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Abstract There are various techniques for specifying a module of an on-
tology that covers all knowledge about a given set of terms. These differ
with respect to the size of the module, the complexity of its computa-
tion, and certain robustness properties. In this paper, we survey existing
logic-based approaches, focus on syntactic approximations, and compare
different kinds of modules with respect to their properties. This is in-
tended to give guidelines on how to choose “the right kind of module”.

1 Introduction

An ontology provides a common vocabulary (signature) for a domain of interest
and describes the relationships between the terms built from that vocabulary.
When developing an ontology, it is helpful for the engineer if she can reuse
information from external, already existing, ontologies. Ideally, she should be
able to extract modules that represent (only) the knowledge she wants to reuse.
The problem of module extraction, therefore, can be phrased as follows: given
a subset X' of the vocabulary of an ontology, find a (minimal) subset of that
ontology that is relevant for the terms? in X. This means that we are considering
ontologies to be sets of axioms, and their modules to be subsets thereof.

The above requirement of “relevance” for X is of course still vague and open
to interpretation. We will now provide intuitions for this requirement, using
different phrasings. We will later model it precisely, using a set of equivalence
relations between ontologies, called inseparability relations. There are different
approaches to relevance for X; they can be grouped into structural ones, e.g. [13,
15], and logic-based ones, e.g. [4, 3, 9]. While the former focus and depend on the
syntax of the axioms in the ontology and on the induced concept hierarchy, the
latter are concerned with preserving entailments or models over a signature 3.
The latter acts as an interface for communication with the ontology in question:
with Y we specify a set of terms, and we expect to obtain a module—a subset
that represents all knowledge about these terms from the original ontology. This
is how we understand relevance, and we usually phrase it as “has the same
entailments with respect to”—or sometimes as “has the same models modulo”,
which is a stronger condition. When we say that a logic-based module M of
the ontology O with respect to a signature X “is relevant for” the terms in
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3 Terms are concept (class) names and role (property) names.



Y, we mean that all consequences of O that can be expressed over X' are also
consequences of M. Then O is said to be a conservative extension (CE) of M.
The logic-based view seems theoretically sound and elegant and provides
a desirable guarantee: reusing only terms from X', we will not be able to dis-
tinguish between importing M and importing O into our ontology. However,
deciding CEs is computationally expensive in general: the problem of deciding
whether two ontologies entail the same concept inclusions over a given signature
is usually harder than standard reasoning tasks. For DL-Litey,.y, for instance,
complexity grows from polynomial-time to coNP-complete, and for DL-Liteyoo;
it grows from NP-complete to I15-complete [11]. For ALC and extensions, it is
usually one exponential higher or even undecidable [5, 12]. These computational
obstacles have led to syntactic approximations via locality [3]. Locality-based
modules are in general not minimal, but provide the same guarantee, namely
the preservation of certain entailments. They have been shown to be useful for
economically reusing ontologies [7]. Syntactic locality comes in two variants,
“top” and “bottom”, and there are several ways of extracting a locality-based
module (“top”, “bottom”, “bottom of top”, vice versa, and further nesting).
This paper surveys existing logic-based approaches, focusing on syntactic
approximations. We will compare different kinds of locality-based modules with
each other and with CE-based modules. In particular, we will explore nested
locality-based modules more in-depth than the existing literature. The compari-
son of module kinds will be based on examining properties relevant for ontology
reuse. It will help learning which modules are best suited for which requirements.
The relevant properties have been identified in [8] and are sketched below.
For our import scenario, we can consider a module M of the ontology O w.r.t.
a signature X to be a subset of O that is indistinguishable from O w.r.t. X. The
above mentioned inseparability relations generalise the import scenario and thus
compare arbitrary ontologies that are not necessarily in the subset relation. They
provide a unifying framework for comparing arbitrary definitions of modules.

Robustness under vocabulary restrictions. This property implies that a module
of an ontology w.r.t. a signature X' is also a module of this ontology w.r.t. any
subset of Y. This is important because it means that we do not need to import
a different module when we restrict the set of terms that we are interested in.

Robustness under vocabulary extensions. This implies that a module of an ontol-
ogy O w.r.t. X is also a module of O w.r.t. any X’ O X' as long as X/ \ X does
not share terms with O. This means that we do not need to import a different
module when extending the set of relevant terms with terms not from O.

Robustness under replacement for a logic L. This property implies that, if M is
a module of O w.r.t. X, then the result of importing M into an L-ontology O’
is a module of the result of importing O into O'. This is called module coverage
in [7]: importing a module does not affect its property of being a module.

Robustness under joins. If two ontologies are indistinguishable w.r.t. X' and they
share only terms from X, then each of them is indistinguishable from their union
w.r.t. Y. This property, together with robustness under replacement, implies that
it is not necessary to import two indistinguishable versions of the same ontology.



2 Preliminaries

In the following, we will use £ to denote a description logic contained in SHOZQ,
whose standard syntax and semantics are defined in [1]. The reason for this
choice is that locality-based modules are defined for logics up to SHOZQ. We
will consider an ontology as a TBox, i.e., a set of axioms.

Let Nc be a set of concept names, and Ngr a set of role names. A signa-
ture X is a set of terms, ie., X C Nc U Ng. We can think of a signature
as specifying a topic of interest. Axioms that only use terms from X can be
thought of as “on-topic”, and all other axioms as “off-topic”. For instance,
if X = {Animal, Duck, Grass, eats}, then Duck C Jeats.Grass is on-topic, while
Duck C Bird is off-topic.

Any concept name, role name, TBox, or axiom that uses only terms from X
is called a X'-concept, X'-role, ¥-TBox, or X-ariom. Given any such object X,
we call the set of terms in X the signature of X and denote it with sig(X) or X.

Given an interpretation Z, we denote its restriction to the terms in a signature
XY with Z|5. Two interpretations Z and J are said to coincide on a signature X,
in symbols Z|x = J|5, if AT = A7 and XT = X7 forall X € X.

