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Abstract. We investigate the computational complexity of reasoning over tem-
poral extensions of conceptual data models. The temporal conceptual models we
analyse include the standard UML/EER ISA between entities and relationships,
disjointness and covering, cardinality constraints and their refinements, multi-
plicity and key constraints; in the temporal dimension, we have timestamping,
evolution and transition constraints, as well as lifespan cardinalities. We give a
nearly comprehensive picture of the impact of these constraints on the complex-
ity of reasoning, which can range from NLOGSPACE to undecidability.

1 Introduction

Temporal conceptual data models [25, 24, 14, 15, 19, 4, 23, 12] extend standard concep-
tual schemas with means to visually represent temporal constraints imposed on tempo-
ral database instances. According to the glossary [18], such constraints can be divided
into three categories, to illustrate which we use the temporal data model in Fig. 1.

Timestamping constraints are used to discriminate between those elements of the
model that change over time—they are called temporary—and others that are time-
invariant, or snapshot. Timestamping is realised by marking entities, relationships and
attributes by T (for temporary) or S (for snapshot), which is then translated into a times-
tamping mechanism of the database. In Fig. 1, Employee and Department are snap-
shot entities, Name and PaySlipNumber are snapshot attributes and Member a snapshot
relationship. On the other hand, Manager is a temporary entity, Salary a temporary at-
tribute and WorksOn a temporary relationship. If no timestamping constraint is imposed
on an element, it is left unmarked (e.g., Manages).

Evolution and transition constraints control permissible changes of database states
[13, 23, 7]. For entities, we talk about object migration from one entity to another [17].
Transition constraints presuppose that migration happens in a fixed amount of time.
For example, the dashed arrow marked by TEX in Fig. 1 means that each Project

expires in exactly one year. On the other hand, evolution constraints are qualitative in the
sense that they do not restrict the length of migration. In Fig. 1, an AreaManager will
eventually become a TopManager (the dashed arrow marked by DEV), each Manager

was once an Employee (DEX−), and a Manager cannot be demoted (PEX).
Evolution-related knowledge can also be conveyed through generation relation-

ships [16, 23]. For instance, the generation relationship Propose between Manager
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Fig. 1. An ERVT temporal conceptual data model.

and Project (marked by GP, with an arrow pointing to Project) in Fig. 1 means that
managers may create new projects.

Lifespan cardinality constraints [14, 23, 24] are temporal counterparts of standard
cardinality constraints. While the latter restrict the number of times an object can par-
ticipate in a relationship and are evaluated at each moment of time, lifespan cardinality
constraints are evaluated over the entire existence of the object. According to Fig. 1, for
example, every member of TopManager can manage up to five different projects in its
entire existence, but exactly one project at each moment of time.

The temporal conceptual model ERVT we consider in this paper is a generalisa-
tion of the formalisms introduced in [4, 7]. Apart from the temporal constraints dis-
cussed above, it includes the standard UML/EER constructs: ISA, disjointness (circled
d in Fig. 1) and covering (double arrow) constraints between entities and relationships,
cardinality constraints and their refinements, as well as multiplicity constraints for at-
tributes and key constraints for entities. The language of ERVT and its model-theoretic
semantics are defined in Section 2. This formalisation of temporal conceptual models
also provides us with a rigorous definition of various quality properties of temporal con-
ceptual schemas. For instance, a minimal quality requirement for a schema is its con-
sistency in the sense that its constraints are not contradictory—or, semantically, have
at least one (nonempty) model. We may also need guarantees that some entities and
relationships in the schema are not necessarily empty (at some or all moments of time)
or that one entity (relationship) is not subsumed by another one. To automatically check
such quality properties, it is essential to provide an effective reasoning support during
the construction phase of a temporal conceptual model.

The main aim of this paper is to investigate the impact of various types of tem-
poral and atemporal constraints on the computational complexity of checking quality
properties of ERVT temporal conceptual models. First, we distinguish between the full
(atemporal) EER language ERfull, its fragment ERbool where ISA can only be used for en-
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tities (but not relationships), and the fragment ERref thereof where covering constraints
are not available. Reasoning in these (non-temporal) languages is known to be, respec-
tively, EXPTIME-, NP- and NLOGSPACE-complete [10, 2]. We then combine each of
these EER data models with the temporal constraints discussed above and give a nearly
comprehensive classification of their computational behaviour. Of the obtained com-
plexity results summarised in Fig. 2 we emphasise here the following:

– It is known [1] that timestamping and evolution constrains together cause unde-
cidability of reasoning over ERfull (EXPTIME-completeness, if timestamping is re-
stricted to entities [5]). We show in Section 3, however, that reasoning becomes
only NP-complete if the underlying EER language is restricted to ERbool or ERref.

– Timestamping and transition constraints over ERbool result in NP-complete reason-
ing; the addition of evolution constraints increases the complexity to PSPACE.

– Evolution constraints over ERref give NP-complete reasoning; transition constraints
result in PTIME, while timestamping over the same ERref gives only NLOGSPACE.

– Reasoning with both lifespan cardinalities and timestamping is known to be EXP-
TIME-complete for ERfull [8]. We show that for ERbool restricted to binary relation-
ships the problem becomes NP-complete.

– Reasoning with lifespan cardinalities and transition (or evolution) constraints is
undecidable over both ERfull and ERbool.

We prove these results by exploiting the tight correspondence between conceptual mod-
elling formalisms and description logics (DLs) [10, 2], the family of knowledge repre-
sentation formalisms tailored towards effective reasoning about structured class-based
information [9]. DLs form a basis of the Web Ontology Language OWL,1 which is now
in the process of being standardised by the W3C in its second edition OWL 2. We show
in Section 3 how temporal extensions of DLs (see [21] for a recent survey) can be used
to encode the different temporal constraints and thus to provide complexity results for
reasoning over temporal data models.

2 The Temporal Conceptual Model ERVT

To give a formal foundation to temporal conceptual models, we describe here how to
associate a textual syntax and a model-theoretic semantics with an EER/UML mod-
elling language. In particular, we consider the temporal EER model ERVT generalising
the formalisms of [4, 7] (here VT stands for valid time). ERVT supports timestamp-
ing for entities, attributes and relationships, as well as evolution constraints and lifes-
pan cardinalities. It is upward compatible (by preserving the non-temporal semantics
of conventional (legacy) conceptual schemas) and sanpshot reducible [20, 23] (at each
moment of time, all atemporal constraints are verified by the database described by a
given temporal schema). ERVT is equipped with both textual and graphical syntax along
with a model-theoretic semantics as a temporal extension of the EER semantics [11].
We illustrate the formal definition of ERVT using the schema in Fig. 1.

