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Willem Blok and modal logic

Abstract. We present our personal view on W.J. Blok’s contribution to modal logic.

Introduction

Willem Johannes Blok started his scientific career in 1973 as an algebraist
with an investigation of varieties of interior (a.k.a. closure or topological
Boolean or topoboolean) algebras. In the years following his PhD in 1976 he
moved on to study more general varieties of modal algebras (and matrices)
and, by the end of the 1970s, this algebraist was recognised by the modal
logic community as one of the most influential modal logicians.

Wim Blok worked on modal algebras till about 1979–80, and over those
seven years he obtained a number of very beautiful and profound results that
had and still have a great impact on the development of the whole discipline
of modal logic.

In this short note we discuss only three areas of modal logic where Wim
Blok’s contribution was, in our opinion, the most significant:

1. splittings of the lattice of normal modal logics and the position of
Kripke incomplete logics in this lattice [3, 4, 6],

2. the relation between modal logics containing S4 and extensions of
intuitionistic propositional logic [1],

3. the position of tabular, pretabular, and locally tabular logics in lattices
of modal logics [1, 6, 8, 10].

As usual in mathematics and logic, it is not only the results themselves that
matter, but also the power and beauty of the methods developed to obtain
them. In this respect, one of the most important achievements of Wim Blok
was a brilliant demonstration of the fact that various techniques and results
that originated in universal algebra can be used to prove significant and deep
theorems in modal logic. Perhaps the most impressive were applications of
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Jónsson’s lemma [25] on subdirectly irreducible algebras in congruence dis-
tributive varieties and McKenzie’s splitting technique [32] to solve problems
formulated in purely logical terms.

It is of interest to observe, however, that Wim Blok himself was not
concerned too much with modal logic while working on his PhD thesis in
1973–75. The 263 page thesis entitled ‘Varieties of interior algebras’ was
published in 1976 and contained just a four page section on the relation to
modal logic. Wim Blok wrote: ‘Although no mention will be made of modal
logic anywhere in this paper, it seems appropriate to say a few words about
the connection of interior algebras with these logics, in order to facilitate an
interpretation of the mathematical results of our work in logical terms.’ In
fact, Wim Blok’s thesis is a purely algebraic study of the structure of the
lattice of subvarieties of the variety of interior algebras. He motivates it by
referring to J.C.C. McKinsey and A. Tarski’s seminal papers ‘The algebra
of topology’ [33] (which showed, among many other things, that the variety
of interior algebras is generated by topological spaces regarded as interior
algebras) and ‘On closed elements in closure algebras’ [34] (which established
connections between interior and Heyting algebras).

Later, in his ‘Reminiscences about modal logic in the seventies’ [9],∗ Wim
Blok himself described the connection between the results obtained in his
PhD thesis and modal logic as follows: ‘It took a while before I saw the
implications for intermediate and modal logics. . . . But it soon emerged
that the new algebraic methods made it possible to settle many questions
concerning logics—at that point concerning extensions of IPC and S4.’ In
this context he also explained why, around 1979, his interest moved from
modal algebras and logics to abstract algebraic logic: “One problem was
understanding the exact connection between the algebraic theory and the
logics—for me these questions are at the root of later work on ‘algebraization’
of logics.” This direction of Wim Blok’s work goes beyond the scope of our
note; the reader is referred to [?] for details. It is worth mentioning, however,Refer to

proper
article in
volume

that throughout his later work in algebra and algebraic logic, he always used
modal logics and algebras as a source of significant examples.

In about 1975, Wim Blok became interested in Kripke semantics for
modal logics, the main alternative to algebraic semantics, through discus-
sions with Johan van Benthem who was also working on his PhD thesis at
that time. Being an algebraist, Wim Blok wanted to understand the differ-
ence between these two semantics. In 1975–76, when he started working in

∗These ‘Reminiscences’ were written by Wim in 2000 for Rob Goldblatt, as a back-
ground for the historical article [22] that Rob was writing at that time.



Willem Blok and modal logic 3

this area, the first examples of Kripke incomplete logics had already been
found, and the main research problem was to investigate the position of
Kripke incomplete logics in the lattice of all normal modal logics [21]. After
some ‘preliminary’ results on uncountable families of logics validating the
same class of Kripke frames [2, 6], Wim Blok observed, through discussions
with Wolfgang Rautenberg, that there might be a connection between the
degree of Kripke incompleteness of a modal logic and the algebraic notion of
splittings [32]. This observation resulted in a comprehensive and surprisingly
transparent classification of normal modal logics according to their degree
of Kripke incompleteness through the notion of splitting logics [3, 4].

