
An Introduction to Description Logics
and Query Rewriting

Roman Kontchakov and Michael Zakharyaschev

Department of Computer Science and Information Systems,
Birkbeck, University of London, U.K.

Abstract. This chapter gives an overview of the description logics un-
derlying the OWL 2 Web Ontology Language and its three tractable
profiles, OWL 2 RL, OWL 2 EL and OWL 2 QL. We consider the syntax
and semantics of these description logics as well as main reasoning tasks
and their computational complexity. We also discuss the semantical foun-
dations for first-order and datalog rewritings of conjunctive queries over
knowledge bases given in the OWL 2 profiles, and outline the architecture
of the ontology-based data access system Ontop.

1 Introduction

The first aim of this chapter is to introduce and discuss logic-based formalisms
that underpin the OWL 2 Web Ontology Language and its three tractable pro-
files: RL, EL and QL. OWL 2 is a rather involved language that was designed to
represent knowledge about various domains of interest in a machine-accessible
form. The diagram in Fig. 1, taken from the official W3C document,1 shows the
general structure of OWL 2. As follows from the diagram, there are (at least) five
syntaxes for OWL 2 (various tools can use their own versions). In this chapter,
we consider a sixth one, the language of Description Logic (DL). Although not
covering all the bells and whistles of the full OWL 2, it will allow the reader to
quickly grasp the meaning of the main modelling constructs that OWL 2 pro-
vides. The language of DL is elegant and concise because it stems from the
formalisms that have been developed in mathematical logic since the middle of
the 19th century. It is underpinned by the crystal-clear model-theoretic seman-
tics developed by A. Tarski since the mid 1930s (as shown in the diagram in
Fig. 1, OWL 2 has two semantics: RDF-based2 and Direct Semantics3; the latter
is based on the model-theoretic semantics of DLs).

We will introduce, in Section 2, most important modelling constructs of
OWL 2 and their semantics in terms of the description logics ALCHI and
SROIQ and the model-theoretic semantics. We then explain fundamental rea-
soning tasks such as checking consistency (satisfiability), concept and role sub-
sumption, instance checking and conjunctive query answering, and discuss their

1 www.w3.org/TR/owl2-overview
2 www.w3.org/TR/owl2-rdf-based-semantics
3 www.w3.org/TR/owl2-direct-semantics

Fig. 1. General structure of OWL 2.

computational complexity. Our focus in Section 3 is on the DLs underlying the
three profiles (or fragments) of OWL 2 that were identified by the OWL 2 work-
ing group to ensure tractability of reasoning at the expense of the expressive
power. The Euler diagram in Fig. 2 gives a general overview of the DLs consid-
ered in this chapter (RDFS denotes the RDFS fragment of OWL 2 DL under the
Direct Semantics).

The second aim of the chapter is to explain, in Section 4, the semantical
foundations for first-order and datalog rewritings of conjunctive queries over
knowledge bases given in the OWL 2 profiles. Query rewriting is a fundamental
technique underlying ontology-based data access: it reduces answering queries
over knowledge bases to answering first-order or datalog queries over plain data,
which can be done using conventional database management systems or, re-
spectively, datalog engines. For more expressive languages, ontology-based data
access will be discussed in Chapter 6.

Finally, in Section 5, we give an overview of the architecture of the ontology-
based data access system Ontop4.

2 Description Logics

Description Logic is an area of knowledge representation and reasoning in Ar-
tificial Intelligence and the Semantic Web that studies logic-based formalisms

4 ontop.inf.unibz.it

RDFS

OWL 2 QL OWL 2 EL

OWL 2 RL

OWL 2 DL

Fig. 2. Relationships between the DL fragments of OWL 2.

whose languages operate with concepts to represent classes of individuals in an
application domain, and roles to represent binary relations between the indi-
viduals. Each concrete formalism, called a description logic (DL, for short), is
characterised by its set of constructs that can be used to build complex concepts
and roles from primitive ones.

The zoo of DLs is very big. We begin by defining one particular representa-
tive, which goes in the zoo under the moniker of ALCHI. The example below
shows a simple knowledge base (or an ontology), which is given in the OWL
functional-style syntax (FSS) and the more terse syntax of ALCHI. The reader
is invited to decipher the meaning of the knowledge base before consulting the
formal definitions.

