · · · t Ck+m in T , (26)

2∀x
(
R1(u, x) ∧ · · · ∧Rk(u, x)→ R(u, x)

)
, for RI R1 u · · · uRk v R inR, (27)

2∀x
(
R1(u, x) ∧ · · · ∧Rk(u, x)→ ⊥

)
, for RI R1 u · · · uRk v ⊥ inR, (28)

©`
FA(a), for A(a, `) ∈ A, (29)
©`
FP (a, b), for P (a, b, `) ∈ A, (30)

2
[
(∃S)(u)→ 3F3P (∃S−)(wS−)

]
, for S ∈ role±(O), (31)

2
(
(∃S)(u)↔ ∃xS(u, x)

)
, for S ∈ role±(O). (32)

The ‘interesting’ conjuncts in ψK are (31) and (32), which reflect the interaction between T andR. It can be shown that
ψK is satisfiable iff there are beams as required by Lemma 9. It can be seen that each collection of beams bu, u ∈ ∆,
for T gives rise to a model M of ψK: the domain of M comprises ∆ and elements gS,m, for a role S and m ∈ Z. Then,
we fixR-canonical rods ra,b for Aa,b, which exist by (24), andR-canonical rods rS,m for {S(d, e,m)} for every S
and every m ∈ Z with ∃S ∈ bu(m), for some u ∈ ∆, which exist by (25), and set, for all n ∈ Z, basic concepts B,
role names P and roles S′,

M, n |= B(u) iff B ∈ bu(n), for u ∈ ∆,

M, n |= P (a, b) iff P ∈ ra,b(n), for a, b ∈ ind(A),

M, n |= S′(u, gS,m) iff S′ ∈ rS,m(n), for u ∈ ∆,m ∈ Z and roles S with ∃S ∈ bu(m).

It is readily checked that M is as required (in Example 1, the gS,m are represented explicitly by grey horizontal lines).
Conversely, it can be verified that every model M of ψK gives rise to the required collection of beams for T .

The lower bound is established by reduction of the non-halting problem for deterministic Turing machines with
exponential tape. More precisely, we assume that the head of a given machine M never runs beyond the first 2n cells of
its tape on an input word a of length m, where n = p(m) for some polynomial p (we will also assume that it never
attempts to access cells before the start of the tape). We construct a DL-Lite©horn ontology that encodes the computation
of M on a using a single individual o. The initial configuration is spread over the time instants 1, . . . , 2n, from which
the first m instants represent a and the remaining ones encode the blank symbol #. The second configuration uses the
next 2n instants 2n + 1, . . . , 2n + 2n, etc. The configurations are encoded with the following concept names:

– Hq,a contains o at the moment i2n + j whenever the machine head scans the jth cell of the ith configuration
and sees symbol a, with q being the current state of the machine;

10
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– Sa contains o at i2n + j whenever the jth cell of the ith configuration contains a but is not scanned by the
head.

We can encode computations of the Turing machine M with tape alphabet Γ and transition function δ by means of the
following CIs, for a′, a′′ ∈ Γ:

©
PSa′ uHq,a u©FSa′′ v ©2n

F (©PSa′ u Sb u©FHq′,a′′), for δ(q, a) = (q′, b, R),

©
PSa′ uHq,a u©FSa′′ v ©2n

F (©PHq′,a′ u Sb u©FSa′′), for δ(q, a) = (q′, b, L),

©
PSa′ u Sa u©FSa′′ v ©2n

F Sa, for a′ ∈ Γ,

where ϑ v ©nF (ϑ1 u · · · u ϑk) abbreviates the ϑ v ©nF ϑi, 1 ≤ i ≤ k. Concepts I and E mark the start and the end of
the input a, respectively, and F marks the cells of the first configuration, which is filled with blanks # by using CIs

I v ©2n−2
F F, ©

FF v F, E v ©FE, E u F v ©FS#;

we also assume that S# holds at moment 0. Finally,

Hq,a v ⊥, for all accepting / rejecting states q and a ∈ Γ,

ensure non-termination. These CIs are, however, of the exponential size. We show now how to convert them into a
DL-Lite©horn ontology of polynomial size. Consider a CI of the form A v ©2n

F B. First, we replace the concept ©2n

F B
by ∃P and add the CI ∃Q v B to the TBox, where P and Q are fresh role names. Then, similarly to the reduction
in the proof of Theorem 8, we use RIs with fresh role names P0, . . . , Pn−1, P̄0, . . . , P̄n−1 to encode a binary counter
from 0 to 2n − 1, where roles P̄i and Pi stand for ‘the ith bit of the counter is 0 and, respectively, 1’, and ensure that
R |= P v ©2n

F Q but R 6|= P v ©iFQ for any i 6= 2n. (Note that ∃P requires a different P -successor at each time
point.) Further details are left to the reader. q

4.3 Core RIs

We now modify the technique developed above to reduce DL-Lite2©bool/core to LTL. The reduction is based on the following
observation. LetR be a DL-Lite2©bool/core RBox and consider theR-canonical rod r for some AR = {R(d, e, 0)}. Then
S ∈ r(n) iff one of the following conditions holds:

– R′,AR |= S(d, e, n), whereR′ is obtained fromR by removing the RIs with 2,
– there is m > n with |m| ≤ 2|R| and 2PS ∈ r(m),
– there is m < n with |m| ≤ 2|R| and 2FS ∈ r(m).