As follows from the discussion above, this article could be written either
in the language of algebra or in the language of logic. Given the enormous
impact Wim Blok’s results had on modal logic, we decided to present them
from the modal logic point of view. However, the connections with algebra
and the algebraic techniques applied in their proofs will be also explicitly
formulated.

Modal logics and modal algebras

In this section, we introduce normal modal logics and their connection with
varieties of modal algebras. We also explain Jónsson’s lemma and the notion
of splittings as the basic technical tools of Blok’s work.

The propositional (uni)modal language ML consists of a countable set
of propositional variables p1, p2, . . . , the Boolean connectives ∧ and ¬, and
the modal (necessity) operator 2. Other logical connectives like → and 3

are defined as standard abbreviations. A normal modal logic is a set of
ML-formulas containing all tautologies of classical logic, the distribution
axiom

2(p1 → p2) → (2p1 → 2p2),

and closed under the rules of modus ponens, necessitation ϕ/2ϕ, and uniform
substitution (of formulas instead of variables). The minimal normal modal
logic is denoted by K, and the maximal one, that is, the set of all ML-
formulas, by ML.

If Li, for i ∈ I, are normal modal logics then
⋂

i∈I Li and the closure⊕
i∈I Li of

⋃
i∈I Li under the rules above are normal modal logics as well.

The set NExtK of all normal modal logics (normal extensions of K) forms
a complete distributive lattice with meet ∩, join ⊕, zero K and unit ML
(with ⊆ as the corresponding lattice order).

The lattice NExtK is anti-isomorphic to the lattice of subvarieties of
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the variety of modal algebras, where a modal algebra A = (A,∧,¬,2, 1) is a
Boolean algebra (A,∧,¬, 1) extended with a unary operator 2 such that

21 = 1 and 2(a ∧ b) = 2a ∧2b

for all a, b ∈ A. This anti-isomorphism can be established by regarding the
ML-formulas as terms and showing that a set L ⊆ ML is a normal modal
logic iff there exists a class V of modal algebras such that

L = ThV = {ϕ ∈ML | ∀A ∈ V (A |= ϕ = 1)}. (1)

In other words, the lattice of normal modal logics is isomorphic to the lattice
of equational theories containing the equational theory of all modal algebras.
For a normal modal logic L, we denote by V(L) the variety of L-algebras,
i.e.,

V(L) = {A | ∀ϕ ∈ L (A |= ϕ = 1)}.

Using the same argument as above one can observe that the lattice NExt L
of all normal modal logics containing L is anti-isomorphic to the lattice of
varieties contained in V(L).

This observation makes it possible to use tools and methods of universal
algebra in order to investigate normal modal logics. When Blok started
working on his PhD, two important new techniques had just been introduced:
Jónsson’s lemma [25] for congruence distributive varieties, and McKenzie’s
splitting technique [32] for lattices. As the variety of modal algebras is
congruence distributive, both techniques can be applied to modal logics.

Theorem 1 (Jónsson’s lemma for modal algebras). The subdirectly irre-
ducible members of a variety of modal algebras generated by a class K of
algebras are included in HSPU (K), where H means taking the closure under
homomorphic images, S the closure under subalgebras, and PU means taking
the closure under ultraproducts.

The significance of this result for investigating lattices of normal modal
logics can be seen from the fact that every variety is generated by its sub-
directly irreducible algebras (s.i. algebras, for short), and that the finite s.i.
modal algebras are easily described: they are exactly the algebras induced
by finite rooted Kripke frames.

We remind the reader that a Kripke frame is a structure F = (W,R)
with a nonempty set W of ‘worlds’ (or points) and a binary relation R on
it. The modal algebra induced by F is

F+ = (2W ,∩,−,W, 2),
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where ∩ and − are set-theoretic intersection and complement, and, for every
a ⊆ W ,

2a = {x ∈ W | ∀y ∈ W (xRy → y ∈ a)}.

A Kripke frame F = (W,R) is said to be rooted if there exists r ∈ W , a root
of F, such that, for every w ∈ W , there is an R-path from r to w.