Example 1. The following three statements are written in the FSS:

SubClassOf(ObjectIntersectionOf(Person, (1)

ObjectSomeValuesFrom(takesCourse, Course)), Student),

SubObjectPropertyOf(mastersDegreeFrom, degreeFrom), (2)

SubClassOf(ObjectSomeValuesFrom((3)

ObjectInverseOf(takesCourse), owl:Thing), Course),

ClassAssertion(Student, john), (4)

ObjectPropertyAssertion(takesCourse, john, sw). (5)

Using the syntax of ALCHI, the same statements can be expressed as follows:

Person u ∃takesCourse.Course v Student, (1′)

mastersDegreeFrom v degreeFrom, (2′)

takesCourse−.> v Course, (3′)

Student(john), (4′)

takesCourse(john, sw). (5′)

2.1 Syntax

The alphabet of ALCHI contains three pairwise disjoint and countably infinite
sets: concept names A1, A2, . . . , role names P1, P2, . . . and individual names
a1, a2, AnALCHI role, R, is either a role name Pi or its inverse P−i .ALCHI
concepts, C, are constructed from two special primitive concepts, > (‘top’) and
⊥ (‘bottom’), concept names and roles using the following grammar:

C ::= Ai | > | ⊥ | ¬C | C1 uC2 | C1 tC2 | ∃R.C | ∀R.C.

An ALCHI terminological box (or TBox), T , is a finite set of concept and role
inclusion axioms of the form

C1 v C2 and R1 v R2,

where C1, C2 are concepts and R1, R2 roles. An ALCHI assertion box (or
ABox), A, is a finite set of concept and role assertions of the form

C(a) and R(a, b),

where C is a concept, R a role and a, b are individual names. Given an ABox A,
we denote by ind(A) the set of individual names that occur in A. Taken together,
T and A comprise an ALCHI knowledge base (or KB) K = (T ,A).

Example 1 shows that, in many respects, the DL syntax is simply a less ver-
bose form of the FSS. Thus, v stands for SubClassOf and SubObjectPropertyOf,
and P− for ObjectInverseOf(P); the correspondences for concept constructs are
listed below:

DL FSS

⊥ owl:Nothing
> owl:Thing
¬C ObjectComplementOf(C)
C1 u C2 ObjectIntersectionOf(C1, C2)
C1 t C2 ObjectUnionOf(C1, C2)
∃R.C ObjectSomeValuesFrom(R,C)
∀R.C ObjectAllValuesFrom(R,C)

In Section 2.4, we shall see how most of the OWL constructs can be mapped into
the DL syntax. But before that, we need to define the meaning of DL constructs.

2.2 Semantics

As well as all DLs, ALCHI is equipped with a Tarski-style semantics defined
in terms of interpretations (which are a simplified form of interpretations in the
Direct Semantics of OWL). An interpretation I is a pair (∆I , ·I) that consists
of a non-empty domain of interpretation ∆I and an interpretation function ·I .
The latter assigns

– an element aIi ∈ ∆I to each individual name ai;

– a subset AIi ⊆ ∆I to each concept name Ai;

– a binary relation P Ii ⊆ ∆I ×∆I to each role name Pi.

(In ALCHI, distinct individuals are usually assumed to be interpreted by dis-
tinct domain elements—this is called the unique name assumption, or UNA. In
this chapter we follow the convention and assume the UNA for all of our DLs,
which cannot distinguish between models with and without UNA. Note, how-
ever, that OWL 2 and its three profiles do not adopt the UNA and use constructs
like SameIndividual and DifferentIndividuals instead.) We extend inductively the
interpretation function ·I to complex roles and concepts by taking

(P−)I = { (v, u) | (u, v) ∈ P I },
>I = ∆I ,

⊥I = ∅,
(¬C)I = ∆I \ CI ,

(C1 u C2)I = CI1 ∩ CI2 ,
(C1 t C2)I = CI1 ∪ CI2 ,

(∃R.C)I =
{
u | there is v ∈ CI such that (u, v) ∈ RI

}
,

(∀R.C)I =
{
u | v ∈ CI , for all v with (u, v) ∈ RI

}
.

