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Abstract We discuss the celebrated Blok-Esakia theorem on the isomorphism be-
tween the lattices of extensions of intuitionistic propositional logic and the Grze-
gorczyk modal system. In particular, we present the original algebraic proof of this
theorem found by Blok, and give a brief survey of generalisations of the Blok-Esakia
theorem to extensions of intuitionistic logic with modal operators and coimplication.

In memory of Leo Esakia

1 Introduction

The Blok-Esakia theorem, which was proved independently by the Dutch logician
Wim Blok [6] and the Georgian logician Leo Esakia [13] in 1976, is a jewel of non-
classical mathematical logic. It can be regarded as a culmination of a long sequence
of results, which started in the 1920–30s with attempts to understand the logical as-
pects of Brouwer’s intuitionism by means of classical modal logic and involved such
big names in mathematics and logic as K. Gödel, A.N. Kolmogorov, P.S. Novikov
and A. Tarski. Arguably, it was this direction of research that attracted mathemat-
ical logicians to modal logic rather than the philosophical analysis of modalities
by Lewis and Langford [43]. Moreover, it contributed to establishing close connec-
tions between logic, algebra and topology. (It may be of interest to note that Blok
and Esakia were rather an algebraist and, respectively, a topologist who applied their
results in logic.)
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Blok’s and Esakia’s aims were to understand and describe the structure of
the extremely complex lattices of modal and superintuitionistic (aka intermediate)
logics—or, in algebraic terms, the lattices of varieties of topological Boolean and
Heyting algebras.1 Their theorem provided means for a comparative study of these
lattices and gave a ‘superintuitionistic classification’ of the lattice of modal logics
containing S4. Esakia [16] believed that one could give a complete description of
the structure of all modal companions of an arbitrary superintuitionistic logic. In
particular, he aimed to describe the structure of all modal companions of intuition-
istic propositional logic Int, discovered that the McKinsey system S4.1 was one of
them and that the Grzegorczyk [33] system Grz was the largest one. It is to be noted
that the first to observe and investigate the close relationship between the lattices of
extensions of Int and S4 were Dummett and Lemmon [11], who—in 1959—used
the relational representations of topological Boolean and Heyting algebras that are
known to us as Kripke frames. Maksimova and Rybakov [47] in 1974 laid a solid
algebraic foundation to the area.

This paper is a brief overview of results related to the Blok-Esakia theorem,
which supplements the earlier survey [10]. In Section 2, we discuss the role and
place of the Blok-Esakia theorem in the theory of modal and superintuitionistic log-
ics. In Section 3, we give Blok’s original algebraic proof of this theorem, which has
never been properly published. Section 4 surveys generalisations of the Blok-Esakia
theorem to intuitionistic modal logics, and, in Section 5, we discuss its extension to
intuitionistic logic with coimplication.

2 Modal Companions of Superintuitionistic Logics

According to the (informal) Brouwer-Heyting-Kolmogorov semantics of intuition-
istic logic, a statement is true if it has a proof. Orlov [57] and Gödel [25] formalised
this semantics by means of a modal logic where the formula 2ϕ stands for ‘ϕ is
provable.’ (Novikov [55] read 2ϕ as ‘ϕ is establishable.’) Their modal logic con-
tained classical propositional logic,2 Cl, three properly modal axioms

2(p→ q)→ (2p→2q), 2p→ p, 2p→22p,

and the inference rules ϕ/2ϕ (if we have derived ϕ , then ϕ is provable), modus
ponens and substitution. Gödel [25] observed that the resulting logic is equivalent
to one of the systems in the Lewis and Langford [43] nomenclature, namely S4,
and conjectured that propositional intuitionistic logic Int, as axiomatised by Heyt-
ing [35], can be defined by taking

1 Topological Boolean algebras [60] are also known as closure algebras [48], interior algebras [6]
and S4-algebras. Heyting algebras are called pseudo-Boolean algebras in [60].
2 Actually, Orlov [57] considered a somewhat weaker logic, which can be regarded as the first
relevant system.
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ϕ ∈ Int iff T (ϕ) ∈ S4, (1)

where T (ϕ) is the modal formula obtained by prefixing 2 to every subformula3

of the intuitionistic formula ϕ . This conjecture was proved by McKinsey and
Tarski [49] in 1948; many other proofs of this fundamental result were given later
by Maehara [44], Hacking [34], Schütte [67], Novikov [55], et al.

It has been known since Gödel’s [24] that there are infinitely many (more pre-
cisely, continuum-many [36]) logics between Int and Cl. Moreover, some of them
are ‘constructive’ in the same way as Int, for instance, the Kleene realisability
logic [38, 54, 65] or the Medvedev logic of finite problems [50]. The logics sit-
ting between Int and Cl were called intermediate logics by Umezawa [72, 73]; in
the 1960s, Kuznetsov suggested the name superintuitionistic logics (si-logics, for
short) for all extensions of Int. We denote the class of si-logics by ExtInt. The class
of normal (that is, closed under the necessitation rule ϕ/2ϕ) extensions of S4 will
be denoted by NExtS4. Thus,

ExtInt = {Int+Γ | Γ ⊆LI},
NExtS4 = {S4 ⊕ Σ | Σ ⊆LM},

where LI is the set of propositional (intuitionistic) formulas, LM is the set of modal
formulas, + stands for ‘add the formulas in Γ and take the closure under modus
ponens and substitution,’ while ⊕ also requires the closure under necessitation.