Definition 2 (splittings). Let A be a s.i. modal algebra and L0 a normal
modal logic with A ∈ V(L0). We say that A splits NExt L0 if there exists
a logic L1 such that, for every L ∈ NExt L0, either L ⊇ L1 or A ∈ V(L),
but not both. In this case A is called a spitting algebra of NExtL0, and
L1 is called a splitting logic of NExtL0 and denoted by NExt L0/A. If F

is a Kripke frame such that F+ is a splitting algebra of NExt L0, then the
corresponding splitting logic will also be denoted by NExtL0/F.

One can show that if L0 is generated (as in (1)) by the class of its finite
algebras—in other words, if L0 has the finite model property,—then only
finite s.i. algebras from V(L0) can split NExtL0. It turns out that the s.i.
splitting algebras of NExtL0 and the corresponding splitting logics bear a lot
of information about the structure of NExt L0 and, quite surprisingly, about
seemingly unrelated properties of modal logics such as Kripke completeness.

The first to ‘split lattices of logics,’ even before McKenzie’s general in-
troduction of splittings, was Jankov [24] who associated with every finite
s.i. Heyting algebra a characteristic formula axiomatising the corresponding
splitting logic of the lattice of superintuitionistic logics. The importance of
splittings for studying lattices of modal logics was first recognised by Blok
and Rautenberg [36, 37].

Blok proved in [1] that in NExtS4 every finite s.i. algebra is a splitting
algebra and that many important modal logics containing S4 are (joins of)
splitting logics of NExtS4. For example, the logic S5 is the splitting logic

NExtS4/ ◦
◦
6where ◦

◦
6is the Kripke frame which is the chain of two reflexive

points.
Using Jónsson’s lemma one can show that, in NExtS4, the variety V(L1)

of a splitting logic L1 = NExtS4/A has a particularly transparent descrip-
tion, namely,

V(NExtS4/A) = {B ∈ V(S4) | A /∈ HSB}.

In [7], Blok noticed that for NExtK the situation is different: some finite s.i.
algebras split NExtK, while some finite s.i. algebras do not split. For exam-
ple, the (algebra induced by the) frame consisting of a single irreflexive point
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• splits NExtK, with the corresponding splitting logic being D (the normal
modal logic of all frames (W,R) satisfying the seriality condition ∀x∃y xRy).
On the other hand, the frame consisting of a single reflexive point ◦ does not
split NExtK, which follows from the well-known fact that K is determined
by the class of all finite rooted frames without cycles. A characterisation
of those finite rooted frames that split NExtK is one of the main ingredi-
ents of Blok’s famous theorem on the degree of Kripke incompleteness to be
discussed in the next section.

The degree of Kripke incompleteness

Soon after Kripke semantics for modal logic had been introduced, it was con-
jectured that every normal modal logic is determined by its Kripke frames—
i.e., is Kripke complete. As Blok says in [4], ‘it took eight years before it
[this conjecture] could be decided; in [21] and [39], Fine and Thomason re-
futed it by presenting examples of (finitely axiomatizable) incomplete modal
logics.’ The next challenging problem was to uncover the phenomenon of
Kripke incompleteness. Are incomplete logics exceptional and rare? Where
are they located in the lattice of normal modal logics? In [3, 4, 6], Blok gave
a comprehensive and rather surprising answer to these questions, using the
notion of splittings.

For each normal modal logic L, Fine [21] defined its degree of (Kripke)
incompleteness δ(L) by taking

δ(L) =
∣∣{L′ ∈ NExtK | ∀F (F+ |= L iff F+ |= L′)}

∣∣.
In other words, the degree of incompleteness of L is the number of normal
modal logics which cannot be distinguished from L by means of Kripke
frames. L is said to be intrinsically complete if δ(L) = 1. The results of
Thomason and Fine mentioned above show that there exist normal modal
logics with the degree of incompleteness ≥ 2.

To understand the behaviour of δ basically means to answer the question
how rare Kripke incomplete logics are and what position in the lattice of
normal modal logics they occupy. Blok started his analysis of the function
δ in late 1976 with the remarkable result that all consistent logics in the
lattices NExtK ⊕ 2p → p and NExtK ⊕ 2mp → 2m+1p, m > 0, have
degree of incompleteness 2ℵ0 [6].