Throughout, by an X-labelled n-tuple over Y we mean any sequence of the form
〈x1 : y1, . . . , xn : yn〉, where xi ∈ X with xi 6= xj if i 6= j, and yi ∈ Y .

1 http://www.w3.org/2007/OWL/
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A signature is a quintuple L = (E ,R,U ,A,D) consisting of disjoint finite sets E
of entity symbols, R of relationship symbols, U of role symbols, A of attribute sym-
bols and D of domain symbols. Each relationship R ∈ R is assumed to be equipped
with some k ≥ 1, the arity of R, and a k-tuple REL(R) = 〈U1 : E1, . . . , Uk : Ek〉,
where Ei ∈ E and Ui ∈ U with Ui 6= Uj for i 6= j. For example, the binary re-
lationship WorksOn in Fig. 1 has two roles: emp ranging over Employee, and act

ranging over Project. Each entity E ∈ E comes equipped with a tuple ATT(E) =
〈A1 : D1, . . . , Ah : Dh〉, for some h ≥ 0, where Ai ∈ A, Di ∈ D and Ai 6= Aj for
i 6= j. For example, the entity Employee in Fig. 1 has three attributes: Name is of type
String while both PaySlipNumber and Salary are of type Integer. Domain sym-
bols D ∈ D are assumed to be associated with pairwise disjoint countably infinite sets
BD called basic domains. In Fig. 1, basic domains are the set of integer numbers (for
Integer) and the set of strings (for String).

A temporal interpretation of signature L is a structure of the form

I =
(
(Z, <), ∆I , ΛI , {·I(t) | t ∈ Z}

)
,

where (Z, <) is the intended flow of time, ∆I 6= ∅ is the interpretation domain, ΛI =⋃
D∈D Λ

I
D with ΛID ⊆ BD and ∆I ∩ ΛI = ∅ is the active domain and ·I(t), for t ∈ Z,

is the interpretation function which assigns a set EI(t) ⊆ ∆I to each E ∈ E , a set
RI(t) of U-labelled tuples over ∆I to each relationship R ∈ R, and a binary relation
AI(t) ⊆ ∆I × ΛI to each attribute A ∈ A in such a way that the following conditions
are satisfied for all t ∈ Z:

– if ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉, e ∈ EI(t) and (e, a) ∈ AI(t)i , 1 ≤ i ≤ h,
then a ∈ ΛIDi

;
– if REL(R) = 〈U1 : E1, . . . , Uk : Ek〉 and r ∈ RI(t) then r = 〈U1 : e1, . . . , Uk : ek〉

for ei ∈ EI(t)i , 1 ≤ i ≤ k.

An ERVT conceptual schema of signature L is a finite set of constraints imposed on
temporal interpretations I of signature L. We group these constraints as follows.

Generalisation / specialisation hierarchies (with disjointness and covering) on both
entities and relationships:

– E1 ISA E2, for entities E1 and E2, is satisfied in I if EI(t)1 ⊆ EI(t)2 , for all t ∈ Z.
Similarly,R1 ISAR2, for relationshipsR1 andR2, is satisfied in I ifRI(t)1 ⊆ RI(t)2 ,
for all t ∈ Z. In Fig. 1, Manager ISA Employee.

– E1 DISJ E2 and R1 DISJ R2 are satisfied in I if EI(t)1 ∩ EI(t)2 = ∅ and, re-
spectively, RI(t)1 ∩ RI(t)2 = ∅, for all t ∈ Z. In Fig. 1, disjointness is indicated
by a circled d; that Department and InterestGroup are disjoint sub-entities of
OrganisationalUnit is represented by DepartmentISAOrganisationalUnit,
InterestGroup ISA OrganisationalUnit, Department DISJ InterestGroup.

– {E1, . . . , En} COV E and {R1, . . . , Rn} COV R are satisfied in I if, respectively,
EI(t) =

⋃n
i=1E

I(t)
i and RI(t) =

⋃n
i=1R

I(t)
i , for all t ∈ Z. The double arrow in

Fig. 1 indicates that AreaManager and TopManager cover the entity Manager.
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It will be convenient for us to assume that the constraint {E1, . . . , En} COV E always
comes together with the (implied) constraints Ei ISA E and that the ISA-constraints are
transitive (i.e., if E1 ISAE2 and E2 ISAE3 then we have E1 ISAE3 as well). The same
concerns ISA for relationships. These assumptions increase the size of the schema at
most quadratically, which has no effect on our complexity results.
Cardinality, multiplicity and key constraints:

– Let REL(R) = 〈U1 : E1, . . . , Uk : Ek〉. For 1 ≤ i ≤ k, the cardinality constraint
CARDR(R,Ui, Ei) = (α, β) with α ∈ N and β ∈ N ∪ {∞} is satisfied in I if, for
all e ∈ EIi and t ∈ Z,

α ≤ ]{(e1, . . . , ei, . . . , ek) ∈ RI(t) | ei = e} ≤ β. (1)

TopManager in Fig. 1 Manages exactly one Project.

– Let REL(R) = 〈U1 : E1, . . . , Uk : Ek〉 and E′i ISA Ei, for some 1 ≤ i ≤ k. The
refinement REF(R,Ui, E

′
i) = (α, β) of the cardinality constraint is satisfied in I

if (1) holds for all e ∈ (E′i)
I(t) and t ∈ Z.

– Let ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉. For 1 ≤ i ≤ h, the multiplicity constraint
CARDA(Ai, E) = (α, β) with α ∈ N and β ∈ N∪ {∞} is satisfied in I if we have
α ≤ ]{a ∈ ΛIDi

| (e, a) ∈ A
I(t)
i } ≤ β, for all e ∈ EI(t) and t ∈ Z. If the

multiplicity is not given explicitly (as in Fig. 1), it is assumed to be (1, 1).

– Let ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉. The key constraint KEY(E) = Ai is sat-
isfied in I if CARDA(E,Ai) = (1, 1) is satisfied in I and, for all a in ΛI and
t ∈ Z, we have ]{e ∈ ∆I | (e, a) ∈ AI(t)} ≤ 1. The underlined attribute
PaySlipNumber in Fig. 1 is a key for Employee. Though PaySlipNumber in
Fig. 1 is also a time-invariant attribute this is not always the case for key attributes.