2.1 Conservative extensions and locality

There are a number of variants of the notion of conservative extensions, which
capture the desired preservation of knowledge to different degrees. We focus on
the following basic ones.

Definition 1. Let £ be a DL, M C 7 be £-TBoxes, and ' a signature.

(1) 7 is a deductive X-conservative extension (X-dCE) of M w.r.t. L if for all
GCI axioms « over £ with & C X' it holds that M | « if and only if 7 = «.

(2) 7 is a model X-conservative extension (X-mCE) of Mif {Z|x | T E M} =
{Tls | T T).

(3) Misa dCE-based (mCE-based) module for X of T if T is a X-dCE (X-mCE)
of M w.r.t. L.

It is clear that 7 being a Y-mCE of M implies that 7 is a X-dCE of M.

Due to the computational difficulty to decide both kinds of CEs, approxima-
tions have been introduced [3]. They are based on locality of single axioms, which
means that, given X', the axiom can always be satisfied independently of the in-
terpretation of the X-terms, but in a restricted way: by interpreting all non-X
terms either as the empty set ((-locality) or as the full domain? (A-locality).

Definition 2. An axiom « over a logic £ is called ()-local (A-local) w.r.t. signa-
ture X if, for each interpretation Z, there exists an interpretation J such that
Ils = Jls, J E «, and for each X € a\ X, X7 = (for each C € a \ %,
C7 = A and for each Re a\ X, R = A x A).

4 Or, in the case of roles, the set of all pairs of domain individuals.



It has been shown in [3] that M C O and all axioms in O \ M being {-local
(or all axioms being A-local) w.r.t. XU M is sufficient for O to be a ¥-mCE of
M. The converse does not hold: e.g., the axiom A = B is neither (- nor A-local
w.r.t. {A}, but the ontology {A = B} is an {A}-mCE of the empty ontology.

Furthermore, locality can be tested using available DL-reasoners [3], which
makes this problem considerably easier than testing conservativity, see also Sec-
tion 3.2. However, reasoning in expressive DLs is still complex, e.g. NEXPTIME-
complete for SHOZQ. In order to achieve tractable module extraction, the fol-
lowing syntactic approximation of locality has been introduced in [3].

Definition 3. An axiom « is called syntactically L-local (T -local) w.r.t. signa-
ture X if it is of the foorm C+t C C,cCcCT,ct=Cc+, CcT=CT,R*CR
(RC RT), or Trans(R*) (Trans(R")), where C is an arbitrary concept, R is an
arbitrary role name, Rt ¢ ¥ (R" ¢ X)), and C* and C'T are from Bot(X) and
Top(X) as defined in Figure 1 (a) (Figure 1 (b)).

(a) L-Locality Let AY,R™ ¢ X, C* € Bot(X), C(, € Top(X), n € N\ {0}
Bot(X) n= At | L|-CT |CcnC*|CctnC|3RCH | >aRC*|3R.C| >ARE.C
Top(X) =T |-C*+|C{ NCy | >0R.C

(b) T-Locality Let AT,R" ¢ ¥, C* € Bot(X), C(, € Top(X), n € N\ {0}
Bot(X) == 1|-CT|Ccnct|ctncC|3R.CH | >aR.CH
Top(X) := AT | T|-Cct|c/ncy |3RT.CT | >aR".CT | >0R.C

Figure 1. Syntactic locality conditions

It has been shown in [3] that L-locality (T-locality) of an axiom a w.r.t.
X implies (-locality (A-locality) of a w.r.t. X. Therefore, all axioms in O \ M
being L-local (or all axioms being T-local) w.r.t. X' U M is sufficient for O to
be a X-mCE of M. The converse does not hold; examples can be found in [3].

Modules of O for each of the four locality notions are obtained by start-
ing with an empty set of axioms and subsequently adding axioms from O that
are non-local. In order for this procedure to be correct, the signature against
which locality is checked has to be extended with the terms in the axiom that is
added in each step. Definition 4 (1) introduces locality-based modules, which are
always mCE-based (and therefore dCE-based) modules [3], although not neces-
sarily minimal ones. Modules based on syntactic locality can be made smaller
by nesting T-extraction into L-extraction and vice versa, and the result is still
an mCE-based module. These so-called TL-modules and LT-modules are in-
troduced in Definition 4 (2). Finally, we will see in Section 3.2 that iterated
nesting of the latter can lead to even smaller (still CE-based) modules. These
TL*-modules and LT*-modules are introduced in Definition 4 (3).

Definition 4. Let z € {0, A, 1, T}; let y,2 € {1, T} with y # 2; let 7 be a
TBox and X' a signature.



(1) A TBox M is the x-module of T w.r.t. X if it is the output of Algorithm 1.
We write M = z-mod (X, 7).

(2) A TBox M is the yz-module of T w.r.t. X, written M = yz-mod(X,7T), if
M = y-mod(X, z-mod(X, T)).

(3) Let (M;)i>0 be a sequence of TBoxes such that My = 7 and M,y =
yz-mod (X, M;) for every i > 0. For the smallest n > 0 with M,, = M,,41,
we call M,, the yz*-module of T w.r.t. X, written M = yz*-mod(X, 7).

Algorithm 1 Extract a locality-based module

Input: TBox 7, signature X, z € {0, A, L, T}
Output: z-module M of O w.r.t. ¥

M—0, T'—T
repeat
changed < false
for all « € 7’ do

if o not z-local w.r.t. ¥ U M then

M — MU {a}
T' < T'\{o}
changed < true
end if
end for
until changed = false
return M

As for (1), it has been shown in [3] that the output M of Algorithm 1 does
not depend on the order in which the axioms «a are selected.® Furthermore, the
integer n in (3) exists because the sequence (M;);>0 is decreasing. (We even
have Mg D "'DMn:MnJrl :)

Modulo the locality check, Algorithm 1 runs in time cubic in |7| + |Z] [3].
Modules based on L /T-locality are therefore a feasible approximation for mod-
ules based on )/ A-locality. In both cases, modules are extracted axiom by axiom
but, as said above, the (}/ A-locality check is more complex.

