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Abstract

It is well known that many two-dimensional products of modal logics with at least
one ‘transitive’ (but not ‘symmetric’) component lack the product finite model property.
Here we show that products of two ‘transitive’ logics (such as, e.g., K4 ×K4, S4 × S4,
Grz×Grz and GL×GL) do not have the (abstract) finite model property either. These
are the first known examples of 2D modal product logics without the finite model property
where both components are natural unimodal logics having the finite model property.
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1 Introduction

Products of modal (in particular, temporal, spatial, epistemic, etc.) logics is a very natural
and clear construction arising in both pure logic and various applications; see, e.g., [14, 5, 2,
15, 9, 4, 19]. Introduced in the 1970s [17, 18], products have been intensively studied in the
last decade (for a comprehensive exposition see [8]). The obtained results that are relevant
to the decision problem for two-dimensional products can be briefly summarised as follows:

• We know that the product of two first-order definable and recursively enumerable logics
is recursively enumerable [9].

• We know that 2D products with logics like K and S5 are usually decidable (but of
high—sometimes extremely high—computational complexity) [15, 9, 12, 8].

• We know that products of two ‘linear transitive’ logics like K4.3 or GL.3 are mostly
undecidable [13, 16].

• Yet, despite all efforts, we still have no clue to the computational behaviour of products
of two ‘transitive’ (but not ‘symmetric’) logics where at least one component logic
has branching frames (say, K4.3 ×K4 or S4 × S4). The only known results involve
linear components that are either Noetherian or discrete. For example, it is known that
Log(N, <)×K4 and Log(N, <)×S4 are not recursively enumerable [8] (and the available
proof heavily uses the discreteness of (N, <)).
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Not only have we no idea about solutions to these decision problems, but—unlike the unimodal
case [3]—very little is known about the frames for multimodal transitive logics with interacting
modal operators in general. Without exaggeration one can say that the study of multimodal
transitive logics in general, and 2D product logics and commutators in particular, is one of
the most challenging and intriguing topics of modern modal logic.

The aim of this note is twofold. First, we show that products (in fact, already the com-
mutators) of two standard transitive modal logics are rather expressive: in particular, they
can say that their models must be infinite. Although it is very tempting to try to show that
finitely axiomatisable logics like K4×K4 are decidable by proving first that they enjoy the
finite model property (the authors have made several attempts in this direction), one should
not yield to the temptation—these logics do not have the finite model property.

Second, we hope that the formulas below that require infinite transitive, commutative and
Church-Rosser frames will either help in encoding some undecidable problem and showing
that K4 ×K4-type logics are undecidable, or give a hint on how their infinite models can
be represented by some finite means, say, using mosaics or quasimodels, in order to prove
decidability.

2 Definitions

Given unimodal Kripke frames F1 = (W1, R1) and F2 = (W2, R2), their product is defined to
be the bimodal frame

F1 × F2 = (W1 ×W2, Rh, Rv),

where W1 ×W2 is the Cartesian product of W1 and W2 and, for all u, u′ ∈ W1, v, v′ ∈ W2,

(u, v)Rh(u′, v′) iff uR1u
′ and v = v′,

(u, v)Rv(u′, v′) iff vR2v
′ and u = u′.

Let L1 be a normal (uni)modal logic in the language with the box B and the diamond b.
Let L2 be a normal (uni)modal logic in the language with the box A and the diamond a.
Assume also that both L1 and L2 are Kripke complete. Then the product of the logics L1

and L2 is the normal (bi)modal logic L1×L2 in the language ML2 with the boxes B, A and
the diamonds b, a which is characterised by the class of product frames F1 × F2, where Fi

is a frame for Li, i = 1, 2. (Here we assume that B and b are interpreted by Rh, while A
and a are interpreted by Rv.)

Although product logics L1 × L2 are Kripke complete by definition, of course there can
be (and in general there will be) other, non-product, frames for L1 × L2. This gives rise to
two different types of the finite model property. As usual, a bimodal logic L (in particular,
a product logic L1 × L2) is said to have the (abstract) finite model property (fmp, for short)
if, for every ML2-formula ϕ /∈ L, there is a finite frame F for L such that F 6|= ϕ. (By a
standard argument, this means that M 6|= ϕ for some finite model M for L; see, e.g., [3].)
And we say that L1 × L2 has the product finite model property (product fmp, for short) if,
for every ML2-formula ϕ /∈ L1 × L2, there is a finite product frame F for L1 × L2 such that
F 6|= ϕ.