If (Ui, Ei) is not an element of REL(R) then CARDR(R,Ui, Ei) is syntactically illegal
(similarly for the other constraints). We assume that all numbers are given in binary.
Tmestamping constraints (TS). The set of entity symbols E can be partitioned into
sets of snapshot (ES), temporary (ET) and implicitly temporal (E I) entities:

– for all E ∈ ES and t ∈ Z, if e ∈ EI(t) then e ∈ EI(t′) for all t′ ∈ Z;
– for all E ∈ ET and t ∈ Z, if e ∈ EI(t) then there is t′ ∈ Z with e /∈ EI(t′);
– implicitly temporal entities have no restrictions on their interpretation.

Similar partitions can be made on the sets of relationship and attribute symbols. In
Fig. 1, Employee is a snapshot entity (marked by S), Manager a temporary entity
(marked by T) and Project an implicitly temporal one (unmarked). PaySlipNumber
and Name are snapshot attributes that do not change their values over time, whereas
Salary changes over time, and so is a temporary attribute. Member is a snapshot rela-
tionship meaning that an employee is always member of the same organisational unit,
while WorksOn is temporary meaning that employees can work on different projects at
different times.
Evolution constraints (EVO) are grouped into dynamic evolution and persistent evolu-
tion constraints. There are three types of dynamic evolution constraints for entities:
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– E1 DEV E2 is satisfied in I if, for each e ∈ EI(t)1 , t ∈ Z, there exists t′ > t such
that e ∈ EI(t

′)
2 and e /∈ EI(t

′)
1 .

– E1 DEX E2 is satisfied in I if, for each e ∈ EI(t)1 , t ∈ Z, there exists t′ > t with
e ∈ EI(t

′)
2 .

– E1 DEX− E2 is satisfied in I if, for each e ∈ EI(t)1 , t ∈ Z, there exists t′ < t such
that e ∈ EI(t

′)
2 .

In Fig. 1, AreaManager DEV TopManager means that every AreaManager will eventu-
ally migrate to TopManager and Manager DEX− Employee means that every Manager

was once an Employee.
There are also three types of persistent evolution constraints for entities:

– E1 PEV E2 is satisfied in I if, for each e ∈ EI(t)1 , t ∈ Z, we have e ∈ EI(t
′)

2 and
e /∈ EI(t

′)
1 , for all t′ > t.

– E1 PEX E2 is satisfied in I if, for each e ∈ EI(t)1 , t ∈ Z, we have e ∈ EI(t
′)

2 , for
all t′ > t.

– E1 PEX− E2 is satisfied in I if, for each e ∈ EI(t)1 , t ∈ Z, we have e ∈ EI(t
′)

2 for
all t′ < t.

In Fig. 1, Manager PEX Manager reflects the persistent status of Manager (once a man-
ager, always a manager).
Transition constraints (TRANS) are of three types:

– E1 TEV E2 is satisfied in I if, for each e ∈ EI(t)1 , t ∈ Z, we have e ∈ EI(t+1)
2 and

e /∈ EI(t+1)
1 .

– E1 TEX E2 is satisfied in I if, for each e ∈ EI(t)1 , t ∈ Z, we have e ∈ EI(t+1)
2 .

– E1 TEX− E2 is satisfied in I if, for each e ∈ EI(t)1 , t ∈ Z, we have e ∈ EI(t−1)2 .

In Fig. 1, Project TEX Ex-Project means that every Project will expire in one year.
Lifespan cardinality constraints (LFC) and their refinements are defined as follows:

– Let REL(R) = 〈U1 : E1, . . . , Uk : Ek〉. For 1 ≤ i ≤ k, the lifespan cardinality
constraint L-CARD(R,Ui, Ei) = (α, β) with α ∈ N and β ∈ N ∪ {∞} is satisfied
in I if, for all t ∈ Z and e ∈ EI(t)i ,

α ≤ ]
[⋃

t′∈Z{(e1, . . . , ei, . . . , ek) ∈ RI(t
′) | ei = e}

]
≤ β. (2)

In Fig. 1, TopManager can Manage at most five distinct Projects throughout the
whole life.

– Let REL(R) = 〈U1 : E1, . . . , Uk : Ek〉 and E′i ISA Ei, for some 1 ≤ i ≤ k. The
refinement L-REF(R,Ui, E

′
i) = (α, β) of the lifespan cardinality constraint is sat-

isfied in I if (2) holds for all t ∈ Z and e ∈ (E′i)
I(t).

Generation relationships (GEN) are a sort of evolution constraints conveyed through
relationships. Suppose R is a binary relationship with REL(R) = 〈s : E1, t : E2〉,
where s and t are two fixed role symbols.
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– A production relationship constraint GP(R) = R′, where R′ is a fresh relationship
with REL(R′) = 〈s : E1, t : E

′
2〉 and E′2 a fresh entity (i.e., R′ do not E′2 occur in

other constraints), is satisfied in I if, for all t ∈ Z, we have EI(t)2 ∩ (E′2)
I(t) = ∅

and if r = 〈e1, e2〉 ∈ (R′)I(t) then e1 ∈ EI(t)1 and e2 ∈ (E′2)
I(t) ∩ EI(t+1)

2 . In
Fig. 1, the fact that Managers can create at most one new Project at a time is
captured by constraining Propose to be a production relationship (marked by GP)
together with the (0, 1) cardinality constraint.

– The transformation relationship constraint GT(R) = R′, where R′ is a fresh rela-
tionship with REL(R′) = 〈s : E1, t : E

′
2〉 and E′2 a fresh entity, is satisfied in I if,

for all t ∈ Z, we have EI(t)2 ∩ (E′2)
I(t) = ∅ and if r = 〈e1, e2〉 ∈ (R′)I(t) then

e1 ∈ EI(t)1 , e2 ∈ (E′2)
I(t) ∩ EI(t+1)

2 and e1 6∈ EI(t
′)

1 , for all t′ > t.

Note that the production relationship constraint GP(R) = R′ can be equivalently re-
placed with the disjointness and evolution constraints E′2 DISJ E2 and E′2 TEX E2.
Similarly, the transformation relationship constraint GT(R) = R′ can be equivalently
replaced with REL(R′) = 〈s : E′1, t : E′2〉,E′2DISJE2,E′2TEXE2,E′1 ISAE1,E′1PEXE′′1
and E′′1 DISJ E1, where E′1 and E′′1 are fresh entities. Therefore, in what follows we do
not consider generation relationship constraints.