Let minR,S be the minimal integer with 2FS ∈ r(m); if it exists, then |minR,S | ≤ 2|R|. The maximal integer maxR,S
with 2PS ∈ r(m) has the same bound (if exists). The following example shows that these integers can indeed be
exponential in |R|.
Example 2. LetR be the following DL-Lite2©bool/core RBox:

P v R0, Ri v ©FR(i+1) mod 2, for 0 ≤ i < 2, R1 v Q,
P v Q0, Qi v ©FQ(i+1) mod 3, for 0 ≤ i < 3, Q1 v Q, Q2 v Q,

P v Q, P v 2PQ.

Clearly,R |= P v ©6
F2PQ. If instead of the 2- and 3-cycles we use pi-cycles, where pi is the ith prime number and

1 ≤ i ≤ n, thenR |= P v ©p1×···×pnF 2PQ.

In any case, the existence and binary representations of minR,S and maxR,S can be computed in PSPACE.
Theorem 11. For DL-Lite2©bool/core and DL-Lite2©horn/core KBs, the satisfiability problem is PSPACE-complete.

Proof. We encode K in LTL following the proof of Theorem 10 and representing (26)–(31) as LTL -formulas with
variables of the form C†(u), R†(u, v), for u, v ∈ ∆. Sentences (32), however, require a different treatment. First, take

2
(
©1(∃S1)†(u)→ ©2(∃S2)†(u)

)
, (33)

for every©1S1 v ©2S2 inR, where each©i is©F ,©P or blank. Then, we need CIs of the form ∃R v ©maxR,S2P∃S
and ∃R v ©minR,S2F∃S, for all R and S with defined maxR,S and minR,S , which are not entailed by (33). These

11



Boolean Role Inclusions in DL-Lite With and Without Time A PREPRINT

integers can be represented in binary using n bits, where n is polynomial in |R|. Assuming that maxR,S ≥ 0, we
encode, for example, ∃R v ©maxR,S2P∃S by

2
(
2F3F (∃R)†(u)→ 2F (∃S)†(u)

)
, (34)

2
(
(∃R)†(u) ∧ ¬3F (∃R)†(u)→ ©maxR,S

F DR,S
u

)
, (35)

2
(
DR,S
u → 2P (∃S)†(u)

)
, (36)

where (35) is expressed by O(n2) formulas encoding the binary counter (similar to those in the proof of Theorem 8).
To explain the meaning of (34)–(36), consider any w ∈ ∆I in a model I of K. If w ∈ (∃R)I(n) for infinitely many
n > 0, then w ∈ (∃S)I(n) for all n, which is captured by (34). Otherwise, there is n such that w ∈ (∃R)I(n) and
w /∈ (∃R)I(m), for m > n, whence w ∈ (∃S)I(k), for any k < n+ maxR,S , which is captured by (35) and (36).

The LTL translation ΨK of K is a conjunction of (26)–(31), (33) and (34)–(36) for all R and S with defined maxR,S ,
and their counterparts for ∃R v ©minR,S2F∃S. One can show that K is satisfiable iff ΨK is satisfiable. The PSPACE
lower bound follows from the fact that every LTL -formula is equisatisfiable with some LTL2©

core KB. q

5 FO(RPR)-Rewritability of DL-Lite2©
bool/horn

We next investigate the data complexity of the satisfiability problem for temporal DL-Lite KBs. Again, out first result is
negative:
Theorem 12. There is a DL-Lite©g-bool/g-bool ontology O for which the satisfiability of (O,A), for a given A, is
undecidable.

Proof. Using the representation of the universal Turing machine by means of tiles (see, e.g., [9]), we obtain a set U of
tile types for which the following problem is undecidable: given a finite sequence of tile types i0, . . . , in, decide whether
U can tile the N × N grid so that tiles of types i0, . . . , in are placed on (0, 0), . . . , (n, 0), respectively. Given such
i0, . . . , in, we take the ABox A = { I(a, 0), Ri0(a, b, 0), . . . , Rin(a, b, n) }. Then U can tile N× N with i0, . . . , in on
the first row iff A is consistent with the ontology OU, which is defined by (10) for the set U, iff A(a, 0) is not a certain
answer to OMAQ (OU, A) over A, where A is a fresh concept name. Thus, OU is as required. q

We obtain our positive results by means of FO-rewritability. Let L ∈ { FO(<),FO(<,+),FO(RPR) }. Our first aim
is to show that L-rewritability of DL-Lite2©bool/horn ontologies can be reduced to L-rewritability of ontology-mediated
atomic queries (or OMAQs) with LTL ontologies.