Clearly, the product fmp implies the fmp. Examples of 2D product logics having the
product fmp (and so the fmp) are K × K, K × S5, and S5 × S5 (see [8] and references
therein). On the other hand, there are product logics, such as K4 × S5 and S4 × S5, that
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do enjoy the (abstract) fmp [9], but lack the product fmp [8]. In general, it is well known
that many product logics with at least one ‘transitive’ (but not ‘symmetric’) component do
not have the product fmp (see, e.g., Theorems 5.32, 5.33 and 7.10 in [8]). Here we recall an
example of an ML2-formula that can be used to show the many such logics do not have the
product fmp:

B+ap ∧B+A(p → bB+¬p)

(here B+ψ abbreviates ψ ∧Bψ). Note that this formula (as well as the others known so far)
is satisfiable in an appropriate finite (in fact, very small) non-product frame.

Product logics are defined in a semantical way: they are logics determined by classes of
product frames. So a good starting point in understanding their behaviour is to find basic
principles that hold for every product frame (W1 ×W2, Rh, Rv):

• left commutativity : ∀x∀y∀z (
xRvy ∧ yRhz → ∃u (xRhu ∧ uRvz)

)
,

• right commutativity : ∀x∀y∀z (
xRhy ∧ yRvz → ∃u (xRvu ∧ uRhz)

)
,

• Church–Rosser property : ∀x∀y∀z (
xRvy ∧ xRhz → ∃u (yRhu ∧ zRvu)

)
.

These properties can also be expressed by the ML2-formulas

abp → bap, bap → abp, bAp → Abp. (1)

Given Kripke complete unimodal logics L1 and L2, their commutator [L1, L2] is the smallest
normal modal logic in the language ML2 which contains L1, L2 and the axioms (1).

As product frames satisfy the commutativity and Church-Rosser properties, we always
have [L1, L2] ⊆ L1×L2. For some logics, in particular K4 or S4, the converse also holds: for
example, K4×K4 = [K4,K4]; see [9, 8]. On the other hand, e.g., [K4.3,K4] $ K4.3×K4;
see Theorem 5.15 in [8]. In general, [L1, L2] can even be Kripke incomplete.

3 Results

From now on we only consider products of ‘transitive’ (uni)modal logics, that is, extensions
of K4. Our aim is to show that products of two logics such as K4, K4.3, S4, Grz or GL do
not have the (abstract) fmp. In fact, these are the first known examples of 2D modal product
logics without the fmp where both components are standard (uni)modal logics having the fmp.
A preceding example of such a product, where one of the components is bimodal (Lin×S5),
can be found in [15] (this result is generalised a bit in Theorem 5.30 of [8]).

We remind the reader that a frame (W,R) is called Noetherian if there is no infinite strictly
ascending chain x0Rx1Rx2R . . . of points from W (i.e., no R-chain such that xi 6= xi+1, for
all i < ω).

Theorem 1. Let L1 and L2 be Kripke complete normal (uni)modal logics containing K4 and
such that both L1 and L2 have among their frames a rooted Noetherian linear order with an
infinite descending chain of distinct points. Then all bimodal logics L in the interval

[L1, L2] ⊆ L ⊆ L1 × L2

lack the (abstract) fmp.
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Corollary 1.1. Let L1 and L2 be any logics from the list

K4, K4.1, K4.2, K4.3, S4, S4.1, S4.2, S4.3, GL, GL.3, Grz, Grz.3.

Then neither [L1, L2] nor L1 × L2 have the (abstract) fmp.

Proof of Theorem 1. Let ϕ be the conjunction of the following bimodal formulas:

BA
(
(h ∨ah → Ah) ∧ (¬h ∨a¬h → A¬h)

)
, (2)

BA
(
(v ∨bv → Bv) ∧ (¬v ∨b¬v → B¬v)

)
, (3)

¬h ∧ ¬v ∧ab(
h ∧ v ∧BA(h ∧ v)

)
, (4)

BA(D⊥ ∧E⊥ → p), (5)

De(¬p ∧Ep), (6)

Ed(p ∧D¬p), (7)

BA
(
p → E(p ∧dp)

)
, (8)

BA
(¬p → D(¬p ∧e¬p)

)
, (9)

where
eψ =

[
h → b

(¬h ∧ (ψ ∨bψ)
)] ∧ [¬h → b

(
h ∧ (ψ ∨bψ)

)]
,

dψ =
[
v → a

(¬v ∧ (ψ ∨aψ)
)] ∧ [¬v → a

(
v ∧ (ψ ∨aψ)

)]
,

Eψ = ¬e¬ψ, and Dψ = ¬d¬ψ.