2.1 Reasoning Problems

The basic reasoning problems over temporal data models we are concerned with in
this paper are entity, relationship and schema consistency, and subsumption for entities
and relationships. To define these problems, suppose that L = (E ,R,U ,A,D) is a
signature, E1, E2 ∈ E , R1, R2 ∈ R and Σ is an ERVT schema over L. Σ is said to be
consistent if there exists a temporal interpretation I over L satisfying all the constraints
from Σ and such that EI(t) 6= ∅, for some E ∈ E and t ∈ Z. In this case we also say
that I is a model of Σ. The entity E1 (relationship R1) is consistent with respect to Σ
if there exists a model I of Σ such that EI(t)1 6= ∅ (respectively, RI(t)1 6= ∅), for some
t ∈ Z. The entity E1 (relationship R1) is subsumed by the entity E2 (relationship R2)
in Σ if any model of Σ is also a model of E1 ISA E2 (respectively, R1 ISA R2).

It is well known that the reasoning problems of checking schema, entity and re-
lationship consistency, as well as entity and relationship subsumption are reducible to
each other (see [10, 2] for more details). Note, however, that if the covering constructor
is not available, to check schema consistency we have to run, in the worst case, as many
entity satisfiability checks as the number of entities in the schema. In what follows, we
only consider the entity consistency problem.

2.2 Complexity of Reasoning

We investigate the complexity of reasoning not only for full ERVT but also for various
sub-languages obtained by weakening either the EER or the temporal component. We
consider the three EER fragments identified in [2]:

– ERfull contains all the ERR constraints.
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temporal EER component
features ERfull ERbool ERref

TS 2EXPTIME [8] NP [Th.2] NLOGSPACE [Th.5]
TRANS EXPTIME [5] PSPACE [Th.1] in PTIME [Th.4]
TS, TRANS UNDEC. [Th.6] PSPACE [Th.1] in PTIME [Th.4]
EVO EXPTIME [5] NP [Th.2] NP [Th.3]
TS, EVO UNDEC. [1] NP [Th.2] NP [Th.3]
TRANS, EVO EXPTIME [5] PSPACE [Th.1] NP [Th.3]
TS, TRANS, EVO UNDEC. [1] PSPACE [Th.1] NP [Th.3]

TS, LFC 2EXPTIME [8] NP† [Th.7] in NP† [Th.7]
TRANS, LFC UNDEC. [Th.8] UNDEC. [Th.8] ?
EVO, LFC UNDEC. [Th.6] ? ?

(†) This result is proved only for binary relationships.

Fig. 2. Complexity of reasoning in fragments of ERVT.

– ERbool has ISA only between entities; it is also required that attributes do not change
their types: if (A,D) ∈ ATT(E) and (A,D′) ∈ ATT(E′), for E,E′ ∈ E , then
D′ = D.

– ERref is the fragment of ERbool without covering constraints.

Reasoning in these (non-temporal) languages is, respectively, EXPTIME-, NP- and
NLOGSPACE-complete [10, 2].

Fig. 2 summarises the complexity results known in the literature or to be proved
below. Unless otherwise indicated, the complexity bounds are tight.

In the subsequent sections, we denote the languages by explicitly indicating their
EER and temporal components. For example, ERTS,EVO,TRANS,LFC

full denotes the full con-
ceptual modelling language ERVT.

3 Embedding Temporal ERbool/ref in Temporal DL-Litebool/core

We prove the positive (i.e., decidability) results in the table above by reducing reason-
ing over temporal data models based on ERbool and ERref without lifespan cardinality
constraints to reasoning in temporal description logics based on variants of DL-Lite [3,
6] (in fact, these temporal DL-Lite logics were originally designed with the aim of
capturing temporal data models).

The language of TFPXDL-LiteNbool contains concept names A0, A1, . . . , local role
names P0, P1, . . . and rigid role names G0, G1, . . . . Roles R, basic concepts B and
concepts C are defined as follows:

S ::= Pi | Gi, R ::= S | S−,
B ::= ⊥ | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2 | 3FC | 2FC | 3PC | 2PC | ©FC | ©PC,

where q ≥ 1 is a natural number (given in binary). We use the construct C1 t C2 as a
standard Boolean abbreviation, and also set 3∗ C = 3P3FC and 2∗C = 2P2FC.
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A TFPXDL-LiteNbool interpretation I is a function

I(n) =
(
∆I , A

I(n)
0 , . . . , P

I(n)
0 , . . . , G

I(n)
0 , . . .

)
, n ∈ Z,

where ∆I 6= ∅, AI(n)i ⊆ ∆I and P I(n)i , G
I(n)
i ⊆ ∆I ×∆I with GI(n)i = G

I(m)
i , for

all m ∈ Z. The role and concept constructs are interpreted in I as follows:

(S−)I(n) = {(y, x) | (x, y) ∈ SI(n)}, ⊥I(n) = ∅, (¬C)I(n) = ∆I \ CI(n),
(C1 u C2)

I(n) = C
I(n)
1 ∩ CI(n)2 , (≥ q R)I(n) =

{
x | ]{y | (x, y) ∈ RI(n)} ≥ q

}
,

(3FC)
I(n) =

⋃
k>n C

I(k), (3PC)
I(n) =

⋃
k<n C

I(k),

(2FC)
I(n) =

⋂
k>n C

I(k), (2PC)
I(n) =

⋂
k<n C

I(k),

(©FC)
I(n) = CI(n+1), (©PC)

I(n) = CI(n−1).

It follows that (3∗ C)I(n) =
⋃
k∈Z C

I(k) and 2∗C =
⋂
k∈Z C

I(k).
A TFPXDL-LiteNbool TBox, T , is a finite set of concept inclusions (CIs)C1 v C2. (As

usual, instead of two CIs C1 v C2 and C2 v C1 we write C1 ≡ C2.) An interpretation
I is a model of T if CI(n)1 ⊆ C

I(n)
2 for all n ∈ Z and all CIs C1 v C2 in T . A

concept C is satisfiable with respect to T if there exist a model I of T and n ∈ Z
such that CI(n) 6= ∅. Concept satisfiability w.r.t. TFPXDL-LiteNbool TBoxes is PSPACE-
complete [6].

We now show that entity consistency w.r.t. ERTS,TRANS,EVO
bool schemas can be reduced to

concept satisfiability w.r.t. TFPXDL-LiteNbool TBoxes. Note that since ERbool has no ISA
between relationships, without loss of generality we may assume that different relations
cannot share the same role in their RELs.