Dummett and Lemmon [11] extended the translation T to the whole class of si-
logics. More precisely, with every si-logic L = Int+Γ they associated the modal
logic τL = S4⊕{T (ϕ) | ϕ ∈ Γ } and showed that L is embedded in τL by T : for
every ϕ ∈LI , we have

ϕ ∈ L iff T (ϕ) ∈ τL. (2)

It turned out, in particular, that τCl = S5, τKC = S4.2, τLC = S4.3, where

Cl = Int+ p∨¬p, S5 = S4⊕ p→23p,

KC = Int+¬p∨¬¬p, S4.2 = S4⊕32p→23p,

LC = Int+(p→ q)∨ (q→ p), S4.3 = S4⊕2(2p→ q)∨2(2q→ p).

One of the questions considered in [11] was to identify those properties of logics
that were preserved under the map τ .

Grzegorczyk [33] found a proper extension of S4 into which Int can also be
embedded by T . His logic is known now as the Grzegorczyk logic

Grz = S4 ⊕ 2(2(p→2p)→ p)→ p.

Thus, we have, for every ϕ ∈LI :

ϕ ∈ Int iff T (ϕ) ∈Grz. (3)

3 There are different variants of the translation T ; in fact, it is enough to prefix 2 to implications
and negations only.
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In fact, according to the Blok-Esakia theorem, Grz is the largest extension of S4 into
which Int is embeddable by T . Esakia [13] observed that Int was also embeddable
into the McKinsey logic S4.1 = S4⊕23p→32p.

A systematic study of the embeddings of si-logics into modal logics was launched
by Maksimova and Rybakov [47], Blok [6] and Esakia [13, 15, 16]. Maksimova and
Rybakov introduced two more maps:

ρ : NExtS4→ ExtInt and σ : ExtInt→ NExtS4

where

– ρM = {ϕ ∈LI | T (ϕ) ∈M}, for every M ∈ NExtS4; Esakia called ρM the su-
perintuitionistic fragment of M, and M a modal companion of ρM;

– σL = τL⊕Grz, for every L ∈ ExtInt (Maksimova and Rybakov [47] used a
somewhat different map, which was later shown to be equivalent to σ by Blok
and Esakia).

Thus, for example, ρGrz = ρS4.1 = Int, τInt = S4, and σInt = Grz.
The results of Maksimova and Rybakov [47], Blok [6] and Esakia [13, 15, 16]

on the relationship between ExtInt and NExtS4 can be summarised as follows:

1. The set of all modal companions of any si-logic L forms the interval

ρ
−1(L) = {M ∈ NExtS4 | τL⊆M ⊆ σL},

with τL being the smallest and σL the greatest modal companions of L in
NExtS4.4 Note that this interval always contains an infinite descending chain
of logics; for some si-logics, it may contain continuum-many modal logics.

2. The map ρ is a lattice homomorphism from NExtS4 onto ExtInt, τ is a lattice
isomorphism from ExtInt into NExtS4, and all the three maps ρ , τ and σ pre-
serve infinite sums and intersections of logics [47].

3. (The Blok-Esakia Theorem) The map σ is a lattice isomorphism from ExtInt
onto NExtGrz.

4. Rybakov [66] also observed that, for any L ∈ ExtInt, the lattice ExtL is isomor-
phically embeddable into ρ−1L. It follows, for example, that there are a contin-
uum of modal companions of Int.

The emerging relationship between the lattices ExtInt and NExtS4 can be described
semantically. Recall (see, e.g., [9, 27] for details and further references) that general
frames for Int are structures of the form F= (W,R,P), where W is a non-empty set,
R a partial order on W and P is a collection of upward closed subsets of W (with
respect to R) that contains /0 and is closed under ∩, ∪ and the operation→ defined
by taking

X → Y = {x ∈W | ∀y(xRy∧ y ∈ X → y ∈ Y )}.

4 That every si-logic L has a greatest modal companion was first established by Maksimova and
Rybakov [47], who gave an answer to an open question by R. Bull; however, they did not observe
that greatest modal companion is actually τL⊕Grz.
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If P contains all upward closed subsets in W , then F is called a Kripke frame and
denoted by F= (W,R). Every si-logic L is characterised by the class FrL of general
frames validating L. General frames for S4 are triples of the form F = (W,R,P),
where R a quasi-order on W 6= /0 and P ⊆ 2W is a Boolean algebra of subsets of W
closed under the operation 2 defined by taking

2X = {x ∈W | ∀y(xRy→ y ∈ X)}.

General frames of the form F= (W,R,2W ) are called Kripke frames and denoted by
F = (W,R). Every logic M ∈ NExtS4 is characterised by the class FrM of general
frames validating M. For example, a Kripke frame F = (W,R) is in FrGrz iff F
does not contain an infinite ascending chain of the form x1Rx2Rx3 . . . with xi 6= xi+1,
i≥ 1. We call such frames Noetherian. The smallest non-Noetherian frame contains
two distinct points accessible from each other; we denote this frame by C2.

Given a frame F = (W,R,P) for S4 and a point x ∈W , we denote by C(x) the
cluster generated by x in F, that is, the set

C(x) = {y ∈W | xRy and yRx}.