2.2 Inseparability relations

The notions of modules defined so far were induced by CEs and different notions
of locality. We will now put them into a more general context of modules gen-
erated by inseparability relations. For a given logic £, an inseparability relation
is a family S = {=%. | ¥ is a signature} of equivalence relations on the set of
L-TBoxes. The intuition behind this notion is as follows: 77 E‘; 75 means that
7T, and 75 are indistinguishable w.r.t. X, i.e., they represent the same knowledge
about the topic represented by Y. The exact meaning of the terms “indistin-
guishable” and “the same knowledge” depends on the precise definition of the

® Our algorithm is a special case of the one in [3, Figure 4].



inseparability relation. M being a module for X' of 7 should be equivalent to
M C T and M being inseparable w.r.t. 3 from 7.

The requirement to preserve entailments or models leads to the following
inseparability relations, which have been examined in [§].

— Ty and Ty are X-concept name inseparable, written 73 =, Tp, if for all X-
concept names C, D, it holds that 77 = C C D if and only if 75 = C C D.

— 77 and 75 are X-subsumption inseparable w.r.t. a logic L, written 7; =%, 7,
if for all terms X and Y that are concept expressions over X or role names
from X, it holds that 7 = X CY ifand only if L E X C Y.

— Th and 75 are X-query inseparable, written T3 =%75, if for all X-ABoxes A, X-
queries ¢(x) and tuples a of object names from A4, it holds that (77,.4) = g(a)
if and only if (72, A) = q(a).

— T and 73 are X-model inseparable, written 7y =5 T, if {Z|x | T = T1} =
{5 1T - T}.

We denote the respective sets of inseparability relations with S¢, S®, and S®™.
It is easy to see that, for each signature X, it holds that =3 C =%, C =¢..
Inseparability relations induce modules as follows.

Definition 5. Let S be an inseparability relation, 7 a TBox, M C 7, and ¥
a signature. We call M

(1) an Sy-module of T if M =%, T;

(2) a self-contained Sy,-module of T if M E;UM T;

(3) a depleting Sy,-module of T if 0 E;UM T\ M.

M is called a minimal (self-contained, depleting) =5,-module of 7 if M, but no

proper subset of M, is a (self-contained, depleting) =.-module of 7.

Due to the shift from ¥ to X U M. , it is not necessarily the case that every
self-contained (or depleting) Sy-module of 7 is an Sy-module of 7. However,
under certain robustness properties, this implication holds.

While self-contained and depleting Sy,-modules tend to be bigger than S-
modules, they have important applications. One of those is the computation
of all justifications for an entailment n of the ontology 7 [6], where depleting
modules are essential. For appropriate inseparability relations .S, Definition 5
(1) ensures that each Sz-module of 7T contains at least one justification for 7,
but not necessarily all. We have good reasons to believe that each self-contained
depleting Sﬁ—module of 7 contains all justifications for 7.

Another application of depleting modules is the import scenario [3, 10]: if
M is a depleting Sy,-module of 7 and S satisfies certain robustness properties,
then, for every module M’ with M/U7T C N M, we can import M’ into T\M
because they do not interfere with each other: (7 \ M) U M’ =5, M.

Finally, while there can be exponentially many minimal S'y,-modules, minimal
depleting modules are uniquely determined—under mild conditions involving
inseparability relations.



3 Modules and their properties

In order to find natural candidates for inseparability relations for locality-based
modules, we proceed by analogy to inseparability relations for conservativity:
ontologies 7; and 75 are inseparable if they have the same modules, i.e., if the
module extraction algorithm returns the same output for each of them. We have
replaced the semantic criterion “the same entailments/models” in conservativity-
based inseparability with a syntactic criterion “the same extraction result” sim-
ply because locality-based modules are defined algorithmically. Furthermore, we
will see that two of the thus obtained inseparability relations have almost all
desired properties—which makes them even superior to dCE-based modules.

We consider the following inseparability relations for locality-based modules,
where z stands for one of the locality notions (), A, L, and T, and yz stands for
one of the combinations 1T and TL.

Relation 71 and 75 are in relation if ...
=% z-mod(X, 77) = z-mod(X, T3)
=Y yz-mod(X, 71) = yz-mod(X, T3)
EyEZ* yz*-mod (X, 71) = yz*-mod(X, T3)

Evidently, they are all equivalence relations.

3.1 Robustness properties of inseparability relations

In the introduction, we have already sketched four important properties of in-
separability relations and have seen why they are of interest for applications of
modules. We will now define them.

Definition 6. Let £ be a DL. The inseparability relation S is called

(1) robust under vocabulary restrictions if, for all L-TBoxes 77,75 and all signa-
tures X, X with X C X, the following holds: if 73 E%, 75, then Ty E% 7.

(2) robust under vocabulary extensions if, for all £L-TBoxes 77,75 and all signa-
tures X, X' with ' N (T, UT) C ¥ : if T, =5 Ty, then T, =5, T.

(3) robust under replacement if, for all £L-TBoxes 77,73, all signatures X and
every L-TBox 7 with TN (7~'1 U 'Z~'2) C X, the following holds: if 7; =%
75, then Ty UTE*;TQUT.

(4) robust under joins if, for all £L-TBoxes 77,75 and all signatures X' with ’i N
’Z~‘2 C X and every i = 1,2, the following holds: if’ﬂz%?}, then T,-E%’]]UTQ.

As mentioned in Section 2.2, some of these robustness properties have an ef-
fect on the relation between the three different kinds of induced Sy,-modules
from Definition 5. Furthermore, robustness under vocabulary extensions im-
plies robustness under vocabulary restrictions. These properties are captured
in Proposition 7.



Proposition 7. Let S be an inseparability relation, X a signature, T a TBoz.

(1) If S is robust under vocabulary extensions, then it is robust under vocabulary
restrictions.

(2) If S is robust under vocabulary restrictions, then every self-contained Sy.-
module of T is an Ss,-module of T .