Having fixed the interpretation of individual names, concepts and roles, we now
define the satisfaction relation |= for inclusions and assertions:

I |= C1 v C2 if and only if CI1 ⊆ CI2 ,
I |= R1 v R2 if and only if RI1 ⊆ RI2 ,
I |= C(a) if and only if aI ∈ CI ,
I |= R(a, b) if and only if (aI , bI) ∈ RI .

We say that an interpretation I is a model of a knowledge base K = (T ,A) if it
satisfies all concept and roles inclusions of T and all concept and role assertions
of A. In this case we write I |= K (and also I |= T and I |= A).

It is to be remembered that (unlike databases) the choice of domains and
interpretation functions is not fixed in the DL semantics, so that every knowledge
base can have many models. This reflects the open world assumption, or OWA,
adopted in DL (and OWL), according to which no single agent can possess
complete knowledge. Thus, we have to consider all possible assignments of truth-
values to assertions—as long as they do not contradict the given knowledge base.
(Databases adopt the closed world assumption, or CWA, that defines everything
unknown as false.)

Example 2. Consider the following knowledge base K = (T ,A):

T = { GraduateStudent v Student,

GraduateStudent v ∃takesCourse.GraduateCourse },
A = { GraduateStudent(john) }.

Denote by I1 an interpretation with domain ∆I1 = {john, sw} such that

johnI1 = john,

GraduateStudentI1 = {john}, StudentI1 = {john},
GraduateCourseI1 = {sw}, takesCourseI1 = {(john, sw)}.

The reader can readily check that I1 is a model of K; that is, the ‘world’ de-
scribed by I1 satisfies the knowledge and data given in K. Now, take another
interpretation I2 with domain ∆I2 = {a} in which

johnI2 = a,

GraduateStudentI2 = {a}, StudentI2 = {a},
GraduateCourseI2 = {a}, takesCourseI2 = {(a, a)}.

This interpretation does not make much sense from the modelling point of view
(because a takes course a in the world described by I2). Nevertheless, I2 satisfies
all of the inclusions in T and assertions in A, and so is a model of K. Yet another
interpretation, I3, with domain ∆I3 = {john} and

johnI3 = john,

GraduateStudentI3 = {john}, StudentI3 = {john},
GraduateCourseI3 = ∅, takesCourseI3 = ∅

satisfies the assertions in A and the first concept inclusion in T but fails to
satisfy the second concept inclusion, and so is not a model of K.

Intuitively, everything that takes place in each and every model of a knowl-
edge base is a logical consequence of the KB, not necessarily explicitly presented
in it. Finding logical consequences is usually referred to as reasoning.

2.3 Reasoning Problems

A very basic reasoning problem is to decide whether a given knowledge base is
consistent in the sense that it does not imply mutually contradicting statements.
Formally, we can call a knowledge base K satisfiable (or consistent) if there exists
at least one model of K (which is obviously enough to guarantee that K contains
no contradictions).

Example 3. Let T be a TBox containing the following concept inclusions:

UndergraduateStudent v ∀takesCourse.UndergraduateCourse,

UndergraduateCourse u GraduateCourse v ⊥,

and A an ABox with the following assertions:

UndergraduateStudent(john),

takesCourse(john, sw),

GraduateCourse(sw).

If we assume that (T ,A) has a model, then the undergraduate student John
in it will only be able to take undergraduate courses that are not graduate
courses such as SW. However, according to the ABox, John takes SW, which is
a contradiction. Thus, (T ,A) is inconsistent.

Another important reasoning problem is entailment. We say that a concept
inclusion C1 v C2 is entailed by a knowledge base K and write K |= C1 v C2 if
I |= C1 v C2 for all models I of K (entailment for role inclusions and concept
and role assertions is defined similarly).

Example 4. Consider a TBox T with the following two concept inclusions:

∀takesCourse.UndergraduateCourse v UndergraduateStudent,

FirstYearStudent v ∃takesCourse.UndergraduateCourse.