Soon afterwards, Blok made the first key observation to obtain a com-
plete description of δ, namely, that a join of splitting logics of NExtK is
intrinsically complete iff it is Kripke complete. We illustrate this observa-
tion by the example of the logic D which, as we have seen above, is Kripke
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complete and can be represented as the splitting logic NExtK/•. Now sup-
pose that there is a logic L 6= D with the same Kripke frames as D. Then
• is not a frame for L. As • splits NExtK with the corresponding splitting
logic D, we must have then L % D. But this leads to a contradiction because
D is Kripke complete, and so there must exist a frame validating D but not
L.

Blok proved in [4] that indeed every join of splitting logics has the finite
model property, hence is Kripke complete, and therefore intrinsically com-
plete. Moreover, he gave a characterisation of splitting frames of NExtK.

Theorem 3. (i) A finite rooted frame F splits NExtK iff it is cycle free.
(ii) Every join of splitting logics of NExtK has the finite model property,

and is intrinsically complete. (K itself can be regarded as the empty join of
splitting logics.)

Conversely, if a consistent logic is not a join of splitting logics then its
degree of incompleteness turns out to be 2ℵ0 . Blok proved this using a
variant of the ‘veiled recession frame’ (the logic of which he had axiomatised
earlier in [5]) and, as usual, a number of subtle applications of Jónsson’s
lemma. Thus, Blok arrived at a complete description of the function δ:

Theorem 4. δ(L) = 2ℵ0 iff L is not a join of splitting logics and L $ ML.
Otherwise, δ(L) = 1.

Another, purely lattice-theoretic, measure of the complexity of NExtK
is given by the function κ which associates with each L ∈ NExtK the
number of its immediate predecessors (or covers). We remind the reader
that L′ ∈ NExtK is called an immediate predecessor of L if L′ $ L and
there does not exist any L′′ such that L′ $ L′′ $ L. It is not difficult to
see that κ(L) ≤ ℵ0, for every join of splitting logics. Using the techniques
similar to those involved in his analysis of the function δ, Blok obtained the
following characterisation of κ:

Theorem 5. κ(L) = 2ℵ0 iff L is not a join of splitting logics and L $ ML.
Otherwise, κ(L) ≤ ℵ0.

It is a pity that the full paper containing these remarkable results has
never been published. Blok first submitted an abstract to the Bulletin of
the Section of Logic of the Polish Academy of Sciences, and was informed
by the editors that ‘publication had been postponed because one could not
believe the results’ [9]. It appeared a bit later [3]. The full paper of sixty
pages was submitted to the Annals of Pure and Applied Logic at about the
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same time. What happened next is explained by Blok in his ‘Reminiscences’
[9]: ‘I received a referee’s report [. . . ] in the summer of 1979 that was quite
favourable but demanded (probably justifiably so) thorough rewriting of
the paper. I did start the rewriting process at one point, but it was never
completed, and the paper remained unpublished.’ Fortunately, good people
(Wolfgang Rautenberg one of them) have kept the preprint [4] and passed it
on to the next generation of modal logicians. Full proofs of Blok’s theorems
are now available in [12, 26] (see also [42, 41]).

These results have had a considerable impact on the research of various
notions of completeness for (multi)modal logics. An analogue of Blok’s theo-
rem for neighbourhood semantics was proved by Chagrova [15]; see also [17].
Wolter [40] investigated the behaviour of the functions δ and κ in the lattice
of so-called subframe logics (which is a sublattice of NExtK). Recently,
Litak [28] investigated the degree of incompleteness for some (algebraically
motivated) weaker notions of completeness.

A recent, quite surprising result of Chagrov (see [41]) applies Blok’s
classification to the following algorithmic problem. Consider a normal modal
logic L represented as L = K⊕ Γ, where Γ is a finite set of modal formulas.
Is there an algorithm which decides, given a modal formula ϕ, whether
L = K⊕ ϕ? In other words, is the axiomatisation problem for L decidable?
Chagrov shows that this problem is decidable for L iff either L = ML or L
is a join of splitting logics.