(8) If S is robust under replacements, then every depleting Sy,-module of T is a
self-contained Sy,-module of T .

(4) If S is monotone®, then there is a unique minimal depleting Sy.-module of
7.

(5) If S is robust under replacements and vocabulary extensions and M’ satisfies
M UT CEXNM, then (T \ M)UM' =5, M'.

Parts (1) and (2) of this proposition are obvious, Parts (3) and (4) are proven
n [10], and Part (5) is proven in [3].

Let us now examine the properties of the inseparability relations S™, S*,
Se, 8% §v* and SY*, where z € {0, A, L, T} and yz € {LT,TL}. First, in
addition to the inclusions =5 C =5, C =% from Section 2.2, the following
inclusions hold, see the appendix for a proof.

Theorem 8. Let X be a signature, v € {0, A, L, T} and yz € {TL, LT}. Then

the following properties hold: =% C =%™; =% C=5m; =Y C =%,

*

relation | §%™ §° S¢ S* SY? Sv?

property
corresponding module notion | mCE dCE — |z-mod yz-mod yz*-mod
(min.) modules O /T — 4 X v
(min.) self-contained mod.s X X — 4 v v
(min.) depleting modules X X — v v v
robustness voc. restr. 4 o/ v X v
robustness voc. ext. o X)) V) v X v
robustness replacement o X)X v v v
robustness joins o X)X v v v
Symbols: S* stands for S?, §4, 8+, ST

Sv=, 8% stand for ST+, ST, ST, ST

v, X property holds/fails

V), X) property holds/fails for many standard description logics

e property holds except for minimality

— property not considered: no corresponding module notion

Figure 2. Properties of inseparability relations for different module notions.

5 S is called monotone if it is robust under vocabulary restrictions and satisfies the
following condition: if 73 C 75 C 73 and T3 =% T3, then 77 =5 To [10].



The properties of the equivalence relations defined in Subsection 2.2 are sum-
marised in Figure 2. The first four lines give the module notion which is gen-
eralised by this inseparability relation, and indicate whether each such module
for X is a (minimal) Sy-module, or a (minimal) self-contained Sy-module, or
a (minimal) depleting Sy.-module. For S¢, this question is meaningless because
there is no corresponding standard module notion, apart from redefining >’-dCEs
to take only X-concept inclusions into account. For S%™ and S¥, it is clear that
Definition 1 (3) leads to Sy-modules, but not to minimal, self-contained, or de-
pleting ones. This can, however, easily be achieved by adopting stronger module
notions as in [9, 10]. Hence, the negative entries in this part of the table are
not problematic, and we can say that locality-based and conservativity-based
modules are equally “good”—except for yz-modules: they are not always S¥:-
modules, which is critical. However, they are always minimal self-contained (de-
pleting) SY-modules.

The remaining four lines indicate whether the respective inseparability re-
lation satisfies the four robustness properties from Definition 6. The results for
Ssem 6% and S¢ are taken from [3, 8]; those for the locality-based relations will
be proven in the following. This part of the table reveals the following insights:
while it is not surprising and known that S¢ lacks some of the important robust-
ness properties, it is interesting (but known as well) that this is also the case for
S%. As for the locality-based inseparability relations, it is truly surprising that
the S¥# lack two of four robustness properties, while the S% and S¥*" appear to
be flawless and as good as S5™.

The following theorem states the results in Figure 2 for locality-based insep-
arability relations. Their proofs can be found in the appendix.

Theorem 9. Let z € {0, A, L, T} and yz € { LT, TL}.

(1) The inseparability relation ST is robust under replacement, vocabulary re-
strictions, vocabulary extensions and joins.

(2) The inseparability relation SY= is not robust under vocabulary restrictions or
extensions, but under replacement and joins.

(8) The inseparability relation S%Z* is robust under replacement, vocabulary re-
strictions, vocabulary extensions and joins.

(4) Let T be a TBox, X a signature, and M = xz-mod(X,T). Then M is a
minimal S%.-module, a minimal self-contained ST.-module, and a minimal
depleting S$.-module of T .

(5) Let T be a TBox, X a signature, and M = yz-mod(X,T). Then M is
not generally a minimal SY: -module, but it is a minimal self-contained S -
module and a minimal depleting SY. -module of T .

(6) Let T be a TBozx, X a signature, and M = yz*-mod(X,T). Then M is a
minimal S%z* -module, a minimal self-contained S%Z* -module, and a minimal
depleting S%Z* -module of T .



3.2 Minimality versus efficient computability

Theoretical results. For ALC and ALCQT, the problem of deciding whether two
ontologies entail the same concept inclusions over a given signature X' is 2EXP-
TIME-complete [5, 12], which is one exponential harder than standard reasoning
tasks. For ALCQTO, and hence for the more expressive OWL 1 and 2, this prob-
lem is undecidable [12]. The related problem of deciding whether two ontologies
have the same models with respect to X' is undecidable already for ALC [12].

Fortunately, extracting mCE-based modules can be tractable, for instance
for acyclic £L ontologies [9]. We will examine how much locality-based modules
differ from minimal modules in size and desired properties in this case.

For the DL-Lite family [2], deciding dCEs is II5-complete for DL-Litepoo,
and coNP-complete for DL-Litepor, [11], i.€., it is most likely intractable in both
cases. However, there is experimental evidence [10] that minimal modules of DL-
Lite ontologies can be extracted quite efficiently via locality-based modules as a
preprocessing step and using QBF solvers.

Ezperimental results. Since CE-based modules are so hard to extract, it is dif-
ficult to perform experiments comparing modules of different notions extracted
from the same ontology for the same signature. However, in two cases this has
been possible. We will briefly describe the two cases and show the difference
between conservativity-based and locality-based modules.