On the one hand, it is easy to see that ϕ is satisfiable in a product of two rooted Noetherian
linear orders each of which contains an infinite descending chain of distinct points (such a
product frame is a frame for L because L ⊆ L1 × L2). Indeed, let Fi = (Wi, <i), i = 1, 2, be
such frames with infinite descending chains

x0 	1 x1 	1 x2 	1 . . . and y0 	2 y1 	2 y2 	2 . . .

of points in W1 and W2, respectively. Define a valuation V in F1 × F2 by taking:

V(h) = {(x, y) | x0 <1 x} ∪ {(x, y) | xn+1 �1 x ≤1 xn, n < ω, n is even},
V(v) = {(x, y) | y0 <2 y} ∪ {(x, y) | yn+1 �2 y ≤2 yn, n < ω, n is even},
V(p) = {(x, y) | x1 �1 x} ∪ {(x, y) | xn+1 �1 x, y ≤2 yn, n > 0}

(see Fig. 1). Since F1 is rooted and Noetherian, there is a <1-greatest point z1 in F1 such
that z1 <1 xn for all n < ω. Similarly, there is a <2-greatest point z2 in F2 such that z2 <2 yn

for all n < ω. The reader can easily check that, under the valuation V, we have (z1, z2) |= ϕ.
On the other hand, we will now show that ϕ is not satisfiable in any finite frame for L.

To this end, suppose that
(M, r) |= ϕ

for a root r of a model M based on a frame F = (W,R1, R2) for L. Then, in view of K4 ⊆ Li

and [L1, L2] ⊆ L, we know that

• both R1 and R2 are transitive,
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Figure 1: Satisfying ϕ in an infinite product frame.

• R1 and R2 commute, and

• R1 and R2 are Church–Rosser.

Define new relations R̄i, for i = 1, 2, by taking for all x, y ∈ W :

xR̄1y iff ∃z ∈ W
[
xR1z and

(
(M, x) |= h ⇐⇒ (M, z) |= ¬h

)
and (either z = y or zR1y)

]
,

xR̄2y iff ∃z ∈ W
[
xR2z and

(
(M, x) |= v ⇐⇒ (M, z) |= ¬v

)
and (either z = y or zR2y)

]
.

Then, by the transitivity of Ri, we have R̄i ⊆ Ri (i = 1, 2). It is readily checked that, for all
x ∈ W ,

(M, x) |= eψ iff ∃y ∈ W (xR̄1y and (M, y) |= ψ),

(M, x) |= dψ iff ∃y ∈ W (xR̄2y and (M, y) |= ψ).

It is also straightforward to see that, in view of the properties of the Ri mentioned above and
by (2)–(3), we have

both R̄1 and R̄2 are transitive, (tran)
R̄1 and R̄2 commute, and (com)
R̄1 and R̄2 are Church–Rosser. (chro)

We will be using the following notation. For every formula ψ, ` ∈ {e,d} and @ ∈ {E,D},
let

`0ψ = @0ψ = ψ
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and, for n < ω, let

`n+1ψ = ``nψ and @n+1ψ = @@nψ.

Claim 1.1. The following formulas are true in M, for all n < ω:

BA(¬p → e>), (10)

BA(p → Endnp), (11)

BA(¬p → Dnen¬p), (12)

BA(D¬p → Dn+1en¬p), (13)

BA(Ep → En+1dnp). (14)

Proof. Formula (10) is a straightforward consequence of (5), (9) and (com). We prove (11)
and (12) by induction on n. The case n = 0 is obvious.

Suppose (11) holds for some n. Take some w with (M, w) |= p and z1, . . . , zn, zn+1 such
that

wR̄1z1R̄1 . . . R̄1znR̄1zn+1.

Then (M, zn) |= p by (tran) and (8), and by IH there are w1, . . . , wn such that

znR̄2w1R̄2 . . . R̄2wn and (M, wn) |= p.

By (chro), there are s1, . . . , sn such that wiR̄1si, for i = 1, . . . , n, and zn+1R̄2s1R̄2 . . . R̄2sn.
Since wnR̄1sn, by (tran) and (8), (M, sn) |= p and there exists sn+1 such that

snR̄2sn+1 and (M, sn+1) |= p,

from which (M, zn+1) |= dn+1p.
Now suppose that (12) holds for some n. Take some w with (M, w) |= ¬p and z1, . . . , zn, zn+1

such that
wR̄2z1R̄2 . . . R̄2znR̄2zn+1.