(Thus, the frame C2 above is just a two-point cluster.) The skeleton of F is the
general frame ρF = (ρW,ρR,ρP) for Int defined by taking ρX = {C(x) | x ∈ X},
for X ∈ P, C(x)ρRC(y) iff xRy, and

ρP = {ρX | X ∈ P and X =2X}.

Conversely, given a frame F= (W,R,P) for Int, denote by σF the frame (W,R,σP)
for S4, where σP is the Boolean closure of P in 2W . Note that the operator σ does
not preserve Kripke frames as, for example, σ(ω,≤) is not a Kripke frame. An-
other way of converting an intuitionistic frame F = (W,R,P) into a modal one
is by expanding its points into clusters. Given a cardinal κ , 0 < κ ≤ ω , define
τκF = (κW,κR,κP) by replacing every x ∈W with a κ-cluster with the points xi,
for i ∈ κ , and taking κP to be the Boolean closure of {XI | I ⊆ κ and X ∈ σP},
where XI = {xi | i ∈ I and x ∈ X} [79]. One can show that both ρσF and ρτκF are
isomorphic to F.

Given a class K of frames, we set ρK = {ρF | F ∈ K }; a similar notation
will be used for the operators σ and τκ . The logic determined by K is denoted by
LogK (it will always be clear from the context whether it is a si- or modal logic).
Now, we have:

(ρ) for any M ∈ NExtS4 and K , M = LogK iff ρM = LogρK ,
(τ) for any L ∈ ExtInt and K , L = LogK iff τL = Log{τκK | κ < ω},
(σ ) for any L ∈ ExtInt and K , L = LogK iff σL = LogσK .

Thus, we can think of NExtS4 as a two-dimensional structure: in one dimension,
we can change the skeleton of frames and thereby change the si-fragment ρM of
a modal logic M; in the other, we can change the size of clusters in frames, which
keeps the same si-fragment ρM but varies the logic between τρM and σρM.
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A little bit different perspective can be obtained by employing the machinery of
canonical formulas (see [80, 9, 4] for details and further references). For simplicity,
let us imagine that all logics in ExtInt and NExtS4 are subframe logics, that is, their
classes of frames are closed under taking (not necessarily generated) subframes. All
such logics are Kripke complete [17, 78], so we can only deal with Kripke frames.
Given a finite rooted quasi-order F, one can construct a modal formula, α(F), such
that, for any frame G, we have G 6|= α(F) iff F is a p-morphic image of a subframe
of G; in this case we also say that G is sub-reducible to F. A similar intuitionistic
formula, β (F), can be associated with any finite rooted partial order F. The formulas
of the form α(F) and β (F) are called subframe formulas. As shown in [17, 78],
all subframe modal and si-logics can be axiomatised by the respective subframe
formulas. (We note in passing that the subframe si-logics are precisely those logics
in ExtInt that can be axiomatised by purely implicative formulas [78, 81].)

Given a si-logic L = Int+ {β (Fi) | i ∈ I}, every logic M ∈ ρ−1L can be repre-
sented in the form

M = S4⊕{α(Fi) | i ∈ I}⊕{α(F j) | j ∈ J}, (4)

where every frame F j, j ∈ J, contains a cluster with at least two points. The logic
S4⊕{α(Fi) | i ∈ I} is obviously τL, while σL = τL⊕α(C2). The lattice ρ−1Cl of
modal companions of classical logic Cl looks as follows:

τCl = S5⊂ ·· · ⊂ S5⊕α(Cn)⊂ ·· · ⊂ S5⊕α(C2) = Log{C1},

where Cn is a cluster with n points. However, for other si-logics L, the lattice ρ−1L
may be very complex.

Every M ∈ NExtS4 can be represented as

M = M∗⊕ τρM, with M∗ ⊆Grz.

Muravitsky [53] called the logic M∗ a modal component of M and observed that
the modal components of M form a dense sublattice of NExtS4 with M ∩Grz as
its greatest element. The problem whether this sublattice always has a least element
was left open in [53]. We only note here that a least element does exist if M is a
subframe logic.

The semantic characterisations given above can be used to investigate whether
this or that property of logics is preserved under the maps ρ , τ and σ . For example,
all the three maps preserve decidability, the finite model property and the disjunction
property [47, 79]; Kripke completeness is preserved by ρ , τ but not by σ [47, 79,
68]; interpolation is preserved only under ρ [46]. (For more preservation results and
further references consult [10, 9].)

In this paper, we do not consider embeddings of Int and its extensions into the
logic of formal provability (in Peano Arthmetic) GL, found by Boolos [7], Gold-
blatt [26] and Kuznetsov and Muravitskij [42]. A discussion of these results can be
found in [10]; see also the chapters in this volume written by T. Litak and A. Mu-
ravitsky. Artemov [1] analyses the Brouwer-Heyting-Kolmogorov interpretation of
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intuitionistic logic in the context of his logics of proofs LP closely related to S4.
Relationships between first-order si- and modal logics are investigated in [23].

3 An Algebraic Proof of the Blok-Esakia Theorem

In this section, we give a sketch of the algebraic proof of the Blok-Esakia theorem
that was found by Blok in his PhD thesis [6] but never published in a journal. (A
proof using the machinery of canonical formulas was given in [9]; Jerabek [37]
considered modal companions of si-logics from the point of view of inference rules
and also gave a proof of the Blok-Esakia theorem.)