An OMAQ is a pair of the form (O, A) or (O, P ), where O is an ontology, A a concept and P a role name. A certain
answer to (O, A) over an ABox A is any (a, `) ∈ ind(A) × tem(A) such that aI ∈ AI(`) for every model I of
(O,A); a certain answer to (O, P ) over A is any (a, b, `) ∈ ind(A) × ind(A) × tem(A) with (aI , bI) ∈ P I(`) for
every I |= (O,A). The set of all certain answers to (O, A) over A is denoted by ans(O, A,A). As a technical tool
in our constructions, we also require ‘certain answers’ in which ` ranges over the whole Z rather than only the active
temporal domain tem(A); we denote the set of such certain answers over A and Z by ansZ(O, A,A). An L-rewriting
of (O, A) is an L-formula Φ(x, t) such that (a, `) is a certain answer to (O, A) over any ABox A iff SA |= Φ(a, `); an
L-rewriting of (O, P ) is defined similarly.

First, we show how to reduce the satisfiability problem for DL-Lite2©bool/horn ontologiesO to answering OMAQs (O′, A⊥)
with a ⊥-free ontology O′ and a concept name A⊥. More precisely, for any ABox A, the KB (O,A) is satisfiable
iff (O′, A⊥) has no certain answers over A.

Let O = T ∪ R. We define O′ = T ′ ∪ R′ as follows. The RBox R′ is obtained by replacing every occurrence
of ⊥ in R with a fresh role name P⊥ and adding the RI P v P⊥, for any P inconsistent with O in the sense that
(O, {P (a, b, 0)}) has no models. The TBox T ′ results from replacing every⊥ in T with a fresh concept A⊥ and adding
the CIs ∃P⊥ v A⊥, ∃P−⊥ v A⊥ together with A⊥ v 2FA⊥ and A⊥ v 2PA⊥ saying that A⊥ is global: if u ∈ AI(n)

⊥
for some n ∈ Z, then u ∈ AI(n)

⊥ for all n ∈ Z. By Theorem 10, O′ can be constructed in exponential space.
Theorem 13. If Φ⊥(x, t) is an L-rewriting of the OMAQ (O′, A⊥), then ∃x, tΦ⊥(x, t) is an L-rewriting of O.

Proof. It suffices to show that, for any ABox A, the KB (O,A) is satisfiable iff (O′, A⊥) has no certain answers
over A. Suppose O and A are consistent. Given any model I of O and A, we extend it to an interpretation I ′ by
setting AI

′(n)
⊥ = ∅ and P I

′(n)
⊥ = ∅, for all n ∈ Z. Clearly, I ′ is a model of O′, and so there are no certain answers

to (O′, A⊥) over A.

12
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Conversely, suppose that (O′, A⊥) has no certain answers over A. We show how to construct a model I of (O,A).
Obviously, O′ and A are consistent. For each a ∈ ind(A), there is a model Ia of (O′,A) such that aIa /∈ AIa(n)

⊥ for
all n ∈ Z (recall that A⊥ is global). Also, for each role S consistent with O, there is a model IS of (O′, {S(w, u, 0)})
such that wIS /∈ AIS(n)

⊥ for all n ∈ Z (again, A⊥ is global). We take, for each a ∈ ind(A), the beam ba for aIa in Ia,
and for each role S consistent with O, the beam bwS of wIS in IS , and apply Lemma 9 to obtain a model I of (O′,A)
such that AI⊥ = ∅ and P I⊥ = ∅. By construction, I is also a model of (O,A). q

Next, we show that L-rewritability of a ⊥-free OMAQ with an DL-Lite2©bool/horn ontology is reducible to L-rewritability
of a role-free OMAQ. Ontologies without roles are clearly a notational variant of LTL ontologies; hence, in this case
we prefer to write ‘LTL2©

bool ontologies’. We first explain the reduction by instructive examples. The first two examples
illustrate the interaction between the DL and temporal dimensions in DL-Lite2©bool/horn that we need to take into account
when constructing the LTL OMAQs to which the rewritability of ⊥-free DL-Lite2©bool/horn OMAQs is reduced.

Example 3. Let T = {B v ∃P, ∃Q v A } andR = {P v ©FQ }. An obvious idea of constructing a rewriting for
the OMAQ q = (T ∪ R, A) would be to find first a rewriting of the LTL OMAQ (T †, A†) obtained from (T , A) by
replacing the basic concepts ∃P and ∃Q with surrogate concept names (∃P )† = EP and (∃Q)† = EQ, respectively.
This would give us the first-order query A(t) ∨ EQ(t). By restoring the intended meaning of A and EQ, we would
then obtain A(x, t) ∨ ∃y Q(x, y, t). The second step would be to rewrite, using the RBoxR, the atom Q(x, y, t) into
Q(x, y, t) ∨ P (x, y, t− 1). Alas, the resulting formula

A(x, t) ∨ ∃y
(
Q(x, y, t) ∨ P (x, y, t− 1)

)
falls short of being a rewriting of q as it does not return the certain answer (a, 1) over A = {B(a, 0) }. The
reason is that, in our construction, we did not take into account the concept inclusion ∃P v ©

F∃Q, which is a
consequence of R. If we now add the ‘connecting axiom’ (∃P )† v ©F (∃Q)† to T †, then in the first step we obtain
A(t) ∨ EQ(t) ∨ EP (t− 1) ∨B(t− 1), which gives us the correct FO(<)-rewriting

A(x, t) ∨ ∃y
(
Q(x, y, t) ∨ P (x, y, t− 1)

)
∨ ∃y P (x, y, t− 1) ∨B(x, t− 1)

of q, where the third disjunct is obviously redundant and can be omitted.