SNOMED CT, the Systematized Nomenclature of Medicine, Clinical Terms,
is an ontology that consists of approximately 360,000 concepts and 1.4 million
relationships, and defines the medical terminology for health care systems in the
US, the UK, and other countries. It is an acyclic ££ TBox; therefore extracting
mCE-based modules is tractable: the system MEX [9] extracts mCE-based mod-
ules from acyclic £L£ ontologies in polynomial time. Three signatures containing
some 4,000, 16,000, and 24,000 concept names from SNOMED CT have been pro-
vided by the Intensive Care Unit of the Royal Prince Alfred Hospital in Sydney,
Australia, from a corpus of 60 million tokens complied from 6 years of notes.”
For the given signatures, we have extracted mCE-based modules with MEX, and

" For the process of converting the text to SNOMED CT codes, see [14]. The process of
computing the SNOMED CT concepts from the clinical notes has an estimated error
rate of 30% false positives mostly created by the multiple use of expressions across
concept descriptions. The false negatives rate is unestimated but from inspection is
likely to be no less than 10% but may be much higher. The reason for this is that
many SNOMED CT concepts are made of significant compositions of smaller concepts
and these are expressed in a rich variety of compositions in the clinical notes. Current
work on improving the extraction process is ongoing and is centred around properly
recognising non-words which make up 30% of the corpus. Non-words are tokens that
contain some non-alphabetic characters. These are typically measurements, chemical
names, and idiosyncratic shorthand. The corpus will not be made available anytime
in the forseeable future due to privacy constraints. The collection of SNOMED CT
concepts will be made available when the error rate is reduced to an acceptable level
and the error process is better understood.



locality-based modules via the OWL API®. In these cases, T-modules comprised
almost the whole ontology, and all yz-modules and yz*-modules coincided. Fur-
thermore, yz*-modules were only about 1.5 times as big as mCE-modules for
signatures greater than 15,000 symbols. The runtime was 1-4 seconds on an av-
erage PC in all cases. The sizes of mCE-modules, 1-modules and T_L*-modules
are given in the following two tables containing exact sizes and percentages,
respectively.

|2 | 1 TL*  MEX || | 1 TL* MEX
2,687 |15,351 15,011 6,374 0.7%| 4.0% 4.0% 1.7%
15,747 38,912 38,534 26,183 4.1%[10.2% 10.1% 6.9%
23,859 | 55,504 54,958 37,129 6.3% | 14.6% 14.5% 9.8%

The version of SNOMED CT underlying these figures was dated 9 February
2005. A version of 30 December 2006 led to similar results.

In [10], dCE-based modules have been extracted from two ontologies in
DL-Litepyo;, Core and Umbrella containing 1283 and 1247 axioms, for system-
atically and randomly generated signatures of size 1 and 10. These modules are
MCM, MQM and MDQM, which are minimal S§,-modules, minimal S%-modules
(where S% is based on query-CEs), and minimal depleting S%.-modules. The ta-
ble below gives the average sizes for modules extracted for (a) all singleton sig-
natures, (b) 30 randomly generated signatures consisting of 10 concept names,
and (c) 30 random signatures consisting of 5 concept and 5 role names. The
entry “—” means that no data is available due to performance reasons.

(a) [X¥] =1 (b) [X]=10 | (c) |[¥][=5+5
Core Umbrella | Core Umbrella | Core Umbrella

MCM 2 2 34 39 81 96
MQM 5 2 54 66 — —
MDQM 80 57| 294 319 497 485
TLl*-mod| 226 69| 465 351 | 671 526

The results show that, on average, locality-based modules can be considerably
bigger than dCE-based modules. On the other hand, since locality-based modules
are always depleting (see Section 3.1), it is only fair to compare them with
MDQM, and in only one of six cases are T1*-modules more than one and a
half times as big as MDQMs on average. In [10], the time needed to extract the
modules can be found in addition to their sizes.

On the nesting of locality-based modules. We have stated in Section 2.1 that the
size of locality-based modules can be reduced by nesting the extraction of T- and
L -modules. In the first instance, this led to the notion of T1- and 1 T-modules.
To the best of our knowledge, this has not been done before. As shown in the
following example, it indeed leads to smaller modules.

8 http://owlapi.sourceforge.net



Ezample 10. Let ¥ = {A,D}and 7 = {AC B, C C D}.
Then we have T-mod(X,7) = {C T D} and L-mod(X,7T) = {A C B}, but
Tl-mod(2,7) = LT-mod(Z,T) = 0.

There are cases where repeated nesting of TL-modules (LT-modules) de-
creases module size even further, see Example 11.

Ezample 11. Consider ¥ = {A} and 7 = {AC BUC, BT A}. Then we have
7 D Tl-mod(X,7T) D TL-mod(X, TL-mod(X, 7)) because:

M =1lmod(X,7) ={ACBUC, BC A}
M; = T-mod(X,N;) ={BLC A4}

No = L-mod(X, M1) =0
My = T-mod(X,N3) =10

An analogous example for L T-modules is ¥ = {A}; T ={BC AU-C, AC B}.

It therefore makes sense to continue this nesting up to a fixpoint. The fol-
lowing lemma shows that the number of steps until this fixpoint is reached can
be asymptotically as big as the number of axioms in 7. The proof is given in
the appendix.

Lemma 12. For every integer n > 1 and yz € {TL, LT}, there exist an ALC-
TBox Mg of size O(n) and a signature X of size O(n) such that M;y; =
yz-mod(X, M;), for eachi=0,...,n—1, and My D --- D M,,.

4 Conclusion

We have compared important properties of conservativity-based and locality-
based modules via the more general notion of inseparability relations. It has
turned out that, while modules based on locality are in general larger than
conservativity-based ones, they are very robust. Two out of three versions of
locality-based modules enjoy the same robustness properties as mCE-based mod-
ules and are therefore more robust than modules based on dCEs. In addition,
they are self-contained and depleting. However, their robustness does not sim-
ply follow from the fact that they are a special case of mCE-based modules:
yz-modules do not “inherit” all robustness properties.