In the model I1 of T given below, FirstYearStudent v UndergraduateStudent
holds true. However, T does not entail this concept inclusion because there is
another model, I2, where it is not satisfied:

∆I1 = {j, s}, ∆I2 = {j, s, `},
takesCourseI1 = {(j, s)}, takesCourseI2 = {(j, s), (j, `)},

FirstYearStudentI1 = {j}, FirstYearStudentI2 = {j},
UndergraduateStudentI1 = {j}, UndergraduateStudentI2 = ∅,
UndergraduateCourseI1 = {s}, UndergraduateCourseI2 = {s}.

Intuitively, in I1, the individual j is a first-year student who takes only one
undergraduate course, and so must be an undergraduate student (to satisfy the
first concept inclusion). In contrast, in I2, the individual j also takes another
course, `, which is not an undergraduate course, and therefore, j does not have
to be an undergraduate student (still satisfying the first concept inclusion); see
Fig. 3.

If C1 v C2 is entailed by K, then we also say that C2 subsumes C1 with
respect to K (or that C1 is subsumed by C2 with respect to K). We note in
passing that if K is inconsistent then any concept is subsumed by any other

j

FirstYearStudent
UndergraduateStudent

s
UndergraduateCourse

takesCourse

I1

j
FirstYearStudent

s
UndergraduateCourse

`

takesCourse takesCourse

I2

Fig. 3. Interpretations for T in Example 4.

concept: indeed, an arbitrary inclusion C1 v C2 is trivially true in every model
of K simply because K has no models. The following proposition, the proof of
which is left to the reader as a simple exercise, shows that concept subsumption
is in fact reducible to consistency.

Proposition 5. (T ,A) |= C1 v C2 if and only if (T ,A ∪ {C1(a),¬C2(a)}) is
not satisfiable, for a fresh individual name a (not occurring in A).

(Note as a warning that not every DL allows negation and complex concepts
in the ABoxes, in which case the reduction may be not so trivial.)

If C(a) is entailed by K (that is, C(a) holds in every model of K), then we also
say that a is an instance of C with respect to K. The problem of checking whether
a is an instance of a given C with respect to K is called instance checking. This
problem is also reducible to knowledge base consistency (provided that complex
concepts are allowed in the ABoxes):

Proposition 6. (T ,A) |= C(a) if and only if (T ,A∪{¬C(a)}) is not satisfiable.

A more general reasoning task is answering conjunctive queries over knowl-
edge bases. A conjunctive query (CQ for short) q(x) is an expression of the form
∃y ϕ(x,y), where ϕ(x,y) is a conjunction of atoms such as A(z) and P (z1, z2),
for a concept name A, role name P and terms z, z1 and z2, which are individual
names or variables from x and y. The variables xi in x = (x1, . . . , xn) are called
answer variables and the variables in y existentially quantified variables. Given
a tuple a = (a1, . . . , an) of individual names from A, we denote by q(a) the
result of replacing each answer variable xi in ∃y ϕ(x,y) with the respective ai
from a. A tuple a of individual names from A is a certain answer to q(x) over
(T ,A) if, for any model I of (T ,A), the sentence q(a) is true in I (I |= q(a),
in symbols). We write (T ,A) |= q(a) to indicate that a is a certain answer to
q(x) over (T ,A). A CQ q without answer variables is called Boolean, in which
case a certain answer to q over (T ,A) is ‘yes’ if (T ,A) |= q and ‘no’ otherwise.
The problem of answering Boolean CQs is known as CQ entailment.

Example 7. (Andrea’s example (Schaerf, 1993)) Suppose a TBox T contains the
inclusions

> v Male t Female, Male u Female v ⊥

A

john

andrea
Female

susan
Female

bill Male

fri
en
d friend

loves

lo
ves

A

john

andrea
Male

susan
Female

bill Male

fri
en
d friend

loves

lo
ves
Fig. 4. Two representative models of (T ,A) in Example 7.

and an ABox A contains the assertions

friend(john, susan), friend(john, andrea),

loves(susan, andrea), loves(andrea, bill),

Female(susan), Male(bill).