Example 4. Consider now T = { ∃Q v 2PA }, R = {P v 2FP1, T v 2FT1, T1 v 2FT2, P1 u T2 v Q } and
q = (T ∪ R, A). The two-step construction outlined in Example 3 would give us first the formula

Φ(x, t) = A(x, t) ∨ ∃t′
(
(t < t′) ∧ ∃y Q(x, y, t′)

)
as the rewriting of (T , A). The reader can also readily check that the following formula is a rewriting of (R, Q):

Ψ(x, y, t′) = Q(x, y, t′) ∨
([
P1(x, y, t′) ∨ ∃t′′

(
(t′′ < t′) ∧ P (x, y, t′′)

)]
∧[

T2(x, y, t′) ∨ ∃t′′
(
(t′′ < t′) ∧

(
T1(x, y, t′′) ∨ ∃t′′′

(
(t′′′ < t′′) ∧ T (x, y, t′′′)

)))])
.

However, the result of replacing Q(x, y, t′) in Φ(x, t) with Ψ(x, y, t′) is not an FO-rewriting of (O, A): when evaluated
over A = {T (a, b, 0), P (a, b, 1) }, it does not return the certain answers (a, 0) and (a, 1); see below, where the active
temporal domain is shaded:

0 1 2 3 4

a A A A A A

b
T P , T1 P1, T1, T2, Q P1, T1, T2, Q P1, T1, T2, Q

(Note that these answers would be found had we evaluated the obtained ‘rewriting’ over Z rather than {0, 1}.) This
time, in the two-step construction of the rewriting, we are missing the ‘consequence’ ∃(2FP1 u2FT2) v 2F∃Q ofR
and T . To fix the problem, we can take a fresh role name Gρ, for ρ = {2FP1,2FT2 } (the pair (a, b) in the picture
above would belong to Gρ at moment 1 = maxA), and add the ‘connecting axiom’ ∃Gρ v 2F∃Q to T . Then, in the
first step, we rewrite the extended TBox and A into the formula

Φ′(x, t) = A(x, t) ∨ ∃t′
(
(t < t′) ∧ ∃y Q(x, y, t′)

)
∨ ∃y Gρ(x, y, t),

where we replace Q(x, y, t′) with Ψ(x, y, t′) as before, and restore the intended meaning of Gρ(x, y, t) by rewrit-
ing (R,2FP1 u2FT2) into P (x, y, t)∧

(
T1(x, y, t)∨ ∃t′

(
(t′ < t)∧ T (x, y, t′)

))
and substituting it for Gρ(x, y, t) in

Φ′(x, t).

13
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We now formally define the connecting axioms for a given DL-Lite2©bool/horn (⊥-free) ontology O = T ∪ R. We assume
that R contains all the role names from T . Recall that a role type ρ for R is a maximal subset of subR consistent
with R. In this section, we use only the positive part of role types (ignoring all the negated roles): in particular, we
say that a type is non-empty if it contains a role R. Given a role type ρ, we consider the R-canonical rod rρ for
{R(0, d, e) | R ∈ ρ}. Note that, by definition, we have rρ(0) = ρ. By the well-known properties of LTL, we can find
positive integers s ρ ≤ |R| and p ρ ≤ 22|R| such that

rρ(n) = rρ(n− p ρ), for n ≤ −s ρ, and rρ(n) = rρ(n+ p ρ), for n ≥ s ρ.
For a role type ρ forR, we take a fresh role name Gρ and fresh concept names Dn

ρ , for −s ρ − p ρ < n < s ρ + p ρ, and
define the following CIs:

∃Gρ v D0
ρ, Dn

ρ v ©FDn+1
ρ , for 0 ≤ n < s ρ + p ρ − 1, Ds ρ+p ρ−1

ρ v ©FDs ρ

ρ ,

and Dn
ρ v ∃S, for roles S ∈ rρ(n) and 0 ≤ n < s ρ + p ρ,

together with symmetrical CIs for −s ρ − p ρ ≤ n ≤ 0 for the past-time ‘loop’. Let (con) be the set of all such CIs for
all possible role types ρ forR, and let TR = T ∪ (con).
Example 5. In Example 3, for role type ρ = {P,©FQ}, we have s ρ = 2, p ρ = 1, and so TR contains the following:

∃P v D0
ρ, D0

ρ v ©FD1
ρ, D1

ρ v ©FD2
ρ, D2

ρ v ©FD2
ρ, and D0

ρ v ∃P, D1
ρ v ∃Q,

which imply ∃P v ©F∃Q. In the context of Example 4, for role type ρ = {2FP1,2FT2}, we have s ρ = 1, p ρ = 1,
and so TR contains the following CIs:

∃Gρ v D0
ρ, D0

ρ v ©FD1
ρ, D1

ρ v ©FD1
ρ, and D1

ρ v ∃P1, D1
ρ v ∃T2, D1

ρ v ∃Q.

Note that, in this case, instead of two CIs D0
ρ v ©FD1

ρ and D1
ρ v ©FD1

ρ, we could use a single D0
ρ v 2FD

1
ρ.