Furthermore, modules based on syntactic locality can be extracted efficiently
for all logics up to SHOZQ. They can thus also serve as an intermediate step
for extracting conservativity-based modules [10]. Except for the few cases where
mCE-based modules can be extracted efficiently, locality-based modules seem
best suited to module extraction scenarios because they combine desirable prop-
erties with computational feasibility.
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Appendix A: Proof of Theorem 8

Theorem 8. Let X be a signature, v € {0, A, L, T} and yz € {TL, LT}. Then
the following hold.

(]) —af C —sem
(2) _yz C _:sem
() =% =g

Proof. We first prove the following claim.
Claim. For each TBox 7, it holds that 7 =5 z-mod(X, 7).

Proof of Claim. Let M = xz-mod(X,7). We need to show that {Z|x | Z |
M} ={Z|s | T E T}. The direction “2” is obvious because M C 7. For the
direction “C”, take a model Z of M. It suffices to show that there is a model J
OfTWithI|2 = j|2

In case z € {0, L}, J is constructed from Z as follows, where X € Nc U Ng.

w7 {XI ifXeXuM
0 otherwise

Clearly, Z|x = J|x. In order to show that J = 7, consider an arbitrary axiom
a€T.If a € M, then J = a because J agrees in all symbols in « with Z. If
a €T\ M, then J |= « is a consequence of z-locality [3].

For z € {A, T}, we change the second case in the construction of X7 to A
if X € Nc and to A x Aif X € Ng.

(1) Let z-mod(X,71) = z-mod(X,7z). Then it follows from the claim that
Ty =5 x-mod(X, 71 ) = x-mod(X, T3) =55™ To. Since =™ is an equivalence
relatlon we have 77 =" Ts.

(2) Let yz- mod(E, T) = yz mod (X, 73). Because the claim implies that 7; =55™
yz-mod (X, 7;), we can proceed as in (1).

(3) Let yz*-mod(X,77) = yz*-mod(X,73). Because the claim implies 7; =55™
yz*-mod(X,7;), we can proceed as in (1).

Appendix B: Auxiliary propositions

The following two propositions contain basic properties of locality and of
locality-based modules, which will make the proofs of the main statements of
this paper easier. The properties in Proposition 13 are taken from [3]; those in
Proposition 14 are direct consequences thereof or are straightforward to prove.

Proposition 13 ([3]). Let « be an aziom, X, X’ be signatures, and x € {L, T}.



(1) If ¥ C X' and « is x-local w.r.t. X', then « is x-local w.r.t. X.
(2) If ¥'Nna C X and « is z-local w.r.t. X, then « is x-local w.r.t. X'.

Proposition 14. Let 7,7’ be TBoxes, X, X' be signatures, and x € {L, T}.

(1) If X C X', then x-mod(X,T) = x-mod(X, x-mod(X', T)).
In particular, x-mod(X,T) C x-mod(X', T).

(2) If ¥ C X, then yz*-mod(X,T) = yz*-mod(X, yz*-mod(X’,T)).
In particular, yz*-mod(X,T) C yz*-mod(X’,T).

(3) If ' NT C X, then z-mod(X',T) C z-mod(%,T).

(4) If T CT', then x-mod(X,T) C x-mod(X,T").

(5) If T CT', then yz-mod(X,T) C yz-mod(X,T").

(6) If T CT', then yz*-mod(X,T) C yz*-mod(X,T").

The following proposition is needed later as well.

Proposition 15. Let X be a signature; Ty, 75 with T 07:2 C X be TBozxes; and
xe{Dd, A L, T}. Then

x-mod(X, Ty UTy) = z-mod(X,T;) U z-mod( X, Tz).

Proof. Let M = z-mod(X,71U7T3), My = z-mod(X,7;), Ma = z-mod(X, 73).
The inclusion M 2 M; U M, follows from Proposition 14 (4). For the converse,
remember that for the module extraction algorithm in Figure 1, the order in
which the axioms are tested for locality is irrelevant. We can therefore assume
that the algorithm for extracting M will at first collect all axioms from M;UM,
and then check the remaining axioms for locality. If we show that all axioms
outside MU M are x-local w.r.t. XU MU Majy, we will have established that
M= M;UMs,.

For this purpose, consider an arbitrary axiom a € (7; U73) \ (M1 U Mas).
In case o € Ty, it follows that a € 77 \ My, and therefore « is z-local w.r.t.
Y U M;. Let us call this property (x). Now the precondition LNT, C X%
impliefs\_‘ghatfv/\/;l/g Na C XY, and through set-theoretic operations this implies
(UM UMs)Na C XU M,;. Therefore, and with Proposition 13 (2) applied
to (*), we have that « is z-local w.r.t. X UM U/\A/l/g. The case « € 75 is treated
analogously. O

Appendix C: Proof of Theorem 9

Theorem 9. Let x € {0, A, L, T} and yz € {LT,TL}.

(1) The inseparability relation ST is robust under replacement, vocabulary re-
strictions, vocabulary extensions and joins.

(2) The inseparability relation SY= is not robust under vocabulary restrictions or
extensions, but under replacement and joins.



(3)
(4)

(5)

(6)

The inseparability relation S%z* is robust under replacement, vocabulary re-
strictions, vocabulary extensions and joins.

Let T be a TBoz, X a signature, and M = x-mod(X,T). Then M is a
minimal S%,-module, a minimal self-contained S%,-module, and a minimal
depleting S§,-module of T .

Let T be a TBox, X a signature, and M = yz-mod(X,T). Then M is
not generally a minimal SY: -module, but it is a minimal self-contained S¥ -
module and a minimal depleting SYs -module of T .

Let T be a TBoz, X a signature, and M = yz*-mod(X,T). Then M is a
minimal S%Z* -module, a minimal self-contained S%Z* -module, and a minimal

depleting S')yjz* -module of T.

Proof. This proof refers to additional propositions in Appendix B.