Consider the CQ

q(x) = ∃y, z
(
friend(x, y) ∧ Female(y) ∧ loves(y, z) ∧Male(z)

)
,

which asks to find every individual (in the ABox) with a female friend who is in
love with a male. Note that the same CQ can be expressed in the query language
SPARQL5 as follows:

SELECT ?x

WHERE {
?x :friend ?y.

?y a :Female.

?y :loves ?z.

?z a :Male.

}

(Here a is an abbreviation of rdf:type and can be read as ‘is a.’) We invite the
reader to check that the only certain answer to q(x) over (T ,A) is x 7→ john.
(Hint: in every model I of (T ,A), either andreaI ∈ FemaleI or andreaI ∈ MaleI ;
see Fig. 4.)

Observe that this particular CQ q(x) can also be represented as an instance
query C(x), where C is the complex concept

∃friend.(Female u ∃loves.Male).

5 www.w3.org/TR/sparql11-query

It is readily seen that, for any individual name a, we have (T ,A) |= C(a) if and
only if (T ,A) |= q(a). However, in general, CQs are not necessarily tree-shaped,
can contain more than one answer variable, and so are more expressive than
instance queries.

2.4 From OWL to DL

The language of OWL 2 contains more constructs than any of the DLs, with
many of these constructs being just shortcuts for certain DL expressions. For
example,

ObjectPropertyDomain(takesCourse, Student)

can be represented as the concept inclusion

∃takesCourse.> v Student.

Similarly,
ObjectPropertyRange(takesCourse, Course)

can be represented as
∃takesCourse−.> v Course.

Note that the latter concept inclusion can only be written in the DLs with
inverse roles (such as the RL or QL profiles of OWL 2 to be discussed below).
If, however, inverse roles are not available in a DL (for instance, ALC), then one
can use a universal restriction:

> v ∀takesCourse.Course.

One can verify that the two concept inclusions are equivalent in the sense that
they are satisfied by precisely the same interpretations. We have collected stan-
dard equivalencies of this sort in the following proposition:

Proposition 8. The following pairs of (sets of) concept inclusions have the
same models:

C1 v ∀P.C2 and ∃P−.C1 v C2, (6)

C1 t C2 v C and {Ci v C | i = 1, 2}, (7)

C v C1 u C2 and {C v Ci | i = 1, 2}, (8)

C1 v ¬C2 and C1 u C2 v ⊥. (9)

OWL 2 also has a shortcut for equivalent classes and properties: Equivalent-
Classes, EquivalentObjectProperties and EquivalentDataProperties. These can be
represented using v: for example,

EquivalentClasses(C1, C2, . . . , Cn)

can be written in the DL parlance as n concept inclusions

C1 v C2, C2 v C3, . . . , Cn−1 v Cn, Cn v C1.

Another way is to use a common DL abbreviation ≡, which is defined by taking
A ≡ B if and only if A v B and B v A.

Equivalence (9) provides two alternative ways of expressing disjointness of
concepts C1 and C2 in DL. OWL 2 offers a shortcut for pairwise disjointness of
n classes:

DisjointClasses(C1, C2, . . . , Cn),

which can be represented in DLs as n(n− 1)/2 concept inclusions

Ci u Cj v ⊥, for all i, j with 1 ≤ i < j ≤ n.

Yet another shortcut in OWL 2 allows one to say that class C is the disjoint
union of C1, . . . , Cn:

DisjointUnion(C,C1, C2, . . . , Cn),

which combines pairwise disjointness of C1, . . . , Cn (see above) with

C ≡ C1 t · · · t Cn.

Object properties can be declared symmetric in OWL 2 by using axioms of
the form SymmetricObjectProperty(P). The same effect can be achieved in DLs
with the help of the role inclusion

P− v P.

More expressive description logics contain additional constructs such as num-
ber restrictions, ∃R.Self, transitive roles, role chains, etc. In particular, the DL
subset of OWL 2, known as OWL 2 DL, is based on the description logic called
SROIQ (Horrocks et al., 2006).

2.5 Complexity of Reasoning

Having formulated the reasoning problems, we are facing the following funda-
mental questions:

– Are these problems decidable in the sense that there exist algorithms which
always halt and return correct answers?