We denote by T †R be the LTL2©
bool TBox obtained from TR by replacing every basic concept B in it with the surrogate B†.

Now, consider an ABoxA. For any a, b ∈ ind(A), let ra,b be theR-canonical rod forAa,b. We splitA into the concept
and role components, U and B, as follows:

U =
{
A(a, `) | A(a, `) ∈ A

}
,

B =
{
∃Gρ(a, `) | a ∈ ind(A), ` ∈ tem(A) and ρ = ra,b(`) is non-empty, for some b ∈ ind(A)

}
.

We denote by U†a and B†a the sets of all atoms A†(`), for A(a, `) ∈ U , and (∃Gρ)†(`), for ∃Gρ(a, `) ∈ B, respectively.
Observe now that the connecting axioms are such that (con)

† is an LTL©core ontology, and the ABox B is defined so
that, for any a ∈ ind(A) and n ∈ Z,

S ∈ ra,b(n), for some b ∈ ind(A), iff (∃S)†(n) ∈ C(con)†,B†a , for any role S inR. (37)

Indeed, suppose that S ∈ ra,b(n). If n ∈ tem(A), then, for ρ = ra,b(n), we have S ∈ ρ and ∃Gρ(a, n) ∈ B,
whence (∃Gρ)†(n) ∈ B†a, and so (∃S)†(n) ∈ C(con)†,B†a . If n > maxA, then we consider ρ = ra,b(maxA). It
should be clear that the R-canonical rod for {R(maxA, d, e) | R ∈ ρ} contains S(n). So, ρ is non-empty and
∃Gρ(a,maxA) ∈ B, whence (∃Gρ)†(maxA) ∈ B†a, and so (∃S)†(n) ∈ C(con)†,B†a The case n < minA is symmetric.
The converse implication follows directly from the definition of (con). We use (37) to establish the following key
technical result:
Lemma B. Let O = T ∪ R and A a concept name from O. Then, for any ABox A, we have

ansZ(O, A,A) =
{

(a, n) | a ∈ ind(A) and n ∈ ansZ(T †R, A,U†a ∪ B†a)
}
.

Proof. (⊆) Suppose n /∈ ansZ(T †R, B†,U†a ∪ B†a). Then there is an LTL model Ia of (T †R,U†a ∪ B†a) with Ia, n 6|= A.
We define a model I of (O,A) with aI /∈ AI(n) using unravelling (Lemma 9). To begin with, we take the beam
ba : n 7→ {C ∈ subT | Ia, n |= C† }; note that ba is a beam for T because T †R extends T †. By (37), the R-
canonical rod ra,b for Aa,b is ba-compatible, for each b ∈ ind(A). Next, we fix a model J of (O,A) and, for every
b ∈ ind(A) \ {a}, take the beam bb of bJ in J . By Lemma 9, we obtain a model I of (O,A) with aI /∈ AI(n).

The implication (⊇) is straightforward. q

We now use this technical result to construct rewritings for OMAQs (O, B) from rewritings of suitable LTL OMAQs,
where we identify a role type ρ with the intersection of all R ∈ ρ and ρ‡:

14



Boolean Role Inclusions in DL-Lite With and Without Time A PREPRINT

Theorem 14. A DL-Lite2©bool/horn OMAQ (O, A) with a ⊥-free O = T ∪ R is L-rewritable whenever

– the LTL2©
bool OMAQ (T †R, A) is L-rewritable and

– the LTL2©
horn OMAQ (R, R) is L-rewritable, for every temporalised role inR.

Proof. We obviously have L-rewritings Qρ(x, y, t) of qρ = (R, ρ). Then the L-formula Q(x, t) obtained from
an L-rewriting Q†(t) of q† by replacing every A′(s) in it with A′(x, s), every (∃P )†(s) with ∃y P (x, y, s), every
(∃P−)†(s) with ∃y P (y, x, s), every (∃Gρ)†(s) with ∃yQρ(x, y, s) and, in the case of FO(RPR), by replacing every
Q(t1, . . . , tk), for a relation variable Q, with R(x, t1, . . . , tk) is an L-rewriting of q.

Indeed, we show that O,A |= A(a, `) iff SA |= Q(a, `), for any ABox A, any ` ∈ tem(A) and any a ∈ ind(A). If A
is a concept name not in O, then the claim is trivial. Otherwise, by Lemma B, O,A |= A(a, `) iff T †R,U†a ∪B†a |= A(`).
As Q†(t) is an L-rewriting of (T †R, A), the latter is equivalent to SU†a∪B†a |= Q†(`). Now, since Qρ(x, y, t) is an

L-rewriting of qρ, for all b ∈ ind(A) and n ∈ tem(A), we have (∃Gρ)†(n) ∈ B†b iff ρ = rb,c(n) for the canonical rod
for Ab,c, for some c ∈ ind(A), iff SA |= ∃yQρ(b, y, n). Then, SU†a∪B†a |= Q†(`) iff SA |= Q(a, `), as required. q

As a first consequence of Theorems 13 and 14, we immediately obtain:
Theorem 15. Every DL-Lite2©bool/horn ontology is FO(RPR)-rewritable.