We remind the reader that si- and modal logics are determined by varieties
of Heyting and, respectively, topological Boolean algebras. A Heyting algebra
A = (A,∧,∨,→,⊥,>) extends a bounded distributive lattice (A,∧,∨,⊥,>) with
a binary operator a→ b for the relative pseudo-complement of a with respect to
b; that is, for all c ∈ A, we have a∧ c ≤ b iff c ≤ a→ b. The class of all Heyting
algebras is a variety (equationally definable); we denote it by H. Subvarieties V of
H are in 1–1 correspondence to si-logics: for any class V of Heyting algebras, the
set

L(V ) = {ϕ ∈LI | ∀A ∈ V A |= (ϕ =>)}

is a si-logic and, conversely, for every si-logic L,

V (L) = {A | ∀ϕ ∈ L A |= (ϕ =>)}

is a variety of Heyting algebras. Moreover, L(V (L)) = L and V (L(V )) = V for
any si-logic L and any variety V of Heyting algebras. These results can be proved
directly or using duality between Heyting algebras and general frames for Int: for
any such general frame F= (W,R,P), the set P with operations ∩, ∪, and→ defined
above forms a Heyting algebra denoted by F+. Conversely, for every Heyting alge-
bra A, one can construct a general frame A+ = (W,R,P) whose domain W consists
of all prime filters X in A with XRY iff X ⊆ Y , and V ∈ P iff there exists a ∈ A with
V = {X ∈W | a ∈ X}. Moreover, A is isomorphic to (A+)

+.
A topological Boolean algebra, or an S4-algebra, A = (A,∧,∨,¬,⊥,>,2) ex-

tends a Boolean algebra (A,∧,∨,¬,⊥,>) with a unary operator 2 satisfying the
following equations, for all a,b ∈ A:

2>=>, 2(a∧b) =2a∧2b, 2a≤ a, 2a≤22a.

The class of all S4-algebras is a variety; we denote it by V (S4). Subvarieties V of
V (S4) are in 1–1 correspondence to normal extensions of S4: for any class V of
S4-algebras, the set

L(V ) = {ϕ ∈LM | ∀A ∈ V A |= (ϕ =>)}
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is a logic in NExtS4 and, conversely, for every logic L ∈ NExtS4,

V (L) = {A | ∀ϕ ∈ L A |= (ϕ =>)}

is a variety of S4-algebras. Moreover, L(V (L)) = L and V (L(V )) = V for any
L ∈ NExtS4 and any variety V of S4-algebras. Similarly to the representation of
Heyting algebras by frames for Int above, one can represent S4-algebras by general
frames for S4. For any such general frame F = (W,R,P) for S4, the set P with
the operations intersection, union, complement, and 2 defined above forms an S4-
algebra denoted by F+. Conversely, for every S4-algebra A, one can construct a
general frame A+ = (W,R,P) whose domain W consists of all ultrafilters X in A
with XRY iff {a |2a ∈ X} ⊆Y , and V ∈ P iff there exists a ∈ A with V = {X ∈W |
a ∈ X}. And again, A is isomorphic to (A+)

+.
We are in the position now to describe the relationship between si-logics and

normal extensions of S4 at the level of Heyting and S4-algebras.

From S4-algebras to Heyting algebras. For any S4-algebra A=(A,∧,∨,¬,⊥,>,2),
we define a Heyting algebra ρA by taking

ρA= (ρA,∧,∨,→,⊥,>),

where ρA = {2a | a ∈ A} and a→ b =2(¬a∨b). Alternatively, one can obtain (an
isomorphic copy of) ρA by applying the operation ρ defined for general frames to
A+ and then taking the induced algebra; that is, ρA is isomorphic to (ρ(A+))

+.

From Heyting algebras to S4-algebras. Conversely, with every Heyting algebra A
one can associate an S4-algebra σA in the following way. First, given a bounded
distributive lattice D = (D,∧,∨,⊥,>), we construct the free Boolean extension B
of D with domain B = σD ⊇ D, which is the (uniquely determined) Boolean alge-
bra generated by D such that, for any bounded lattice homomorphism f : D→ C
into a Boolean algebra C, there exists a unique Boolean homomorphism h : B→ C
with h�D = f . Now, given a Heyting algebra A= (A,∧,∨,→,⊥,>), we obtain the
S4-algebra σA by setting in the free Boolean extension of its underlying bounded
distributive lattice

2a =
n∧

i=1

(ai→ bi), for a =
∧n

i=1(¬ai∨bi).

One can show that σA ∈ V (Grz) and that A |= (ϕ =>) iff σA |= (T (ϕ) =>). σA
can also be obtained by first forming A+ = (W,R,P) and then taking the S4-algebra
(W,R,σP)+ induced by (W,R,σP), where σP has been defined above.

Given classes K and H of S4- and Heyting algebras, respectively, we set

ρK = {ρA | A ∈K } and σH = {σA | A ∈H }.

We denote by HK , SK , PK , and PUK the classes of subalgebras, homomorphic
images, products, and ultraproducts of algebras in K , respectively. Recall that a
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class K of algebras (of the same signature) is a variety if, and only if, it is closed
under subalgebras, homomorphic images, and products. Every first-order definable
class (and, hence, every variety) is closed under ultraproducts. The following lemma
can be proved by showing that ρV is closed under subalgebras, homomorphic im-
ages, and products [5, 6]:

Lemma 1. For any variety V of S4-algebras, ρV is a variety of Heyting algebras.