Modal and superintuitionistic logics: there and back again

Another deep and surprising result obtained by Blok is what is now known
as the Blok–Esakia isomorphism between the lattice NExtGrz of normal
extensions of the Grzegorcsyk logic and the lattice Ext Int of extensions of
intuitionistic propositional logic. In his PhD thesis [1] Blok described it as
‘our slightly unexpected result that the lattice of subvarieties of the variety
of Heyting algebras is isomorphic to the lattice of subvarieties of B∗

i ’ where
B∗

i is a certain variety of interior algebras introduced by Blok which turned
out to be precisely V(Grz).

The historical background of this result of Blok (and actually his whole
PhD thesis) is a really amazing:

• Intuitionistic logic was constructed in the 1920s by Kolmogorov, Gli-
venko, and Heyting as a formalisation of Brouwer’s (1907–08) ideas
of mathematical intuitionism. We denote propositional intuitionistic
logic by Int.
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• Lewis (1918, 1932) introduced his propositional modal logics, in par-
ticular S4, in an attempt to cope with the paradoxes of material im-
plication.

• Hausdorff (1914) and Kuratowski (1922) conceived topological spaces
as a mathematical abstraction for studying such properties of spaces
as compactness, continuity, connectedness.

Who could imagine in the 1920s that these three lines of research were
destined to meet?

• In the 1930–40s, Stone, Tarski, Tsao Chen, and McKinsey showed
that topological spaces provide a sound and complete semantics for
both Int and S4.

• Orlov (1928) and Gödel (1933), trying to give a classical interpretation
of Int, introduced a new modal operator ‘it is provable’ and ended up
with the same modal logic S4.

Orlov and Gödel suggested that Int could be embedded into S4 by the trans-
lation T prefixing the modal box 2 (read as ‘provable’) to every subformula
of an intuitionistic formula. Using the fact that S4 is determined by interior
(a.k.a. topological Boolean) algebras and Int by the algebras of open ele-
ments of interior algebras (known as Heyting or pseudo-Boolean algebras),
McKinsey and Tarski [35] proved that T is indeed an embedding of Int to
S4. Dummett and Lemmon [16] generalised this result to the class Ext Int
of all superintuitionistic logics, si-logics for short (a.k.a. intermediate logics),
by showing that every si-logic L = Int + Γ (where Γ is an arbitrary set of
formulas in the language of Int and + means taking the closure under modus
ponens and substitution) is embedded by the translation T into the modal
logic τ(L) = S4⊕ T (Γ).

Blok started working on his PhD by trying to determine the structure
of the free interior algebra on one generator. This problem (originally posed
by Birkhoff) was suggested to Blok by Ph. Dwinger probably because the
structure of the free Heyting algebra on one generator had been already
described by Rieger (1957) and Nishimura (1960). Blok took a more general
approach and ‘started thinking about equational classes in the context of
varieties of Heyting algebras and closure algebras’ [9]. Independently of
Blok the relationship between the lattices Ext Int and NExtS4 was actively
investigated by Maksimova and Rybakov [31] and Esakia [18, 19] in the
USSR. This research resulted in a nice theory of ‘modal companions of si-
logics’ which is briefly outlined below.
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Say that a modal logic M ∈ NExtS4 is a modal companion of a si-logic
L if L is embedded in M by the translation T in the sense that, for every
intuitionistic formula ϕ,

ϕ ∈ L iff T (ϕ) ∈ M.

If M is a modal companion of L then L is called the si-fragment of M and
denoted by ρM .

Blok (as well as the other researchers mentioned above) observed that,
for every M ∈ NExtS4, we have ρM = {ϕ | T (ϕ) ∈ M}. Moreover, the
variety V(ρM) of Heyting algebras for ρM consists of the algebras of open
elements of the interior algebras from V(M). (In terms of Kripke frames
this operation means collapsing all clusters in S4-frames into single points.)
According to [16], ρτL = L for every si-logic L. So ρ is a surjection. Clearly,
τL is the smallest modal companion of L in NExtS4. The next observation
made by Blok was that

σL = τL⊕2(2(p → 2p) → p) → p

is the largest modal companion of L in NExtS4. The variety V(σL) is
obtained by taking the ‘Boolean closure’ of every Heyting algebra in V(L).
In terms of finite Kripke frames this means simply that we regard every such
frame for Int as a frame for S4.

The logic S4 ⊕ 2(2(p → 2p) → p) → p is known as the Grzegorcsyk
logic [23] and denoted by Grz. Blok proved that Grz is in fact the join of

splittings of NExtS4 by the frames ©2 and ©2
◦
6

, where ©2 is the two-point
cluster.