Indeed, we can obviously rewrite any LTL2©
bool OMAQ to a monadic second-order (or MSO(<)-) formula, mimicking

the LTL semantics, and then use [13], according to which MSO(<)-rewritability implies FO(RPR)-rewritability. Note
that, as follows from [3, Theorem 9], satisfiability of LTL©horn KBs is NC1-hard for data complexity, and so satisfiability
of DL-Lite2©bool/horn ontologies is NC1-complete.

6 FO(<,+)-Rewritability of DL-Lite2©
krom/core

If O = (T ,R) is a DL-Lite2©krom/core ontology, then the TBox TR constructed above is in DL-Lite2©krom/core, and so,
by Theorem 14, we can show L-rewritability of O by establishing L-rewritability of every LTL2©

krom OMAQ. It is
known from [3] that LTL©krom OMAQs are FO(<,+)-rewritable, while LTL2

bool OMAQs are FO(<)-rewritable. Here
we establish FO(<,+)-rewritability of all LTL2©

krom OMAQs. The proof utilises the monotonicity of the 2 operators,
similarly to the proof of [3, Theorem 11]. However, the latter relies on partially-ordered NFAs accepting the models
of (O,A), which do not work in the presence of ©. Our key observation here is that every model of (O,A) has at
most O(|O|) timestamps such that the same 2-concepts hold between any two nearest of them. The placement of these
timestamps and their concept-types can be described by an FO(<)-formula. However, to check whether these types are
compatible (i.e., satisfiable in some model), we require FO(<,+)-formulas similar to those in the proof of [3, Theorem
10].
Theorem 16. Any LTL2©

krom OMAQ is FO(<,+)-rewritable.

Proof. Let q = (O, A) be an LTL2©
krom OMAQ. We can assume that A occurs in O, which has no nested occurrences of

temporal operators and contains CIs ©B ≡ A©B , for every ©B in O with © ∈ {©F ,©P}. Define an NFA AO that
recognises ABoxes A consistent with O, represented as words XminA, . . . , XmaxA, where

Xi =
{
B | B(i) ∈ A and B occurs in O

}
, i ∈ tem(A).

The set T of states in AO comprises maximal sets τ of concepts of O consistent with O; we refer to such τ as types
for O. Now, for any τ, τ ′ ∈ T and an alphabet symbol X , the NFA AO has a transition τ →X τ ′ just in case the
following conditions hold:

X ⊆ τ ′, (38)
©
FC ∈ τ iff C ∈ τ ′, ©

PC ∈ τ ′ iff C ∈ τ, (39)
2FC ∈ τ iff C,2FC ∈ τ ′, 2PC ∈ τ ′ iff C,2PC ∈ τ ; (40)

As τ →X τ ′ implies τ →∅ τ ′, for any X , we omit ∅ from→∅. Since all τ in T are consistent with O, every state in
AO has a→-predecessor and a→-successor. Thus, for any ABox A represented as X0, X1, . . . , Xm, a timestamp `
(0 ≤ ` ≤ m) is not a certain answer to q over A iff there is a path

π = τ−1 →X0
τ0 →X1

τ1 →X2
. . .→Xm τm,

15



Boolean Role Inclusions in DL-Lite With and Without Time A PREPRINT

in AO with A /∈ τ`. This criterion can be encoded by an infinite FO-expression Ψ(t) of the form

¬
[ ∨
τ0→...→τm
is a path in AO

( ∧
0≤i≤m

typeτi(i) ∧
∨

0≤i≤m withA/∈τi

(t = i)
)]
,

where the disjunction is over all (possibly infinitely many) paths and typeτ (t) is a conjunction of all ¬B(t) with B /∈ τ ,
for concept names B in O: the first conjunct ensures, by contraposition, that any B from Xi also belongs to τi, while
the second conjunct guarantees that A /∈ τ` in case ` = t.

We write τ →2 τ ′ if τ and τ ′ satisfy (40), but not necessarily (39). One can show that any path τ0 → . . .→ τm in AO
contains a subsequence

τs0 →2 τs1 →2 . . .→2 τsd−1
→2 τsd

such that 0 = s0 < s1 < · · · < sd−1 < sd = m for d ≤ 2|O| + 1 and, for all i < d, either 2C,C ∈ τsi , τj or
2C /∈ τsi , τj , for all 2C in O, 2 ∈ {2P ,2F}, and all j ∈ (si, si+1).

To deal with the ©-operators, we consider the LTL©krom ontology Õ obtained from O by first extending it with the CIs

2PC v ©P2PC and 2PC v ©PC, for all 2PC in O, (41)
2FC v ©F2FC and 2FC v ©FC, for all 2FC in O, (42)

which are obvious LTL2©
krom tautologies, and then replacing every 2PC and 2FC with its surrogate, a fresh concept

name. Let GÕ be the infinite directed graph whose vertices are pairs (L, n), for a simple literal L (a concept name or
its negation) in Õ and n ∈ Z. It contains an edge from (L, n) to (L′, n+ k), for k ∈ {−1, 0, 1}, iff Õ |= L v ©kL′.
We write (L1, n1) ; (L2, n2) if GÕ has a path from (L1, n1) to (L2, n2), which means that Õ |= ©n1L1 v ©n2L2.
We slightly abuse notation and write, for example, L ∈ τ for a type τ in case L is the surrogate for 2PC and τ
contains 2PC.