– How complex are such algorithms in terms of the time or memory space they
require?

– Are these algorithms (reasonably) efficient in real-world applications?

The next theorem, which is a compilation of various results from (Tobies, 2001;
Eiter et al., 2009; Horrocks et al., 2006),6 gives answers to the first two questions:

Theorem 9. (i) The satisfiability problem is ExpTime-complete for ALCHI
KBs and N2ExpTime-complete for SROIQ KBs.

(ii) Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHI and SROIQ KBs.

(iii) CQ entailment over ALCHI KBs is 2ExpTime-complete.

6 See also the DL Complexity Navigator at www.cs.man.ac.uk/~ezolin/dl.

Note that full OWL 2 under the RDF-based semantics is undecidable (Motik,
2007), while OWL 2 DL under the direct (model-theoretic) semantics is decid-
able. There is, however, a price to pay for the additional expressive power of
SROIQ underlying OWL 2 DL: satisfiability is harder than in ALCHI and CQ
entailment is not even known to be decidable.

ExpTime-completeness of satisfiability in ALCHI means, in particular, two
things: first, there exists a satisfiability-checking algorithm that runs in at most
exponential time in the size of the input knowledge base and, second, no algo-
rithm can check satisfiability of any given knowledge base in polynomial time.
This complexity-theoretic result does not suggest that reasoning algorithms can
be efficient in practice. Fortunately, practical reasoners for OWL 2 DL have been
implemented: FaCT++ (Tsarkov and Horrocks, 2006), HermiT (Horrocks et al.,
2012), Pellet (Sirin et al., 2007), Konclude (Steigmiller et al., 2014). Their effi-
ciency in typical real-world applications (rather than worst-case scenarios) relies
upon sophisticated optimisation techniques and the empirical fact that ontolo-
gies designed by humans for such applications are often simple enough for basic
reasoning techniques. On the other hand, answering instance queries and, more
generally, conjunctive queries over knowledge bases in expressive languages has
not become practical so far, especially for large data sets.

3 Description Logics for the OWL Profiles

The current W3C recommendation OWL 2 of the Web Ontology Language iden-
tifies three profiles (fragments or sub-languages) specifically designed to ensure
efficiency (tractability) of reasoning at the expense of expressive power. In this
section, we introduce these profiles in the form of DLs (sacrificing some features
for the clarity of presentation).

We begin with an observation that in order to ensure tractability of reasoning
(that is, the existence of a deterministic polynomial-time algorithm for checking
consistency) one has to avoid using t on the right-hand side of concept inclusions.
Intuitively, this construct requires (non-deterministic) reasoning about possible
cases such as in Example 7 (case 1: Andrea is a female; case 2: Andrea is a male),
which can be NP-hard; for an introduction on the computational complexity,
consult classical (Garey and Johnson, 1979) or more recent (Kozen, 2006; Arora
and Barak, 2009).

We illustrate non-deterministic reasoning by encoding the NP-complete graph
3-colourability problem: given an (undirected) graph G = (V,E), decide whether
each of its vertices can be painted in one of the given three colours in such a way
that no pair of adjacent vertices has the same colour. We represent the input
graph G by means of an ABox AG comprising assertions

edge(v1, v2), for each {v1, v2} ∈ E.

Consider a TBox T containing the following concept inclusions:

> v C1 t C2 t C3,

Ci u Cj v ⊥, 1 ≤ i < j ≤ 3,

Ci u ∃edge.Ci v ⊥, 1 ≤ i ≤ 3,

where C1, C2 and C3 are concept names representing the given three colours. It
is not hard to see that each model of (T ,AG) gives rise to a 3-colouring of G
and, conversely, each 3-colouring of G can be encoded in a model of (T ,AG). In
other words, (T ,AG) is satisfiable if and only if G is 3-colourable. This means
that the satisfiability problem for knowledge bases in any DL able to express
this TBox is NP-hard (that is, not tractable).