Thus, the set of modal companions of every consistent si-logic L forms
the interval

ρ−1(L) = {M ∈ NExtS4 | τL ⊆ M ⊆ τL⊕Grz}

which, by the way, contains an infinite descending chain of logics.
This investigation of the relationship between the lattices NExtS4 and

Ext Int culminated in the following result:

Theorem 6. (i) The map ρ is a homomorphism of the lattice NExtS4 onto
the lattice Ext Int.

(ii) The map τ is an isomorphism of Ext Int into NExtS4.
(iii) The map σ is an isomorphism of Ext Int onto NExtGrz.
(iv) All these maps preserve infinite joins and intersections of logics.
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The most surprising and difficult part of this result is item (iii) which is
known as the Blok–Esakia theorem. For further references and details of the
theory of modal companions of si-logics (in particular, preservation theorems
under the maps ρ, τ , and σ) the reader can consult [14, 12].

Tabular, pretabular, and locally tabular logics

Blok always considered his work in modal logic as an investigation of the
structure of lattices of logics rather than individual systems. He wrote in
[8]: ‘Much of the literature on modal logics has been engaged in introducing
new logics and comparing them with existing ones regarding their strength.
Such investigations are really part of the more ambitious attempt to provide
a description of the lattice of all modal logics.’

One of the first questions we usually ask when investigating a lattice of
logics is whether each logic in this lattice is characterised by a finite algebra,
frame, matrix, etc. (which can then be regarded as a finite ‘truth-table’
similar to the truth-table for classical propositional logic). Logics of this
sort are called tabular. In many respects, tabular logics are easy to deal
with. For example, the satisfiability problem for tabular modal or si-logics
is NP-complete. Every modal or si-logic with the finite model property can
be represented as an intersection of tabular logics.

The first results on the tabularity of modal and si-logics were obtained
by Gödel (1932) and Dugundji (1940) who showed that Int and the Lewis
modal logics S1–S5 are not tabular.

The problem of characterising tabular modal and si-logics has become
popular since the mid 1960s, when Dick de Jongh observed (but did not
publish) that all tabular si-logics are finitely axiomatisable. For normal
modal logics this fact follows from a general algebraic result of Baker (1977),
and for quasi-normal modal logics it was proved by Blok and Köhler [11]. It
is not difficult to check that a logic L ∈ NExtK is tabular iff tabn ∈ L for
some n < ω, where tabn is the formula

¬(ϕ1 ∧3(ϕ2 ∧3(ϕ3 ∧ · · · ∧3ϕn) . . . )) ∧
n−1∧
m=0

¬3m(3ϕ1 ∧ . . . ∧3ϕn)

and ϕi = p1 ∧ · · · ∧ pi−1 ∧ ¬pi ∧ pi+1 ∧ · · · ∧ pn.
Using Jónsson’s lemma, Blok proved in his PhD thesis [1] that every tab-

ular logic in NExtS4 is a finite join of splitting logics and has finitely many
immediate predecessors, which are also tabular; later, in [8], he extended
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this result to tabular logics in NExtK4. (The same fact for si-logics was es-
tablished by Kuznetsov [27].) These results mean, in particular, that, given
some fixed tabular logic L and an arbitrary formula ϕ, one can effectively
decide whether K4 ⊕ ϕ = L. Indeed, let L1, . . . , Ln be all the immediate
predecessors of L. Then we have K4 ⊕ ϕ = L iff ϕ ∈ L and ϕ /∈ Li, for
i = 1, . . . , n, which can be effectively checked because all the Li are tabular.

Strange as it may seem, the situation is quite different in NExtK. It
follows from Theorem 5 and the fact that no tabular logic is a join of splitting
logics that every consistent tabular logic in this lattice has a continuum of
immediate predecessors. And by Chagrov’s theorem above, the problem
whether K⊕ ϕ = L, for some fixed tabular logic L, is undecidable.

It seems that Blok [1, 8] was the first to give a correct proof of the
following characterisation of tabular logics in NExtK4: a logic is tabular
iff it has finitely many extensions. This result, wrote Blok in [8], made, in
principle, a description of the upper part of the lattice NExtK4 possible.
Again, in view of Theorem 5 above, nothing like this is possible for NExtK.