Lemma 17. For any ABox A, a timestamp ` ∈ tem(A) is not a certain answer to Q over A iff there are d ≤ 2|O|+ 2,
a sequence τ0 →2 . . .→2 τd of types forO and a sequence minA = s0 < · · · < sd = maxA satisfying the following
conditions:

B ∈ τi, for each B(si) ∈ A, for all 1 ≤ i ≤ d; (43)

(B,n) 6; (¬B′, n′), for si < n, n′ < si+1 with B(n), B′(n′) ∈ A, for all 1 ≤ i < d; (44)

(L, si) 6; (¬B′, n′), for L ∈ τi and si < n′ < si+1 with B′(n′) ∈ A, for all 1 ≤ i < d; (45)

(B,n) 6; (¬L′, si+1), for si < n < si+1 with B(n) ∈ A and L′ ∈ τi+1, for all 1 ≤ i < d; (46)

(L, si) 6; (¬L′, si+1), for L ∈ τi and L′ ∈ τi+1, for all 1 ≤ i < d; (47)
` = si, for some 0 ≤ i ≤ d such that A /∈ τi. (48)

Proof. (⇐) Suppose ` /∈ ans(q,A). Then there is a model I of O and A such that ` /∈ AI . We consider the
sequence τ̄0 → τ̄1 → . . .→ τ̄m−1 → τ̄m of types for O given by I, where 0 = minA and m = maxA. As argued
above, we can find subsequences of types and respective indexes between minA and maxA, whose length does not
exceed 2|O|+ 2. We add τ̄` to obtain the sequences satisfying conditions (43)–(48).

(⇒) Suppose there sequence τ0 →2 τ1 →2 · · · →2 τd of types for O and minA = s0 < s1 < · · · < sd = maxA
of indexes satisfying conditions (43)–(48). We use these sequences to construct a model I of O and A with ` /∈ AI .
The model is defined as a sequence of types τ̄n, for n ∈ Z. We begin by setting τ̄si = τi, for 0 ≤ i ≤ d. Then, since
τ̄minA = τ0 is consistent with O, there is a model Imin of O with type τ0 at minA, and so, we take the types τ̄n
given by Imin for n < minA. Similarly, the types τ̄n, for n > maxA, are provided by a model of O with τ̄max = τd
at maxA. Now, let 1 ≤ i < d. We show how to construct the τ̄j , for si < j < si+1, in a step-by-step manner.

Step 0: for all j with si < j < si+1, set τ̄j =
{
B | B(j) ∈ A

}
.

Step 1: for all k with si ≤ k ≤ si+1 and all j with si < j < si+1, if L ∈ τ̄k and (L, k) ; (L′, j), then add L′ to τ̄j .

Step m > 1: pick τ̄k, for si < k < si+1, and a literal L with L,¬L /∈ τ̄k, terminating the construction if there are
none. Add L to τ̄k, and, for all j with si < j < si+1, if (L, k) ; (L′, j), then add L′ to τ̄j .
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Note that τ̄k could also be extended with ¬L—either choice is consistent with the previously constructed types τ̄j .

By induction on m, we show that the τ̄k constructed in Step m is conflict-free in the sense that there is no k,
si < k < si+1, and no literal L0 with L0,¬L0 ∈ τ̄k, which is obvious for m = 0. Suppose that τ̄k is not conflict-free
after Step 1. Then one of the following six cases has happened in Step 1 (we assume si < n, n′ < si+1, if relevant,
below):

– if L,L′ ∈ τ̄si , (L, si) ; (L0, k), (L′, si) ; (¬L0, k), then (L, si) ; (¬L′, si), contrary to consistency of
τi with O;

– if L,L′ ∈ τ̄si+1
, (L, si+1) ; (L0, k), (L′, si+1) ; (¬L0, k), then (L, si+1) ; (¬L′, si+1), which is also

impossible;

– if B(n), B′(n′) ∈ A with (B,n) ; (L0, k), (B′, n′) ; (¬L0, k), then (B,n) ; (¬B′, n′), contrary
to (44);

– if L ∈ τ̄si , (L, si) ; (L0, k) and B′(n′) ∈ A, (B′, n′) ; (¬L0, k), then (L, si) ; (¬B′, n′), contrary
to (45);

– if B(n) ∈ A, (B,n) ; (L0, k) and L′ ∈ τ̄si+1
, (L′, si+1) ; (¬L0, k), then (B,n) ; (¬L′, si+1), contrary

to (46);

– if L ∈ τ̄si , (L, si) ; (L0, k) and L′ ∈ τ̄si+1
, (L′, si+1) ; (¬L0, k), then (L, si) ; (¬L′, si+1), contrary

to (47).

Thus, the τ̄k constructed in Step 1 are conflict-free. Suppose now that all of the τ̄k are conflict-free after Step m, m ≥ 1,
while some τ̄j after Step m + 1 is not. It follows that some τ̄k is extended with L in Step m + 1, (L, k) ; (L′, j),
but τ̄j contained ¬L′ (at least) since Step m. Now, as (¬L′, j) ; (¬L, k), the type τ̄k already contained ¬L in Step m,
and so L could not be added in Step m+ 1.