For a variety V of Heyting algebras, σV is not always a variety. We denote by
σ∗V the variety of S4-algebras generated by σV . The following result implies the
Blok-Esakia Theorem:

Theorem 1. (i) For every variety V of Heyting algebras, ρσ∗V = V .
(ii) For every variety V of Grz-algebras, σ∗ρV = V .

For a detailed and instructive exposition of the main steps of the proof of Theo-
rem 1, we refer the reader to [3]. Here we focus on (ii) and, in particular, the follow-
ing technical lemma from Blok’s PhD thesis, which is the key to the algebraic proof
of the Blok-Esakia theorem.

Lemma 2. Let A ∈ V (Grz) be a countable algebra and let B be a subalgebra of A
such that

• ρA⊆ B;
• there exists c ∈ A such that A is the Boolean closure of B∪{c} in A (denoted,

slightly abusing notation, A= [B∪{c}]BA).

Then A ∈ SPUB.

Proof (sketch). We follow the proof given in Blok’s PhD thesis [6]. Suppose that
B = {bi | i < ω} and let U be a non-principal ultrafilter on ω . We remind the reader
of the definition of the ultraproduct ∏i<ω B/U . First, we define an equivalence
relation ∼U by taking g∼U g′ iff {i < ω | g(i) = g′(i)} ∈U , for any g,g′ ∈∏i<ω B,
and set [g] = {g′ | g ∼U g′}. The domain of ∏i<ω B/U is {[g] | g ∈ ∏i<ω B}. For
b ∈ B, let b̂ = (b,b, . . .) ∈∏i<ω B. The map f : B→∏i<ω B/U defined by taking
f (b) = [b̂] is an embedding of the S4-algebra B into the S4-algebra ∏i<ω B/U .
We show that f extends to an embedding f̂ of the S4-algebra A into the S4-algebra
∏i<ω B/U .

For n≥ 0, let

Cn = {bi ∈ B | bi ≤ c, i≤ n}, cn =
∨

b∈Cn

b, ĉ = (cn)n<ω .

First, using a Lemma on the existence of Boolean embeddings from [31] (page 84)
one can show that f can be extended to a Boolean embedding f̂ : A→∏i<ω B/U
with f̂ (c) = [ĉ]. The next, and crucial, part of the proof is to show that f̂ commutes
with the 2-operator. Then A ∈ SPUB, as required. To show that f̂ commutes with
2, let a ∈ A. Then
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a = (c∨d1)∧ (¬c∨d2)∧d3,

for some d1,d2,d3 ∈ B. It suffices to show that

(a) f̂ (2(c∨d1)) =2 f̂ (c∨d1),
(b) f̂ (2(¬c∨d2)) =2 f̂ (¬c∨d2),
(c) f̂ (2d3) =2 f̂ d3,

since then we shall have:

f̂ (2a) = f̂ (2((c∨d1)∧ (¬c∨d2)∧d3))

= f̂ (2(c∨d1)∧2(¬c∨d2)∧2d3)

= f̂ (2(c∨d1))∧ f̂ (2(¬c∨d2))∧ f̂ (2d3)

= 2 f̂ (c∨d1)∧2 f̂ (¬c∨d2)∧2 f̂ d3

= 2 f̂ (a).

Now, (c) follows from d3 ∈ B and the condition that f is a homomorphism. For (a),
let b = d1. We observe that

2(c∨b) =2((2(c∨b)∧¬b)∨b)

because 2(c∨b)∧¬b≤ c. We have 2(c∨b)∧¬b ∈ B since 2(c∨b)∈ ρA⊆ B and
b ∈ B. Hence 2(c∨ b)∧¬b = bn for some n < ω . We obtain cn ≥ bn and, for all
m≥ n,

2(c∨b) =2((2(c∨b)∧¬b)∨b)≤2(cm∨b)≤2(c∨b).

Thus, 2(c∨ b) = 2(cm ∨ b) for all m ≥ n. The equation f̂ (2(c∨ b)) = 2 f̂ (c∨ b)
follows.

To show (b), let b = d2, p = 2(¬c∨ b), and q = 2((c∧¬b)∨ p). We note that
q =2(¬(¬c∨b)∨2(¬c∨b)). We obtain ¬p∧q≤ c∧¬b. Since A ∈ V (Grz), we
obtain, for all x,

A |=2(¬2(¬x∨2x)∨2x) =2x

and, therefore,

2(¬q∨ p) = 2(¬2(¬(¬c∨b)∨2(¬c∨b))∨2(¬c∨b))

= 2(¬c∨b).

We have ¬p∧ q ∈ B since ρA ⊆ B, and so ¬p∧ q = bn for some n < ω . From
¬p∧q≤ c∧¬b we obtain bn ≤ cm∧¬b for all m≥ n, and therefore ¬bn ≥¬cm∨b,
for all m≥ n. Hence

2(¬c∨b) =2(¬q∨ p) =2¬bn ≥2(¬cm∨b)≥2(¬c∨b).