3.1 OWL 2 RL

The OWL 2 RL profile7 is aimed at applications requiring scalable reasoning
that can be done by rule-based implementations (such as datalog engines).
Its design was inspired by the so-called Description Logic Programs (Grosof
et al., 2003) and pD∗ (ter Horst, 2005). OWL 2 RL is supported by Oracle
Database 11g, OWLIM, BaseVISor, ELLY, Jena and RDFox (for details and
references, see www.w3.org/2001/sw/wiki/OWL/Implementations).

A key feature of OWL 2 RL is that it does not allow existential quantifiers
on the right-hand side of concept inclusions. Therefore, when reasoning with an
OWL 2 RL knowledge base, we do not have to deal with individuals that are not
explicitly present in the knowledge base ABox.

In this section, we consider a somewhat simplified version of OWL 2 RL,
which will be called RL. Concept and role inclusions in RL take the form

B v A, R1 v R2 and B v ⊥,

where R1 and R2 are roles (role names or their inverses), A is a concept name
and B a concept defined by the following grammar:

B ::= A | ∃R.> | ∃R.B | B1 uB2.

Observe that there is no t in the syntax, and the existential quantifiers occur only
on the left-hand side of concept inclusions. On the other hand, by Proposition 8,
universal restrictions, intersection and complement on the right-hand side of
concept inclusions and union on the left-hand side of concept inclusions are
simply syntactic sugar.

An RL knowledge base (T ,A) comprises a finite set T of inclusions introduced
above and a simple ABox A, which contains only assertions of the form A(a)
and P (a, b), for a concept name A and a role name P .

To understand reasoning in RL (and the other two profiles of OWL 2), it is
useful to represent its concept and role inclusions as first-order sentences.

7 www.w3.org/TR/owl2-profiles/#OWL_2_RL

Example 10. The RL concept inclusions

∃takesCourse.UndergraduateCourse v UndergraduateStudent,

UndergraduateStudent v Student

are equivalent (have the same models) as the first-order sentences

∀x∀y
(
takesCourse(x, y) ∧ UndergraduateCourse(y)→ UndergraduateStudent(x)

)
,

∀x
(
UndergraduateStudent(x)→ Student(x)

)
.

More formally, we define a standard translation ST of concepts and roles by
induction on their structure. First, for any concept name A and any role name
P , we set

STx(A) = A(x),

STx,y(P) = P (x, y),

where the subscript specifies the variables used as arguments of the predicates.
After that, we extend the translation ST to complex roles and concepts by taking

STx,y(P−) = P (y, x),

STx(∃R.>) = ∃y STx,y(R),

STx(∃R.B) = ∃y
(
STx,y(R) ∧ STy(B)

)
,

STx(B1 uB2) = STx(B1) ∧ STx(B2).

Finally, we translate concept and role inclusions into universally quantified im-
plications:

(B v A)∗ = ∀x
(
STx(B)→ STx(A)

)
,

(R1 v R2)∗ = ∀x∀y
(
STx,y(R1)→ STx,y(R2)

)
,

(B v ⊥)∗ = ∀x
(
STx(B)→ ⊥

)
.

As ∃R.> and ∃R.B can occur only on the left-hand side of concept inclusions,
the translation ·∗ of any RL TBox contains only sentences of the form

∀y
(
γ1(y) ∧ · · · ∧ γk(y)→ γ0(y)

)
,

∀y
(
γ1(y) ∧ · · · ∧ γk(y)→ ⊥

)
,

where γ0(y), . . . , γk(y) are unary or binary predicates with variables in y. Such
sentences are examples of Horn clauses (sets of sentences of the first kind are also
called datalog programs; see e.g., Ceri et al. (1989)). A very important property
of Horn clauses known from logic and databases is that everything we may want
to know about a knowledge base, whose TBox axioms are Horn clauses, can be
found in the canonical model (or chase), which is constructed by ‘applying’ the
clauses to the ABox. We first illustrate the construction by a simple example.

Example 11. Consider the TBox T from Example 10 and the following ABox:

A = { takesCourse(john, sp1), UndergraduateCourse(sp1) }.

We begin the construction of the canonical model by representing the ABox as
an interpretation I0 with the domain ∆I0 = {john, sp1} and the interpretation
function given by

takesCourseI0 = {(john, sp1)},
UndergraduateCourseI0 = {sp1},

UndergraduateStudentI0 = ∅,
StudentI0 = ∅.