Suppose we are given an ERTS,TRANS,EVO
bool schema Σ. All entity, relationship and do-

main symbols inΣ will be regarded as concept names in the TFPXDL-LiteNbool TBox TΣ
we are about to construct. All role and attribute symbols in Σ will be regarded as role
names in TΣ . We define TΣ as T 0

Σ ∪ T 1
Σ , where T 0

Σ encodes the atemporal constructs
and T 1

Σ the temporal ones. T 0
Σ contains the following CIs (cf. [2]):

(D) D v ¬C, for C 6= D, where D ∈ D and C ∈ E ∪ R ∪ D;

(A) for ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉 in Σ and 1 ≤ i ≤ h,
– ∃A−i v Di,
– E v ≥ αAi and E v ≤ β Ai if CARDA(Ai, E) = (α, β);

(R) for REL(R) = 〈U1 : E1, . . . , Uk : Rk〉 in Σ and 1 ≤ i ≤ k,
– R ≡ ∃Ui, ≥ 2Ui v ⊥ and ∃U−i v Ei,
– Ei v ≥ αU−i and Ei v ≤ β U−i if CARDR(R,Ui, Ei) = (α, β),
– E′i v ≥ αU

−
i and E′i v ≤ β U

−
i if REF(R,Ui, E

′
i) = (α, β);

(H) E1 v E2, for E1 ISA E2 in Σ,
E1 v ¬E2, for E1 DISJ E2 in Σ,
E ≡

⊔n
i=1Ei, for {E1, . . . , En} COV E in Σ

(concept inclusions E v ≥ αS with α = 0 and E v ≤ β S with β = ∞ are not
included in the TBox). The temporal part T 1

Σ contains the following CIs:
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(TS) E v 2∗E, for snapshot E ∈ ES, and > v 3∗ ¬E, for temporary E ∈ ET,
R v 2∗R and roles Ui, 1 ≤ i ≤ k, are rigid, for snapshot R ∈ RS with REL(R) =
〈U1 : E1, . . . Uk : Ek〉,
the role A is rigid, for snapshot A ∈ AS;

(TRANS) E1 v ©FE2 and E1 v ©F¬E1 for E1 TEV E2,
E1 v ©FE2 for E1 TEX E2,
E1 v ©PE2 for E1 TEX− E2;

(EVO) E1 v 3F (E2u¬E1) forE1 DEVE2, andE1 v 2FE2u2F¬E1 forE1 PEVE2,
E1 v 3FE2 for E1 DEX E2, and E1 v 2FE2 for E1 PEX E2,
E1 v 3PE2 for E1 DEX− E2, and E1 v 2PE2 for E1 PEX− E2.

It should be clear that the size of TΣ is polynomial in the size of Σ.

Lemma 1. An entity E is consistent w.r.t. a ERTS,TRANS,EVO
bool schema Σ if and only if E is

satisfiable w.r.t. to the TFPXDL-LiteNbool TBox TΣ .

The proof of this lemma uses the DL-Lite encoding of atemporal EER schemas [2]
and the following lemma showing that we can treat temporary relationships and at-
tributes as implicitly temporal:

Lemma 2. Let Σ be an ERTS,TRANS,EVO
bool schema. If an entity E is consistent w.r.t. Σ then

it is consistent w.r.t. the schema Σ′, which coincides with Σ except that all implicitly
temporal relationships and attributes of Σ are temporary in Σ′.

Proof. Let R1 be an implicitly temporal relationship in Σ. Mark R1 as a temporary
relationship and denote the resulting schema by Σ1. Let I be a model of Σ such that
EI(t) 6= ∅ for some t ∈ Z. Consider the interpretation J for Σ1 obtained by taking the
disjoint union of two copies of I and then setting

R
J (t)
1 =

{
{〈e′′1 , e′2, . . . , e′k〉, 〈e′1, e′′2 , . . . , e′′k〉 | 〈e1, e2, . . . , ek〉 ∈ R

I(t)
1 }, if t = 0;

{〈e′1, e′2, . . . , e′k〉, 〈e′′1 , e′′2 , . . . , e′′k〉 | 〈e1, e2, . . . , ek〉 ∈ R
I(t)
1 }, otherwise,

where e′i and e′′i are the two copies of ei ∈ ∆I , 1 ≤ i ≤ k. Clearly, R1 is interpreted as
a temporary relationship in J (all other symbols are interpreted in the same way as in
I). So, it remains to show that the REL, CARDR and REF constraints involving R1 are
satisfied in J .

REL(R1) = 〈U1 : E1, . . . , Uk : Ek〉 is satisfied in J for every t 6= 0 since J agrees
with the disjoint union of two copies of I. Consider 〈e′′1 , e′2, . . . , e′k〉 ∈ R

J (0)
1 . By the

construction, 〈e1, e2, . . . , ek〉 ∈ RI(0)1 , from which ei ∈ EI(0)i and e′i, e
′′
i ∈ E

J (0)
i , for

1 ≤ i ≤ k. Let CARDR(R1, Ui, Ei) = (α, β). It is trivially satisfied for t 6= 0. Consider
t = 0 and let e′i ∈ E

J (0)
i , so that ei ∈ EI(0)i . By the construction,

]{〈ẽ1, ẽ2, . . . , ẽk〉 ∈ RJ (0)
1 | ẽi = e′i} = ]{〈ẽ1, ẽ2, . . . , ẽk〉 ∈ RI(0)1 | ẽi = ei}.

As I satisfies the cardinality constraint, J satisfies it as well. Refinement constraints
REF(R,Ui, E

′
i) = (α, β) are considered similarly.

The construction for re-marking implicitly temporal attributes in Σ as temporary
ones is analogous. By repeating the above process sufficiently many times we obtainΣ′

containing neither implicitly temporal relationships nor implicitly temporal attributes.
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Our first application of Lemma 1 is the following:

Theorem 1. Entity consistency for ERTS,TRANS,EVO
bool , EREVO,TRANS

bool , ERTS,TRANS
bool and ERTRANS

bool
is PSPACE-complete.

Proof. The upper bound for ERTS,TRANS,EVO
bool follows from Lemma 1 and PSPACE-com-

pleteness of reasoning in TFPXDL-LiteNbool [6, Theorem 2]. The lower bound for ERTRANS
bool

is an immediate consequence of the observation that entity consistency in this language
(even without relationships and attributes) is capable of encoding satisfiability of propo-
sitional temporal formulas of the form θ ∧ 2∗

∧
i(ϕi → ©Fψi), where θ, the ϕi and ψi

are conjunctions of literals. The latter problem is known to be PSPACE-hard [22].

Next, we observe that only the transition constraints TRANS require the next- and
previous-time operators ©F and ©P in TΣ . Without these operators, satisfiability w.r.t.
TFPXDL-LiteNbool TBoxes becomes NP-complete [6, Theorem 2], and so we obtain the
following:

Theorem 2. Entity consistency for ERTS,EVO
bool , EREVO

bool and ERTS
bool is NP-complete.