Then (M, zn) |= ¬p by (tran) and (9), and, by IH, there are w1, . . . , wn such that

znR̄1w1R̄1 . . . R̄1wn and (M, wn) |= ¬p.

By (chro), there are s1, . . . sn such that wiR̄2si, for i = 1, . . . , n, and zn+1R̄1s1R̄1 . . . R̄1sn.
Since wnR̄2sn, by (tran) and (9), (M, sn) |= ¬p and there exists sn+1 such that

snR̄1sn+1 and (M, sn+1) |= ¬p,

which shows that (M, zn+1) |= en+1¬p.
Now, by R̄2 ⊆ R2 and the transitivity of R2, (12) actually implies

BAD(¬p → Dnen¬p).

So (13) follows by the modal axiom K for D. (14) follows from (11) in a similar way. @

We define inductively two infinite sequences

x0, x1, x2, . . . and y0, y1, y2, . . .

of points in W such that, for every i < ω,
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(i) (M, xi) |= p ∧D¬p,

(ii) (M, yi) |= ¬p ∧Ep,

(iii) there exists a point ui such that rR̄2ui, uiR̄1xi and uiR̄1yi, and

(iv) if i > 0 then there exists a point vi such that rR̄1vi, viR̄2xi and viR̄2yi−1.

(We do not claim at this point that, say, all the xi are distinct.)
To begin with, by (2)–(4), there are u0, x0 such that rR̄2u0R̄1x0 and

(M, x0) |= E⊥ ∧D⊥. (15)

By (5), (M, x0) |= p. By (6), there is y0 such that u0R̄1y0 and

(M, y0) |= ¬p ∧Ep.

So (i)–(iii) hold for i = 0.
Now suppose that, for some n < ω, xi and yi with (i)–(iv) have already been defined for

all i ≤ n. By (iii) for i = n and by (com), there is vn+1 such that rR̄1vn+1R̄2yn. So by (7),
there is xn+1 such that vn+1R̄2xn+1 and

(M, xn+1) |= p ∧D¬p.

Now again by (com), there is un+1 such that rR̄2un+1R̄1xn+1. So by (6), there is yn+1 such
that un+1R̄1yn+1 and

(M, yn+1) |= ¬p ∧Ep,

as required (see Fig. 2).
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Figure 2: Generating the points xi and yi.

Next, we show that (i), (ii), and (10)–(14) imply the following claim:
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Claim 1.2. For all i, n < ω,

(M, xi) |= en> ↔ dn>, (16)

(M, yi) |= en+1> ↔ dn>. (17)

Proof. If n = 0 then (16) is obvious, and (17) follows from (ii) and (10). So we may assume
that n > 0.

To prove (16), assume first that we have xi |= en>. Then there is a point z such that
xiR̄

n
1z. By (i), xi |= p. So, by (11), xi |= Endnp, and therefore, z |= dnp. Thus we have

a point u such that zR̄n
2u. Now, using (com), we find a point v such that xiR̄

n
2v and vR̄n

1u,
from which xi |= dn>. Conversely, suppose xi |= dn>, that is, there is a point z such that
xiR̄

n
2z. By (i), xi |= D¬p, and so, by (13), xi |= Dnen−1¬p. Therefore, z |= en−1¬p and

we have a point u such that zR̄n−1
1 u and u |= ¬p. So by (10), u |= e> and we have a point

v such that uR̄1v, from which zR̄n
1v. Using (com), we find a point w such that xiR̄

n
1w and

wR̄n
2v. It follows that xi |= en>.
To show (17), assume first that we have yi |= en+1>. Then there is a point z such that

yiR̄
n+1
1 z. By (ii), yi |= Ep. So, by (14), yi |= En+1dnp, and therefore, z |= dnp. Thus we

have a point u such that zR̄n
2u. Now, using (com), we find a point v such that yiR̄

n
2v and

vR̄n+1
1 u, from which yi |= dn>. Conversely, suppose yi |= dn>, that is, there is a point z

such that yiR̄
n
2z. By (ii), yi |= ¬p and, by (12), yi |= Dnen¬p. Therefore, z |= en¬p and

we have a point u such that zR̄n
1u and u |= ¬p. So by (10), u |= e> and we have a point v

such that uR̄1v, from which zR̄n+1
1 v. Using (com), we find a point w such that yiR̄

n+1
1 w and

wR̄n
2v. It follows that yi |= en+1>. @

Finally, the following claim shows that the xn are all distinct, and so the frame F must
be infinite:

Claim 1.3. For every n < ω,

(M, xn) |= en> ∧En+1⊥.