The tabularity criteria formulated above are not effective in the sense
that they do not provide us with an algorithm for deciding, given a formula
ϕ, whether, say, the logic K4 ⊕ ϕ is tabular. Moreover, as was shown by
Chagrov (see [12] and references therein) no effective tabularity criterion
exists for large classes like NExtK. However, if we restrict attention to
‘sufficiently strong’ logics, e.g., to the class NExtS4, the tabularity problem
turns out to be decidable. The key idea, proposed by Kuznetsov in the
1970s, is to consider the so-called pretabular logics.

A logic L ∈ NExt L0 is said to be pretabular in the lattice NExt L0, if
L is not tabular but every proper extension of L in NExtL0 is tabular. In
other words, a pretabular logic in NExt L0 is a maximal non-tabular logic in
NExt L0. The fact that every non-tabular logic in NExtK is contained in a
pretabular one follows from Zorn’s lemma.

If there is a simple description of all pretabular logics in a lattice, then
we obtain an effective (modulo the description) tabularity criterion for the
lattice. Indeed, take for definiteness the lattice NExtK4. How to determine,
given a formula ϕ, whether K4⊕ϕ is tabular? We may launch two parallel
processes: one of them generates all derivations in K4 ⊕ ϕ and stops after
finding a derivation of tabn, for some n < ω; another process checks if ϕ
belongs to a pretabular logic in NExtK4 and stops if this is the case. The
termination of the first process means that K4 ⊕ ϕ is tabular, and if the
second one comes to a stop then this logic is not tabular.

Unfortunately, it is impossible to describe in an effective way all pretabu-
lar logics in NExtK4: Blok [8] constructed a continuum of them. However,
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for some smaller lattices such descriptions do exist. Maksimova [30] and
Esakia and Meskhi [20] showed, e.g., that there are only five (rather sim-
ple) pretabular logics in NExtS4. It follows that the tabularity property is
decidable in this lattice.

Blok [8] (see also [13]) characterised all pretabular logics in NExtGL,
where GL = K⊕2(2p → p) → 2p is the Gödel–Löb provability logic:

Theorem 7. The set of pretabular logics in NExtGL is denumerable. It
consists of the logics of the frames Gω and Gω

m,n (for m ≥ 0, n ≥ 1) shown
in Fig. 1.

Using this result one can show that the property of tabularity is decidable
in NExtGL as well (for details see [12]).

The question whether tabularity is decidable in NExtK4 is still open.
One way to a positive solution is opened by yet another important result
Blok obtained in [8] by connecting pretabular and locally tabular logics in
NExtK4.

We remind the reader that a logic L is called locally tabular (or locally
finite) if, for every natural number n ≥ 0, there are only finitely many
pairwise nonequivalent formulas in L built from the variables p1, . . . , pn. In
algebraic terms this means that all finitely generated free algebras (alias
Lindenbaum algebras) for L are finite. It follows immediately that locally
tabular logics have the finite model property, and so are decidable if finitely
axiomatisable.

A nice syntactical and semantical characterisation of locally tabular log-
ics in NExtK4 was obtained by Blok [10, 1] and Maksimova [29] (see also
[38]). Namely, a logic L ∈ NExtK4 is locally tabular iff L has no Kripke
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frames of depth n for some n ≥ 1 iff bdn ∈ L for some n ≥ 1, where

bd1 = 32p1 → p1, bdn+1 = 3(2pn+1 ∧ ¬bdn) → pn+1.

Clearly, every tabular logic is locally tabular.
Suppose now that we have an algorithm for deciding, given a formula ϕ,

whether K4⊕ ϕ is locally tabular. If this hypothetical algorithm says that
L = K4 ⊕ ϕ is not locally tabular then L is not tabular either. Otherwise,
we can effectively find some number n such that bdn ∈ L. And then we
use Blok’s [8] remarkable theorem according to which there are only finitely
many pretabular logics containing bdn. All these pretabular logics have
rather simple Kripke frames which can be easily axiomatised, so all of them
are decidable. What remains to be done is to run Kuznetsov’s algorithm
described above.

Nobody knows, however, whether local tabularity is decidable in NExtK4.
This and other exciting open problems arising from Wim Blok’s work (say, a
characterisation of the degree of Kripke incompleteness for logics in NExtK4)
remain a great challenge for the new generation of modal logicians.
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