(1)

Robustness under replacement: Let 7N (’Z~'1 U ’fg) C Y. This implies that
T N7, CX fori=1,2. Now we have:

z-mod(X, 77 UT) = z-mod(X,71) Uz-mod(X,7) (Proposition 15)
= z-mod (X, 72) Ua-mod(X,7) (precondition)
=z-mod(X, T, UT) (Proposition 15)

Robustness under vocabulary extensions: Let E'ﬁ(ﬁ U,fz) C Y and 71 =%Ts,
i.e., x-mod(X,7q) = x-mod(X, 73). Let X" = ¥’ N X" (which implies X" C ¥
and X" C X'). Then we have that
r-mod(X', 77) = z-mod(X", T7) (x

= z-mod(X”, z-mod(X,7;))  (Proposition 14 (1))
= z-mod(X", z-mod(X,73))  (precondition)
( (
( (

~—

= z-mod (X", 73) Proposition 14 (1))
= z-mod (X', T3) ok )

As for equality (x), inclusion “C” is due to X' N 7, = X" and Proposition
14(3), and “2” is due to X" C X’ and Proposition 14 (1). Equality (xx) is
justified analogously.

Robustness under vocabulary restrictions: Follows from robustness under vo-
cabulary extensions and Proposition 7.

Robustness under joins: For i = 1,2, let M; = z-mod(X, 7;) with ’Z~'1 N 7A;2 C
X, and let M = z-mod (X, 71 UT3). The precondition says that M, = M. It
is clear from Proposition 14 (4) that M D M;. It suffices to show M C M;.
Take any axiom « € (73 U 73) \ Mj. It remains to show that « is z-local
w.r.t. EUMl In case a € T \ M, then « is x-local w.r.t. EUMl since
My = z-mod (X, T7). In case a € T5 \ My, we also have that o € 75 \ My
because M; = Ms. This means that « is z-local w.r.t. UM2 and therefore
w.r.t. X UM;.



(2)

Missing robustness under vocabulary restrictions: Let yz = TL, Ty = {B C
A}, T, ={AC BUC, BC A}, ¥ ={A,B}, X' = {A}. Then

TLl-mod(X,77) =Th = TL-mod(X, T3),
but
Tl-mod(X',7T1) =0 # T3 = TL-mod(X', T5).
A similar example applies to yz = 1T.

Missing robustness under vocabulary extensions: Follows from the above and
Proposition 7.

Ijobuitness under replacement: Let TN (’fl U ’jé) C X. This implies that
TNT, C X, fori=1,2. We proceed similarly to the proof of (1), using
Proposition 15:
yz-mod(X,7; UT) = y-mod(X, z-mod(X, 7, UT))
= y-mod(X, z-mod(X, 77) U z-mod(X, 7))
= y-mod(X, z-mod(X, 71)) U y-mod(X, z-mod(X, 7))
= y-mod(X, z-mod(X, 73)) U y-mod(X, z-mod(X, T))
= y-mod(X, z-mod(X, 73) U z-mod(X, 7))
= y-mod(X, z-mod(X, T, UT))
=yz-mod(X, T,UT)

— — ~— ~—

Robustness under joins: Let 7:N7T5 C X and assume that yz-mod(X, T7) =
yz-mod (X, T3). If suffices to show that yz-mod(X,77) = yz-mod(X, 71 UT>).
For i = 1,2, let N; = z-mod(X,7;) and M; = y-mod (X, N;). Furthermore,
let N = z-mod(X,7; UTz) and M = y-mod (X, N'). The precondition says
that M; = Ms, and we need to show that M = M.

We first observe that N' = N1 U Na, which is due to Proposition 15. Now,
since 71 N 73 C X implies N1 NN C X, we can apply Proposition 15 again
and obtain M = M; U Mas. Since M; = My, we conclude M = M.
Robustness under replacement: Let N ('ZN'l U Té) C Y. This implies that
TNT,CX, fori=1,2.

Let Mg D -+ D M, = My41 = ... be the chain of nested yz-modules
w.r.t. X for 7 according to Definition 4 (3). Analogously, for i = 1,2, let
My DM =M: L =... be the chain of nested yz-modules w.r.t.
Y for T;, and let N§ D --- DN = N |, = ... be the chain of nested
yz-modules w.r.t. X' for 7, U7 .

Then Proposition 15 implies that, for each ¢ = 1,2 and each j > 0, N; =
/\/13 U M;. If we set m} = max{m;,m}, ¢ = 1,2, then this yields

yz*-mod(X, 77 UT) = ./\fil,1
== M}n’ U Mm/
1 1
=M., UM,



= M2, UM,
= N2,
=yz*-mod(X, T, UT).

Robustness under vocabulary extensions: Let X' N (’ﬁ U,fg) CXand Ty Ey;*
Tz, i.e., yz*-mod(X, T1) = yz*-mod(X,7T3). Let X" = X' N XY .Now we have
that:
yz*-mod(X', T7) = yz*-mod(X", T7) (Proposition 14 (1)+(3))
= yz*-mod (X", yz*-mod(X,7;)) (Proposition 14 (2))
= yz*-mod(X",yz*-mod (X, 73)) (precondition)
= yz*-mod(X", T3) (Proposition 14 (2))
= yz*-mod(X’, T3) (Proposition 14 (1)+(3))

Robustness under vocabulary restrictions: Follows from robustness under vo-
cabulary extensions and Proposition 7.

Robustness under joins: Follows by iteratively applying the part “robustness
under joins” in the proof of (2).

Let M = z-mod(X,7T). Due to robustness under vocabulary restrictions,
robustness under replacement, and Proposition 7, it suffices to show two
properties:

(a) M is a depleting S%.-module of T, i.e., E;u/\?z\ M. This is the case

because all axioms in 7"\ M are z-local w.r.t. X' U M.

(b) M is a minimal SE-module of 7, i.e., for each N' C 7, if z-mod (X, N) =
z-mod(X,7), then M C N. This is the case because xz-mod(X,N) =
z-mod(X,7) = M.

First, we show that yz-modules are not in general S%:-modules. Let yz = T,
M={BC A}, T={AC BUC, BC A}, and X = {A}. Then we have
that M = TL-mod(X,7), but

TLl-mod(X, M) =0 # M = TL-mod(X,T),

and therefore M #£% 7. A similar example applies to yz = LT.