Proof. We proceed by induction on n. For n = 0 the claim holds by the definition of x0

(see (15)).
Now suppose that the claim holds for some n < ω. Then,

(M, xn) |= en> (by IH)

(M, xn) |= dn> (by (16))

(M, yn) |= dn> (by (iii), (com) and (chro))

(M, yn) |= en+1> (by (17))

(M, xn+1) |= en+1> (by (iv), (com) and (chro)).

On the other hand, we also have

(M, xn) |= En+1> (by IH)

(M, xn) |= Dn+1⊥ (by (16))

(M, yn) |= Dn+1⊥ (by (iii), (com) and (chro))

(M, yn) |= En+2⊥ (by (17))

(M, xn+1) |= En+2⊥ (by (iv), (com) and (chro)).
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as required. @
This completes the proof of Theorem 1. @

It is worth noting that the proof above does not go through for ‘products with expanding
domains’ where only one, say, the left commutativity principle holds. ‘Expanding products’
with S4 are closely related to intuitionistic modal logics, e.g., to the transitive analogue
of the Fischer Servi logic [6, 7] the decidability of which has remained open for a decade.
They are also very close to dynamic topological logics interpreted in topological spaces with
continuous functions; see, e.g., [1, 10]. On the one hand, it is not hard to see that ‘expanding
product logics’ can always be reduced to product logics; see [11]. Thus, in principle ‘expanding
products’ can be computationally simpler than the standard ones. However, no example is
known so far where the product of two logics is undecidable, while their ‘expanding product’
is decidable.
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[4] J. Davoren and R. Goré. Bimodal logics for reasoning about continuous dynamics. In
F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, editors, Advances in Modal
Logic, Volume 3, pages 91–112. World Scientific, 2002.

[5] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT Press,
1995.

[6] G. Fischer Servi. Semantics for a class of intuitionistic modal calculi. In M. L. Dalla
Chiara, editor, Italian Studies in the Philosophy of Science, pages 59–72. Reidel, Dor-
drecht, 1980.

[7] G. Fischer Servi. Axiomatizations for some intuitionistic modal logics. Rendiconti di
Matematica di Torino, 42:179–194, 1984.

[8] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal
Logics: Theory and Applications, volume 148 of Studies in Logic. Elsevier, 2003.

[9] D. Gabbay and V. Shehtman. Products of modal logics. Part I. Logic Journal of the
IGPL, 6:73–146, 1998.

9



[10] P. Kremer and G. Mints. Dynamic topological logic. Manuscript, 2004.

[11] A. Kurucz and M. Zakharyaschev. A note on relativised products of modal logics. In
P. Balbiani, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev, editors, Advances in Modal
Logic, Volume 4, pages 221–242. King’s College Publications, 2003.

[12] M. Marx. Complexity of products of modal logics. Journal of Logic and Computation,
9:197–214, 1999.

[13] M. Marx and M. Reynolds. Undecidability of compass logic. Journal of Logic and
Computation, 9:897–914, 1999.

[14] J. Reif and A. Sistla. A multiprocess network logic with temporal and spatial modalities.
Journal of Computer and System Sciences, 30:41–53, 1985.

[15] M. Reynolds. A decidable temporal logic of parallelism. Notre Dame Journal of Formal
Logic, 38:419–436, 1997.

[16] M. Reynolds and M. Zakharyaschev. On the products of linear modal logics. Journal of
Logic and Computation, 11:909–931, 2001.

[17] K. Segerberg. Two-dimensional modal logic. Journal of Philosophical Logic, 2:77–96,
1973.

[18] V. Shehtman. Two-dimensional modal logics. Mathematical Notices of the USSR
Academy of Sciences, 23:417–424, 1978. (Translated from Russian).

[19] F. Wolter and M. Zakharyaschev. Qualitative spatio-temporal representation and rea-
soning: a computational perspective. In G. Lakemeyer and B. Nebel, editors, Exploring
Artifitial Intelligence in the New Millenium, pages 175–216. Morgan Kaufmann, 2002.

10