Thus, we obtain 2(¬c∨ b) = 2(¬cm ∨ b) for all m ≥ n. The required equation
f̂ (2(¬c∨b)) =2 f̂ (¬c∨b) follows.
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We are now in the position to show that σ∗ρV = V , for any variety V of Grz-
algebras. The inclusion σ∗ρV ⊆ V is clear. Since any variety is generated by its
finitely generated members, to prove V ⊆ σ∗ρV it is sufficient to show that all
finitely generated A ∈ V are in the variety generated by σρV . Let A ∈ V be gen-
erated by {a1, . . . ,an}. σρA is (isomorphic to) a subalgebra of A. Consider the
sequence

[σρA∪{a1}]BA, . . . , [σρA∪{a1, . . . ,an}]BA = A.

By Lemma 2, it follows by induction that

[σρA∪{a1, . . . ,ai}]BA ∈ V (σρA)⊆ σ
∗
ρV ,

for 1≤ i≤ n. Thus, A ∈ σ∗ρV , as required.

Intuitionistic logic and its extensions can be embedded in modal logics different
from normal extensions of S4 using different translations; for details and references,
the reader can consult [10]. In the remainder of this paper, we briefly consider ex-
tensions of Int with extra operators.

4 Blok-Esakia Theorems for Intuitionistic Modal Logics

Modal extensions of intuitionistic propositional logic are notoriously much harder
to investigate than si-logics and standard (uni)modal logics. In fact, it is already
non-trivial to define what an intuitionistic analogue of a given modal logic should
be—for intuitionistic 2 and 3 are not supposed to be dual. Fischer Servi [18, 20],
for instance, used a generalisation of the translation T to argue that her systems were
‘true’ intuitionistic analogues of classical modal logics. In this section, we briefly
discuss two extensions of the Blok-Esakia theorem to intuitionistic modal logics.

We begin by considering the most obvious basic system IntK2, which is ob-
tained by adding to Int the standard axiom 2(p∧ q)↔ (2p∧2q) and the neces-
sitation inference rule ϕ/2ϕ of the minimal modal logic K (3ϕ can be defined
as ¬2¬ϕ; note, however, that this 3 does not distribute over disjunction). As be-
fore, NExtIntK2 denotes the family of logics of the form IntK2⊕Γ , where Γ is
a set of modal formulas. An example of a logic in this family is Kuznetsov’s [41]
intuitionistic provability logic

I4 = IntK2 ⊕ p→2p ⊕ (2p→ p)→ p ⊕ ((p→ q)→ p)→ (2q→ p),

an intuitionistic analogue of the provability logic GL. (Esakia suggested the name
KM for this logic; see Muravitsky’s chapter in this volume for a detailed account.)
Muravitskij [51, 52] actually proved that the lattices NExtI4 and NExtGL are iso-
morphic (this result and some generalisations are discussed in Litak’s chapter).

A Kripke frame for IntK2 is a structure of the form F = (W,R,R2), where R
is a partial order and R2 a binary relation on W such that R ◦R2 ◦R = R2. The
intuitionistic connectives are interpreted in F by means of R, while 2 is interpreted
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via R2. Algebraically, every logic L ∈ NExtIntK2 corresponds to the variety of
Heyting algebras with modal operators validating L. For more details on algebraic
and relational semantics of these logics and their duality, the reader is referred to
[71, 76].

We embed logics in NExtIntK2 into extensions of the fusion (aka independent
join) S4⊗K of the modal logics S4 and K. Assuming that the necessity operators
in S4 and K are denoted by 2I and 2, respectively, we consider the translation T
which prefixes 2I to every subformula of a given formula in the language of IntK2.
As before, we say that T embeds L ∈ NExtIntK2 into M ∈ NExt(S4⊗K) if, for
every (unimodal) formula ϕ ,

ϕ ∈ L iff T (ϕ) ∈M.

In this case M is called a bimodal companion of L.
For every logic M ∈ NExt(S4⊗K), let

ρM = {ϕ | T (ϕ) ∈M},

and let σ be the map from NExtIntK2 into NExt(S4⊗K) defined by taking

σ(IntK2⊕Γ ) = (Grz⊗K) ⊕ mix ⊕ T (Γ ), where mix =2I22I p↔2p.

Here, the axiom mix reflects the condition R ◦R2 ◦R = R2 on frames for IntK2.
The following extension of the embedding results discussed in Section 2 was proved
in [76, 77]:

Theorem 2. (i) The map ρ is a lattice homomorphism from NExt(S4⊗K) onto
NExtIntK2, which preservs decidability, Kripke completeness, tabularity and the
finite model property.

(ii) Each logic IntK2⊕Γ is embedded by T into any logic M in the interval

(S4⊗K) ⊕ T (Γ ) ⊆ M ⊆ (Grz⊗K) ⊕ mix ⊕ T (Γ ).

(iii) The map σ is an isomorphism from NExtIntK2 onto NExt((Grz⊗K)⊕mix)
preserving the finite model property and tabularity.

Very few general completeness and decidability results are known for intuition-
istic modal logics. The theorem above provides means for obtaining such results for
logics in NExtIntK2. For example, one can show that if a si-logic Int+Γ is decid-
able (Kripke complete or has the finite model property) then the logic IntK2⊕Γ

enjoys the same property (for details and more results, the reader is referred to
[76, 77]).

Intuitionistic modal logics with independent 2 and 3 can be defined as exten-
sions of the basic system IntK23, which contains the axioms and rules of IntK2

as well as the following axioms for 3:

3(p∨q)↔3p∨3q and ¬3⊥.
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Kripke frames for IntK23 are of the form (W,R,R2,R3), where R is a partial order
(interpreting the intuitionistic connectives), while R2 and R3 are binary relations
on W (interpreting, respectively, 2 and 3) such that the following conditions hold:
R◦R2 ◦R = R2 and R−1 ◦R3 ◦R−1 = R3.