Proof. Hardness follows from NP-completeness of entity consistency in ERbool [2].

We consider now temporal extensions of ERref. Note that the Boolean t is needed
in TΣ only to encode the covering, and that u in the translation of DEV can be eas-
ily eliminated, while the 2∗ (3∗) used to encode TS can be rewritten using 2F and
2P (3F ,3P ), e.g., a snapshot entity is translated as E v 2PE and E v 2FE.
This gives us an embedding of ERTS,TRANS,EVO

ref into the fragment TFPXDL-LiteNcore of
TFPXDL-LiteNbool, reasoning in which is NP-complete [6, Theorem 3]. Concept inclu-
sions of TFPXDL-LiteNcore can only be of the form D1 v D2 and D1 uD2 v ⊥, where
the Di are defined by the rule:

D ::= B | 3FB | 3PB | 2FB | 2PB | ©FB | ©PB.

Theorem 3. Entity consistency for ERTS,TRANS,EVO
ref and ERTRANS,EVO

ref is NP-complete.

Proof. The NP-hardness is proved by reduction of the NP-complete 3-colourability
problem: given a graph G = (V,E) and three colours {1, 2, 3}, decide whether there
is an assignment of colours to the vertices in V such that no two vertices sharing the
same edge have the same colour. To reduce this problem to entity consistency in EREVO

ref ,
we need entity symbols O, X1, X2, X3, Y and Ai, for ai ∈ V . One possible way of
encoding the graph G by means of an EREVO

ref schema ΣG is shown in Fig. 3.

Finally, consider ERref extended with timestamping and transition constraints. In
this case, the embedding into TFPXDL-LiteNcore uses only the next- ©F and previous-
time ©P as well as ‘at all moments’ 2∗ and ‘at some moment’ 3∗ temporal operators,
which makes reasoning tractable:

Theorem 4. Entity consistency for ERTS,TRANS
ref is in PTIME.

Proof. The proof can be found in the Appendix.
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Fig. 1. 3-colourability in EREVO
ref : Ai and Aj are disjoint sub-entities of O for each (ai, aj) ∈ E.

1

Fig. 3. 3-colourability in EREVO
ref : Ai, Aj are disjoint sub-entities of O for each (ai, aj) ∈ E.

Now, if we disallow the TRANS constraints (and so the use of ©F and ©P ), then
reasoning becomes even simpler:

Theorem 5. Entity consistency for ERTS
ref is NLOGSPACE-complete.

Proof. The upper bound follows from [6, Theorem 4], while the lower bound from the
fact that already ERref is NLOGSPACE-complete [2].

4 Undecidable Temporal Extensions of ERfull

Theorem 6. Entity consistency for ERTS,TRANS
full and EREVO,LFC

full is undecidable.

Proof. As shown in [2, Lemma 1], atemporal ERfull is capable of expressing the quali-
fied existential and universal restrictions ∃R.C and ∀R.C with their standard descrip-
tion logic semantics (∃R.C)I = {x ∈ ∆I | ∃y ((x, y) ∈ RI ∧ y ∈ CI)} and
(∀R.C)I = {x ∈ ∆I | ∀y ((x, y) ∈ RI → y ∈ CI)}. These constructs together
with the next-time operator on concepts and a single rigid role are enough to encode the
undecidable tiling problem; see, e.g., [5]. It follows that ERTS,TRANS

full is undecidable.
As shown in [1, Theorem 5.2], ERTS,EVO

full is undecidable. A close inspection of the
proof reveals that timestamping is required only to declare one snapshot entity, O, rep-
resenting the whole domain, and one binary snapshot relationship, which is interpreted
as a total functional time-invariant relation. The EVO constraintsOPEXO andOPEX−O
and the ISA constraintsAISAO, for each entity symbolA, makeO a snapshot entity rep-
resenting the whole domain. Cardinality and lifespan cardinality constraints can make
R with REL(R) = (U1 : O,U2 : O) as required (see Fig. 4):

CARDR(R,U1, O) = (1,∞) and L-CARD (R,U1, O) = (0, 1). (3)

It follows that EREVO,LFC
full is undecidable.

5 Lifespan Cardinality Constraints over ERbool

Let us consider now the case when lifespan cardinality constraints are required. Reason-
ing in ERTS,LFC

full is known to be 2EXPTIME-complete [8]. Here we show first that entity
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Fig. 4. Capturing functional total snapshot relationships using L-CARD.

consistency for ERTS,LFC
bool with binary relationships only is NP-complete. As in Section 3,

the upper bound is proved by embedding the schema language into an appropriate tem-
poral description logic, where traditionally only binary relations are used. So far, we
used reification to encode relationships of arbitrary arity; see (R) in Section 3. How-
ever, this encoding does not preserve the meaning of timestamped relationships in the
presence of lifespan cardinality constraints. Indeed, Lemma 2 does not hold anymore
and we cannot disregard the difference between temporary and implicitly temporal re-
lationships (to see this, note that if we constraint the relationship R in the schema in
Fig. 4 to be temporary then the schema becomes inconsistent). On the other hand, the
reification employed in [8] for capturing n-ary temporary relationships for the ERTS,LFC

full
language was based on a temporal extension ofALC and it does not work for the much
simpler temporal DL-Lite logics. That is why we restrict the language to binary rela-
tionships.

The variant of NP-complete temporal DL-Lite we need is called TRUDL-LiteNbool [6].
It uses the ‘universal modalities’ 2∗ and 3∗ on both concepts and roles. The semantics of
temporalised roles 2∗R and 3∗ R (required to encode LFC) is defined as follows:

(2∗R)I(n) =
⋂
k∈ZR

I(k) and (3∗ R)I(n) =
⋃
k∈ZR

I(k).

Given an ERTS,LFC
bool schemaΣ (with binary relations only), we construct a TRUDL-LiteNbool

TBox TΣ in a way similar to the translation in Section 3. As before, all entity and
domain symbols in Σ are regarded as concept names in TΣ . However, the relationship
and attribute symbols in Σ will now be regarded as role names in TΣ ; the role symbols
in Σ will have no counterparts in TΣ . We define TΣ as T 0

Σ ∪T 1
Σ , where T 0

Σ encodes the
atemporal constructs and T 1

Σ the temporal ones. T 0
Σ is defined as in Section 3 with the

exception of (R) which is replaced with the following:

(R′) for REL(R) = 〈U1 : E1, U2 : E2〉,
– ∃R v E1 and ∃R− v E2,
– E1 v ≥ αR and E1 v ≤ β R if CARDR(R,U1, E1) = (α, β),
– E2 v ≥ αR− and E2 v ≤ β R− if CARDR(R,U2, E2) = (α, β),
– E′1 v ≥ αR and E′1 v ≤ β R if REF(R,U1, E

′
1) = (α, β),

– E′2 v ≥ αR− and E′2 v ≤ β R− if REF(R,U2, E
′
2) = (α, β).