Let τ̄n, n ∈ Z, be the resulting sequence of conflict-free types. Define an interpretation I by taking n ∈ BI iff B ∈ τ̄n,
for every concept name B in O. In view of (43) and Step 0, we have I |= A but I 6|= A(`). We show I |= O. Since
the τ̄n are conflict-free, and thus consistent with Õ, and since L1 ∈ τ̄n implies L2 ∈ τ̄n if Õ contains L1 v L2, and
L1 ∈ τ̄n implies L2 /∈ τ̄n if Õ contains L1 u L2 v ⊥, it is sufficient to prove that

A©FB ∈ τ̄n iff B ∈ τ̄n+1 and 2FC ∈ τ̄n iff C ∈ τ̄k for all k > n,

and the past counterparts of these equivalences. We readily obtain the first equivalence since (A©FB , n) ; (B,n+ 1)
and (B,n+1) ; (A©FB , n), and similarly for©P . It thus remains to show the second equivalence. For all n ≥ maxA,
the claim is immediate from the choice of the τ̄k for k ≥ sd = maxA. We then proceed by induction on i from d− 1 to
0 assuming that the claim holds for all n ≥ si+1. We consider the following three options. If 2FC ∈ τ̄si , then, by (40),
we have 2FC,C ∈ τ̄si+1

, and the claim for all n ≥ si follows from the fact that Õ contains CIs (41). If 2FC /∈ τ̄si ,
then, by (40), either 2FC /∈ τ̄si+1

or C /∈ τ̄si+1
; in either case, the claim for all n ≥ si is immediate from the induction

hypothesis and the fact that Õ contains CIs (41). This finishes the inductive argument, and the claim for n < s0 then
follows from the choice of the τ̄k for k ≤ s0 = minA. A symmetric argument shows that 2PC ∈ τ̄n iff L ∈ τ̄k for
all k < n. This completes the proof of Lemma 17. q

We can now define an FO(<,+)-rewriting Q(t) of q by encoding the conditions of Lemma 17 as follows:

Q(t) = ¬
[ ∨
d≤2|O|+2

∨
τ0→2...→2τd

∃t0, . . . , td
(
pathτ0→2...→2τd

(t0, . . . , td) ∧
∨

0≤i≤d withA/∈τi

(t = ti)
)]
,

where pathτ0→2...→2τd
(t0, . . . , td) is the formula

(t0 = min) ∧ (td = max) ∧
∧

0≤i<d

(ti < ti+1) ∧
∧

0≤i≤d

typeτi(ti)

∧
∧

0≤i<d

[ ∧
L∈τi, L′∈τi+1

¬entailsL,¬L′(ti, ti+1)

∧
∧
L∈τi

∀t′ ∈ (ti, ti+1)
(
B′(t′)→ ¬entailsL,¬B′(ti, t′)

)
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∧
∧

L′∈τi+1

∀t ∈ (ti, ti+1)
(
B(t)→ ¬entailsB,¬L′(t, ti+1)

)
∧
∧

B,B′ in Õ

∀t, t′ ∈ (ti, ti+1)
(
B(t) ∧B′(t′)→¬entailsB,¬B′(t, t′)

)]
and where entailsL1,L2

is such that SA |= entailsL1,L2
(n1, n2) iff Õ |= ©n1L v ©n2L2, for any n1, n2 ∈ tem(A);

see [3, Theorem 10]. Note that the outermost disjunction in Q(t) can be empty, in particular when O is inconsistent, in
which case the rewriting Q(t) is simply >. q

As a consequence of Theorems 13, 14 and 16, we obtain:

Theorem 18. DL-Lite2©krom/core ontologies are all FO(<,+)-rewritable.

7 Conclusions

We extended the DL-Lite family of description logics by languages with Krom, Horn and arbitrary Boolean role
inclusions and identified their computational complexity. We observed, in particular, that Boolean RIs make DL-Lite as
expressive as FO2, while covering Krom RIs > v R1 tR2 come for free as far as satisfiability is concerned.

We used those languages as a basis for defining a new type of temporal DLs. So far the main approach to designing
well-behaved fragments of first-order temporal logic has been the monodicity principle, which disallows temporal
operators before a formula with two or more free variables. The main contribution of this paper is to show that by
restricting the use of classical connectives one can obtain natural and decidable fragments whose expressivity for binary
relations is not captured by the monodicity principle.

Interesting directions of future work include establishing the tight combined complexity of DL-Lite2©horn/krom and the
data complexity of DL-Lite with Krom RIs. We also plan to investigate the problem of answering queries mediated
by ontologies in our temporal languages. Answering unions of conjunctive queries (UCQs) is undecidable with
DL-Litekrom

krom ontologies [27] and 2EXPTIME-complete for DL-Liteg-bool
bool [7, 11]. UCQs with DL-Litehorn

horn ontologies are
FO(<)-rewritable; with DL-Liteg-bool

bool ontologies they are CONP-complete for data complexity. Temporal instance
queries are FO(<)-rewritable for DL-Lite2core and FO(<,+)-rewritable for DL-Lite©core [3].
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