Perhaps the most prominent logics in NExtIntK23 were constructed by Prior [59]
and Fischer Servi [19, 20]. Fischer Servi introduced a weak connection between the
necessity and possibility operators in her system

FS = IntK23 ⊕ 3(p→ q)→ (2p→3q) ⊕ (3p→2q)→2(p→ q).

Frames for FS satisfy the following conditions:

xR3y → ∃z(yRz∧ xR2z∧ xR3z),

xR2y → ∃z(xRz∧ xR2y∧ zR3y).

A remarkable feature of FS is that the standard first-order translation not only em-
beds K into classical first-order logic but also FS into intuitionistic first-order logic;
for details, consult [70, 32]. Another important extension of IntK23 is the logic

MIPC = FS ⊕ 2p→ p ⊕ 2p→22p ⊕ 3p→23p ⊕
p→3p ⊕ 33p→3p ⊕ 32p→2p

introduced by Prior [59]. MIPC is an intuitionistic analogue of the modal logic
S5 in the sense that it is equivalent to the one-variable fragment of intuitionistic
first-order logic in the same way as S5 is equivalent to the one-variable fragment
of classical first-order logic. (Note, by the way, that the two-variable intuition-
istic logic is undecidable [40], unlike the corresponding classical logic, which is
NEXPTIME-complete [30].) MIPC is determined by the class of its Kripke frames
(W,R,R2,R3), where R2 is a quasi-order, R3 = R−1

2 and R2 = R◦ (R2∩R3).
The extension of MIPC with the duality axiom ¬2¬p→ 3p [56, 21, 64] is

known as weak S5 and denoted by WS5. Bezhanishvili [2] showed that, for ev-
ery formula ϕ , we have ϕ ∈WS5 iff ¬¬ϕ ∈MIPC (remember that, according to
Glivenko’s theorem, ϕ ∈ Cl iff ¬¬ϕ ∈ Int). Kripke frames (W,R,R2,R3), char-
acterising WS5, are frames for MIPC such that R2 is an equivalence relation on
W .

Bezhanishvili [3] proved an analogue of the Blok-Esakia theorem for WS5 and
the extension of Grz (in the language with 2I) with universal modalities. Modal
logics with universal modalities were introduced by Goranko and Passy [28] who,
for any (classical) modal logic L with 2I , defined the (classical) bimodal logic Lu
with two boxes, 2I and ∀, by taking

Lu = L ⊕ {axioms of S5 for ∀} ⊕ ∀p→2I p.

For example, the logic S4u can be interpreted in topological spaces by regarding
2I as the interior operator and ∀ as ‘for all points in the space.’ Because of this,
S4u plays a prominent role in spatial representation and reasoning; see [22] and
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references therein. By adding to S4u the axiom ∀(3I p→ 2I p)→ ∀p∨∀¬p, we
obtain the logic S4uC which is characterised by connected topological spaces [69].

Bezhanishvili [3] defined a translation T from the language of WS5 to the lan-
guage of S4u by extending the standard Gödel translation of Int into S4 with two
more clauses T (2ϕ) = ∀T (ϕ) and T (3ϕ) = ∃T (ϕ), and showed that this transla-
tion is an embedding of WS5 into both S4u and Grzu. It also embeds the logic

WS5C = WS5 ⊕ 2(p∨¬p)→ (p→2p)

into both S4uC and GrzuC = Grzu⊕∀(3I p→ 2I p)→ ∀p∨∀¬p. Moreover, the
following extension of the Blok-Esakia theorem holds for T :

– the lattice NExtWS5 is isomorphic to the lattice NExtGrzu, and
– the lattice NExtWS5C is isomorphic to the lattice NExtGrzuC.

A Blok-Esakia theorem for the lattice of all extensions of IntK23 is obtained
in [76]. In contrast to the target classical modal logics considered above, the modal
logic constructed in [76] has, in addition to the S4/Grz-modality, a modal operator
that is not normal (but still has a natural Kripke semantics).

5 The Blok-Esakia Theorem for the Heyting-Brouwer Logic

In the 1970s, Cecylia Rauszer suggested the extension of the signature of intuition-
istic logic by means of a new binary operator for coimplication, which we denote
here by →̆. Algebraically, →̆ is defined in terms of intuitionistic disjunction in the
same way as the intuitionistic implication is defined in terms of intuitionistic con-
junction and thus re-establishes, in an extension of intuitionistic logic, the symmetry
between classical disjunction and conjunction that is given up in the signature of in-
tuitionistic logic. The translation T of intuitionistic formulas to modal formulas can
be extended by setting

T (ϕ→̆ψ) =3P(T (ψ)∧¬T (ϕ)),

where 3P is the basic Priorean tense operator for ‘at some time in the past’ that is
interpreted by the inverse of the accessibility relation for the modal 2. To emphasise
symmetry, in this section, we denote the modal operator 2 by 2F for ‘always in
the future.’ It turns out that many properties of the translation T still hold for this
translation of coimplication in Priorean tense logic. In particular, a natural Blok-
Esakia theorem holds. Interestingly, Leo Esakia [12, 14] considered both logics and
made significant contributions to the study of algebras and their dual Kripke frames
for both tense logics and intuitionistic logic extended by coimplication.