The temporal part T 1
Σ contains the concept inclusions:

(TS) > v ¬∃2∗R for temporary R ∈ RT; and the role R is rigid for snapshot R ∈ RS,
> v ¬∃2∗A for temporary A ∈ AT; and the role A is rigid for snapshot A ∈ AS;

(LFC) for REL(R) = 〈U1 : E1, U2 : E2〉,
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– E1 v ≥ α3∗ R and E1 v ≤ β3∗ R if L-CARD(R,U1, E1) = (α, β),
– E2 v ≥ α3∗ R− and E2 v ≤ β3∗ R− if L-CARD(R,U2, E2) = (α, β),
– E′1 v ≥ α3∗ R and E′1 v ≤ β3∗ R if L-REF(R,U1, E

′
1) = (α, β),

– E′2 v ≥ α3∗ R− and E′2 v ≤ β3∗ R− if L-REF(R,U2, E
′
2) = (α, β).

(E v ≥ αS with α = 0 and E v ≤ β S with β =∞ are not included in TΣ .)

Lemma 3. An entity E is consistent w.r.t. an ERTS,LFC
bool schema Σ with binary relation-

ships if and only if E is satisfiable w.r.t. the TRUDL-LiteNbool TBox TΣ .

Proof. The proof is straightforward and left to the reader.

Using Lemma 3 and NP-completeness of TRUDL-LiteNbool [6, Theorem 6], we obtain:

Theorem 7. Entity consistency for ERTS,LFC
bool with binary relationships is NP-complete.

Proof. The lower bound follows immediately from NP-completeness of ERbool [2].

Unfortunately, if we extend ERLFC
bool (with binary relationships) by means of the tran-

sition constraints, the resulting language becomes undecidable.

Theorem 8. Entity consistency for ERTRANS,LFC
bool is undecidable.

Proof. We recall from [6, Theorem 5] that if we slightly modify TRUDL-LiteNbool by re-
placing the operators 2∗ and 3∗ on concepts with©F , and keeping the same temporalised
roles, then the resulting logic TRXDL-LiteNbool is undecidable. A close inspection of the
proof reveals that to prove undecidability we need, apart from a number of concept
names, a single role name P , which occurs in concepts ∃P and ∃P− and two func-
tionality axioms ≥ 23∗ P v ⊥ and ≥ 23∗ P− v ⊥. We show that such a TBox T can
be transformed into an equisatisfiable TBox T ′, which contains the two functionality
axioms and only CIs of the form > v A and A v C, where C is a concept of the form

C ::= A | ¬A | A1 tA2 | ∃P | ∃P− | ©FA,

and A, A1 and A2 are concept names. Indeed, every CI, C1 v C2, can be rewritten
as > v A and A v ¬C1 t C2, where A is a fresh concept name. We transform the
right-hand side of A v ¬C1tC2 into negation normal form and then recursively apply
the following rules:

1. A v C1 u C2 is replaced by A v C1 and A v C2,
2. A v C1 t C2 is replaced by A v A1 tA2, A1 v C1, A2 v C2 (with fresh Ai),
3. A v ©FC is replaced by A v ©FA1 and A1 v C (with fresh A1).

The resulting TBox is the required T ′. Now we show that concept satisfiability w.r.t. T ′
can be reduced to entity consistency w.r.t. the ERTRANS,LFC

bool schema ΣT ′ . The reduction
is similar to the one used in [10]. Concept names in T ′ are regarded as entity symbols in
ΣT ′ ; > is represented by a fresh entity symbol O with A ISAO, for each entity symbol
A; time-invariance of O is expressed by O TEX O and O TEX− O. The role name P
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in T ′ is regarded as a relationship symbol P with REL(P ) = 〈U1 : O,U2 : O〉. The
functionality of 3∗ P and 3∗ P− is enforced by the constraints, cf. (3):

L-CARD(P,U1, O) = (0, 1) and L-CARD (P,U2, O) = (0, 1).

Concept inclusions of the form > v A and A v A1 are encoded as O ISA A and
A ISA A1. For encoding of CIs of the form A v ¬A1 and A v A1 t A2 we refer the
reader to [10, Theorem 5.6]. Additionally, we take two fresh entities E∃P and E∃P−
and extend the schema with the following constraints:

– A ISA E∃P and REF(P,U1, E∃P ) = (1,∞), for A v ∃P in T ′,
– A ISA E∃P− and REF(P,U2, E∃P−) = (1,∞), for A v ∃P− in T ′,
– A TEX A1, for A v ©FA in T ′.

Using a technique similar to [10, Theorem 5.6], one can show that, for each concept
name A, A is satisfiable w.r.t. T ′ if and only if A is consistent w.r.t. ΣT ′ .

6 Conclusion

We have investigated the computational complexity of checking quality properties of
temporal conceptual models such as entity, relationship and schema satisfiability or en-
tity/relationship subsumption. Although ‘negative’ (undecidability) results were known
for temporal extensions of the full (atemporal) UML/EER, we have found fragments
with a much better computational behaviour by considering the language ERbool where
ISA between relationships is disallowed, and its sub-language ERref where covering
constraints are not available. These languages have been extended with timestamp-
ing, evolution and transition constraints, and lifespan cardinalities. We have obtained
a nearly comprehensive classification of the computational complexity of reasoning
over the resulting temporal conceptual models, which is summarised in Table 2. Three
cases involving lifespan cardinalities still remain open. In particular, we do not know
whether ERref with lifespan cardinalities and transition (or evolution) constraints is de-
cidable. Another interesting question we are working on now is whether standard tem-
poral provers, quantified Boolean or SAT solvers can be used for efficient practical
reasoning over temporal conceptual models.
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A Proof of Theorem 4

Theorem 4. Entity consistency for ERTS,TRANS
ref is decidable in PTIME.

Proof. By Lemma 1, the entity consistency problem can be reduced to concept satisfi-
ability with respect to TFPXDL-LiteNbool TBoxes. The latter, in turn, is reducible to the
satisfiability problem in propositional temporal logic; cf. [TR, Theorem 1]. Here we
give a slightly modified version of that reduction (the main difference from [TR] is that
now the reduction is deterministic).