For the remaining properties, we can again make use of Proposition 7 plus
robustness under replacement, and reduce the task to showing the following
two properties if M = z-mod(X, 7).

(a) M is a depleting S¥'-module of 7, ie., 0 =77 =7 \ M. Let M" =
yz-mod(XUM, T\ M). Since T\ M C T and because of Proposition 14 (5),

we have M’ C yz-mod(X U MV, 7T) = M. Furthermore, the construction of
M’ implies that M’ C T \ M. Hence, M’ = (), which implies M’ Ey;uﬂ 0.



(b) M is a minimal self-contained S¥. -module of 7, i.e. for each N C T,
if yz-mod(X,N) = yz-mod(X, T), then M C N. This is the case because
yz-mod(X, N) = yz-mod(X,7) = M.

(6) Let M = yz*-mod(X,T). Due to robustness under vocabulary restrictions,

robustness under replacement, and Proposition 7, it suffices to show two
properties:

(a) M is a depleting S%Z*—module of T, ie., 0 Ey;u/\? 7T\ M. Let M' =
yz*-mod(XUM, T\M). Since T\ M C T and because of Proposition 14 (6),
we have M’ C yz*-mod(X U M, T) = M. Furthermore, the construction of

M 1mphes that M’ - T\M Hence, M = @7 which 1mphes that Mlzézu*ﬁ
0.

(b) M is a minimal S%* -module of T for each N’ C T, if yz*-mod(X, V') =
yz*-mod(X,7T), then M C N. This is the case because yz*-mod(X,N) =
yz*-mod(X,7T) = M.

Appendix D: Proof of Lemma 12

Lemma 12. For every integer n > 1 and yz € {TL, 1T}, there exist an ALC-
TBox Mg of size O(n) and a signature X of size O(n) such that M,y =
yz-mod(X, M;), for eachi=0,...,n—1, and Mg D - D M,,.

Proof. Let yz = TL1. The proof for yz = 1T can be done via an analogous
construction.

We use the concept names A;, B;,C;, Dj;, E;, where i = 1,...,n and j =
1,...,n—1,and set X ={A4;,...,A,, E1,...,E,_1}. We define three types of

axioms as follows.

o, =A; C B;UC; UD; i=1,....,n—1
a, =A; C B, UC;

B =B; C A; i=1,...,n

v = Cip1 C E; UGy i=1,....,n—1
0; = D1 C E; U-CY i=1,....,n—2

Now let MO = Ml = {Oél,---,Oén, ﬂla"'vﬁna Yiy-- 05 Yn—1, 617"'75n—2}'
Since each axiom in My is of constant size, the size of My is linear in n. We
recursively define M; for i > 1 as follows.

M, — L-mod(X, M;_q) if2]¢
C ) T-mod(2, M) if 244

The following claim implies M1 D M3 D --+ D May,3 = 0, which proves the
lemma for yz = TL, albeit with different indices.



Claim. For each i > 0, let m(i) = | £]. The following holds.

M, = {am(i)a"'aan’ 6m(1)77ﬁn7 Ym(i)s-++» Vn—15 5m(i)7"'75n—2} 1f2|Z
{am(i)+17"'7an7 5m(i)7'”7ﬁn7 Ym(i)s -+ s Yn—1, 6m(i)7"'75n72} if 2*1

We prove the claim by induction on i. The base case ¢ = 0 follows from the
construction of My = 7. For the induction step, we distinguish two cases.

Case 1: 214. If i = 1, then the claim follows from the construction of M; = 7.
If i > 1, then M; = T-mod(X, M;_1). Due to the induction hypothesis, we have

M’i*l = {am(i—1)7'”uan7 /Bm(i—l)w"vﬁna A/m(i—l)7 vy Yn—1, 5m(i—l)7"'75n72}'

Since 2 { i, we have m(i — 1) = m(i), and we can replace the former with the
latter from now. The T-module M; can be obtained from M,_; via the following
steps.

— All B;,7;,9; are not T-local w.r.t. ¥. Hence they will be contained in Mj,
and X' is extended as follows.

2/ =XU {Bm(z)7aBna Cm(i)a"'ac’n7 Dm(i)+17"'7Dn71}'

— Now, @y (iy41, - - - » @ are not T-local w.r.t. £’. Hence they will be contained
in M;, but X’ remains because these axioms do not add new terms to it.

— The remaining axiom @, ;) 4s T-local w.r.t. X’ and will therefore not be
contained in M,.

Hence MZ = {am(i)-i-lv <oy O, ﬁm(i)a s aﬁnz ’Ym(l)y <oy Yn—1, 6177,(2)5 cety 5”—2}-

Case 2: 2 | i. Therefore, M; = L-mod(X, M;_1). The induction hypothesis,

together with 2 | ¢, yields the following.

Mi—l = {am(i—l)-i-lv ey Oy /Bm(i—l)a ) 6%7 Tm(i—1)y -+ In—1; 5777,(1'—1)7 cey 6n—2}
= {am(i)a"wana ﬁm(i)fla"'aﬁnv ’Ym(i)fla"w’}/n—h 6’m(i)717“'75n—2}

The 1-module M; can be obtained from M;_; via the following steps.

— All a; are not L-local w.r.t. . Hence they will be contained in M;, and X
is extended as follows.

Y =Xu {Bm(i)7~-~7Bn7 Cm(l-),...,Cm Dm(i)w"»anl}'

— Now f},7;,0;, for j > m(i), are not L-local w.r.t. X’. Hence they will be
contained in M;, but X’ remains because these axioms do not add new terms
to it.

— The remaining axioms B, ()~ 1, Ym(i)—1, Om(i)—1 are T-local w.r.t. 2 and will
therefore not be contained in M;.

Hence MZ = {am(i)v"'7a7la ﬂm(i)a"'aﬂﬂn Tm(i)s -5 In—1, 6m(i)7"'a§n—2}- d