The basic logic in the extended language is called Heyting-Brouwer logic, HB,
and is axiomatised by adding to any standard Hilbert-style axiomatisation of Int the
axioms (we set ¬̆= p→̆>)
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p→ (q∨ (q→̆p)), (q→̆p)→ ¬̆(p→ q),

(r→̆(q→̆p))→ ((p∨q)→̆p), ¬(q→̆p)→ (p→ q), ¬(p→̆p),

and the rule (RN): p/¬¬̆p. HB and its first-order extensions have been investigated
in [61, 62, 63].

In the same way as intuitionistic logic, HB is determined by Kripke frames that
are partial orders and in which

– w |= ϕ→̆ψ iff there exists v with vRw, v |= ψ , and v 6|= ϕ .

An algebraic semantics for HB is given by Heyting-Brouwer algebras (aka double
Heyting algebras, biHeyting-algebras, and Semi-Boolean algebras) which have been
investigated in, for example, [62, 39, 45]. For recent progress in proof theory for HB
we refer the reader to [8, 29, 58] (where, mostly, HB is called bi-intuitionistic logic).

The basic tense logic into which HB is embedded by T is called S4.t. It is the
normal bimodal logic with operators 2F and 2P (and their duals 3F and 3P) which
both satisfy the axioms for S4 and the Priorean tense axioms

p→2P3F p and p→2F3P p.

In the same way as S4, the tense logic S4.t is determined by Kripke frames that are
quasi-orders. The following equivalence follows directly from completeness with
respect to Kripke semantics: for all ϕ ,

ϕ ∈HB iff T (ϕ) ∈ S4.t.

We now extend the mappings τ , ρ , and σ between si-logics and normal extensions
of S4 to normal extensions of HB and S4.t. A normal super-Heyting-Brouwer logic
(shb-logic) is an extension of HB that is closed under modus ponens, substitution,
and (RN). By NExtL we denote the lattice of shb-logics containing a shb-logic L.
For a set Γ of intuitionistic formulas with coimplication, we denote by HB⊕Γ

the smallest shb-logic containing Γ . Similarly, a normal extension of S4.t is an
extension of S4.t closed under substitution, modus ponens, p/2P p, and p/2F p. By
NExtL we denote the lattice of normal tense logics containing a normal tense logic
L and by L⊕Γ we denote the smallest normal extension of L containing Γ .

The analogue of Grz in tense logic is given by Grz.t, which is obtained from
S4.t by setting

Grz.t = S4.t⊕{2F(2F(p→2F p)→ p)→ p,2P(2P(p→2P p)→ p)→ p}.

Note that we use the axiom for Grz for the future and the past. Using it for the
future only would give a weaker logic without the finite model property [74] which
is a tense companion of HB but not sufficiently strong for a Blok-Esakia theorem.
We set

– for L = HB⊕Γ , τL = S4.t⊕{T (ϕ) | ϕ ∈ Γ },
– for M ∈ NExtS4.t, ρM = {ϕ | T (ϕ) ∈M},
– for L ∈ NExtHB, σL = Grz.t⊕ τL.
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Now, using an extension of the algebraic methods used in Blok’s thesis, the follow-
ing is shown in [75]:

1. The map ρ is a lattice homomorphism from NExtS4.t onto NExtHB; τ is a lattice
isomorphism from NExtHB into NExtS4.t. The three maps ρ , τ and σ preserve
infinite sums and intersections of logics.

2. The map σ is a lattice isomorphism from NExtHB onto NExtS4.t.

[75] also considers extensions of those mappings and the Blok-Esakia theorem to
non-normal super Heyting-Brouwer logics (logics that are not closed under (RN))
and modal extensions of super Heyting-Brouwer logic. However, in contrast to the
situation for si-logics, the preservation properties of those mappings have not yet
been investigated in any detail.
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ematischen Kolloquiums, 4:39–40, 1933.
26. R. Goldblatt. Arithmetical necessity, provability and intuitionistic logic. Theoria, 44:38–46,

1978.
27. R. Goldblatt. Mathematical modal logic: A view of its evolution. J. Applied Logic, 1(5-

6):309–392, 2003.
28. V. Goranko and S. Passy. Using the universal modality: gains and questions. Journal of Logic

and Computation, 2:5–30, 1992.
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30. E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first order logic.

Bulletin of Symbolic Logic, 3:53–69, 1997.
31. G. Grätzer. Lattice Theory: First Concepts and distributive Lattices. Freeman Co, San Fran-

cisco, 1971.
32. C. Grefe. Fischer Servi’s intuitionistic modal logic has the finite model property. In M. Kracht,

M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic, volume 1,
pages 85–98. CSLI Publications, Stanford, 1998.

33. A. Grzegorczyk. Some relational systems and the associated topological spaces. Fundamenta
Mathematicae, 60:223–231, 1967.

34. I. Hacking. What is strict implication? Journal of Symbolic Logic, 28:51–71, 1963.
35. A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussis-

chen Akademie der Wissenschaften, pages 42–56, 1930.
36. V.A. Jankov. The construction of a sequence of strongly independent superintuitionistic propo-

sitional calculi. Soviet Mathematics Doklady, 9:806–807, 1968.
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