First, we reduce satisfiability of a TFPXDL-LiteNbool KBK = (T ,A) to satisfiability
in the one-variable first-order temporal logic in a way similar to [FR]. For each basic
concept B (6= ⊥), we take a fresh unary predicate B∗(x) and encode T as

T † =
∧

C1vC2∈T

2∗ ∀x
(
C∗1 (x)→ C∗2 (x)

)
,

where the C∗i are the results of replacing each B with B∗(x) (u with ∧, etc.). We
assume that T contains CIs of the form ≥ q R v ≥ q′R, for ≥ q R, ≥ q′R in T such
that q > q′ and there is no q′′ with q > q′′ > q′ and ≥ q′′R in T . We also assume
that T contains ≥ q R ≡ 2∗ ≥ q R if ≥ q R occurs in T , for a rigid role R (i.e., for Gi
or G−i ). To take account of the fact that roles are binary relations, we add to T † the
following formula, for each role name S,

εS = 2∗
(
∃x (∃S)∗(x)↔ ∃x (∃S−)∗(x)

)
(which says that at each moment of time the domain of S is nonempty iff its range is
nonempty). The ABox A is encoded by a conjunction A† of ground atoms of the form
©mB∗(a) and©n(≥ q R)∗(a) in the same way as in [FR]. Thus, K is satisfiable iff the
formula

K† = T † ∧
∧
S

εS ∧ A†

is satisfiable.
The second step of our reduction is based on the observation that if K† is satisfiable

then it can be satisfied in an interpratation such that

(R0) if (∃S)∗(x) is true at some moment (on some domain element) then it is true at 0
(perhaps on a different domain element).

Indeed, if K† is satisfied in I then it is satisfied in the disjoint union I∗ of all In,
n ∈ Z, obtained from I by shifting its time line n moments forward. Therefore, if
(∃S)∗(x) is true at some moment of time on some element, then there is an element
such that (∃S)∗(x) is true on it at 0. It follows then from (R0) that K† is satisfiable iff
the formula

K‡ = T † ∧
∧
S

((
pS → (∃S)∗(dS)

)
∧
(
pS → (∃S−)∗(dS−)

))
∧∧

S

2∗ ∀x
((

(∃S)∗(x)→ 2∗ pS
)
∧
(
(∃S−)∗(x)→ 2∗ pS

))
∧ A†
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is satisfiable, where the pS are fresh propositional variables and the dS and dS− are
fresh constants (informally, the role S, with pS being false at 0, are always empty,
whereas other roles are nonempty at 0, and so are always nonempty). Finally, as K‡
contains no existential quantifiers, it can be regarded as a propositional temporal for-
mula because all the universal quantifiers can be instantiated by all the constants in the
formula, which results only in a polynomial blow-up of K‡.

It turns out that entity consistency in ERTS,TRANS
ref can in fact be reduced to satisfiabil-

ity of propositional temporal formulas of the form∧
Ψ ∧

∧
2∗ Φ ∧

∧
Θ,

where Ψ and Φ are sets of unary and binary Horn clauses of the form

p, p→ p′, ¬p ∨ ¬p′, p→ ©F p
′ or ©F p→ p′

(where p and p′ are propositional variables), 2∗ Φ is the result of prefixing each clause
in Φ with 2∗, and Θ is a set of formulas of the form 2∗ p → 2∗ p′. For such formulas we
have the following satisfiability criterion:

Lemma 4. Let ϕ be a propositional temporal formula of the form
∧
Ψ ∧

∧
2∗ Φ ∧

∧
Θ

and let
Θ0 =

{
p′ | 2∗ p→ 2∗ p′ ∈ Θ and

(∧
Ψ ∧

∧
2∗ Φ
)
|= 2∗ p

}
.

Then ϕ is satisfiable if and only if
∧
Ψ ∧

∧
2∗ Φ ∧

∧
2∗Θ0 is satisfiable.

Proof. (⇒) Let M, 0 |= ϕ. Then M, 0 |=
∧
Ψ ∧

∧
2∗ Φ and, by the definition of Θ0,

M |= 2∗ p, for each 2∗ p→ 2∗ p′ ∈ Θ with p′ ∈ Θ0. Therefore, M |=
∧

2∗Θ0.
(⇐) For each 2∗ p with 2∗ p → 2∗ p′ ∈ Θ and p′ /∈ Θ0, take a model Mp such that

Mp, 0 |=
∧
Ψ ∧

∧
2∗ Φ∧¬2∗ p. Also, take a model M′ satisfying

∧
Ψ ∧

∧
2∗ Φ∧

∧
2∗Θ0

at 0. Construct now a model M by taking the intersection of M′ and the Mp:

M,m |= q iff M′,m |= q and Mp,m |= q, for each 2∗ p,

for all moments m ∈ Z and propositional variables q. Since all clauses in Φ and Ψ are
Horn, M, 0 |=

∧
Ψ∧
∧
2∗ Φ. It also follows from the construction that M |= 2∗ p→ 2∗ p′,

for all 2∗ p→ 2∗ p′ ∈ Θ, and so M, 0 |= ϕ.

Similarly to the proof of [TR, Theorem 3], define consmΦ (Ψ) by taking

cons0Φ(Ψ) = {L | Φ ∪ Ψ |= L},
consmΦ (Ψ) = {L | Φ |= L′ → ©FL,L

′ ∈ consm−1Φ (Ψ)} ∪ {L | Φ |= L} if m ≥ 1,

consmΦ (Ψ) = {L | Φ |= L′ → ©PL,L
′ ∈ consm+1

Φ (Ψ)} ∪ {L | Φ |= L} if m ≤ −1,

where L and L′ are literals (variables or their negations). As in the proof of [TR, Theo-
rem 3], since both Φ and Ψ are essentially 2CNFs, we have p ∈ consmΦ (Ψ) if and only
if M,m |= p, for every M with M, 0 |=

∧
Ψ ∧

∧
2∗ Φ. Therefore, ϕ is satisfiable just

in case
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– for each propositional variable q, there is no m ∈ Z with q,¬q ∈ consmΦ∪Θ0
(Ψ),

where Θ0 is constructed by taking the set of all p′ such that 2∗ p → 2∗ p′ ∈ Θ and there
is no m ∈ Z with ¬p ∈ consmΦ (Ψ).

It remains to note that the set Θ0 can be constructed and the condition above can
be verified in deterministic polynomial time by solving Diophantine equations for the
arithmetic progressions constructed using Unary Finite Automata in the same way as in
the proof of [TR, Theorem 3].
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