The interpretation I0 does not satisfy the first concept inclusion in T because
john is related by takesCourse to sp1, which is an UndergraduateCourse, but john
is not an instance of UndergraduateStudent. To repair this ‘defect’, we apply (as
a rule) the first concept inclusion to I0 and obtain an interpretation I1 with the
same domain, ∆I1 = ∆I0 , and the interpretation function ·I1 that expands ·I0
with

UndergraduateStudentI1 = {john}

(all other symbols have the same interpretation as in I0). Now, I1 satisfies the
first concept inclusion of T but fails to satisfy the second one. We repair this
defect by ‘applying’ the second concept inclusion to I1 and obtaining an inter-
pretation I2 with the same domain and the interpretation function expanding
·I1 with

StudentI2 = {john}

(all other symbols keep their interpretation). It is readily seen that now I2 is
a model of (T ,A). Note that we constructed I2 by adding to the given ABox
A only those assertions—UndergraduateStudent(john) and Student(john)—that
were required by the TBox T . That is why I2 is referred to as the minimal
model or canonical model of (T ,A).

The procedure used in the example above is known as forward chaining.
Formally, it can be described as follows. First, a simple ABox can be regarded
as an interpretation:

Definition 12. The standard model IA of a simple ABox A is defined by taking

∆IA = ind(A),

aIA = a, for a ∈ ind(A),

AIA = {a | A(a) ∈ A}, for concept name A,

P IA = {(a, b) | P (a, b) ∈ A}, for role name P.

Thus, the domain of IA is the set of individual names in A, and each individ-
ual name is interpreted in IA by itself, which is often referred to as the standard
name assumption.

Next, given an RL knowledge base (T ,A), we construct a sequence of in-
terpretations I0, I1, . . . , In by setting I0 = IA and then applying the following
rules to each Ik to obtain Ik+1:

(c) if a ∈ BIk , B v A ∈ T but a /∈ AIk , then we add a to AIk+1 ;

(r) if (a, b) ∈ RIk1 , R1 v R2 ∈ T but (a, b) /∈ RIk2 , then we add (a, b) to R
Ik+1

2 ;
(b) if a ∈ BIk and B v ⊥ ∈ T , then the process terminates.

Since the domains of the Ik are finite and all coincide with the set of individ-
uals in A, the process terminates after a finite number of steps either because
neither (c) nor (r) is applicable or because (b) applies. In the former case the
resulting interpretation satisfies all the inclusions in T and all the assertions in
A; it is called the canonical model of (T , A) and denoted by CT ,A. In the latter
case, (T ,A) is inconsistent.

Let T+ be the positive part of an RL TBox T that consists of all role inclusions
in T and all concept inclusions of the form B v A in T . By definition, (T+,A)
is consistent for any A, and so its canonical model CT+,A is defined and can be
used to check consistency of the full knowledge base (see, e.g., Cal̀ı et al. (2012)):

Theorem 13. An RL knowledge base (T ,A) is consistent if and only if we have
CT+,A |= B v ⊥, for all B v ⊥ in T .

Similar results hold for the other two profiles of OWL 2 (or indeed for any
Horn DL), and therefore in the following we do not consider negative concept
inclusions (although they are part of both OWL 2 EL and OWL 2 QL).

The canonical model CT ,A is universal in the sense that it can be homo-
morphically mapped into any other model of (T ,A) (this notion formalises the
minimality mentioned above).

Definition 14. A homomorphism h from an interpretation I1 to an interpre-
tation I2 is a map from ∆I1 to ∆I2 such that

– h(aI1) = aI2 , for each individual name a,

– h(u) ∈ AI2 , for any u ∈ AI1 and any concept name A,

– (h(u), h(v)) ∈ P I2 , for any (u, v) ∈ P I1 and any role name P .

The universality of the canonical models means, in particular, that check-
ing subsumption and answering CQs over RL knowledge bases can be done by
analysing their canonical models:

Theorem 15. Let (T ,A) be a consistent RL knowledge base. Then CT,A |=(T ,A).
In addition, we have the following :

(i) (T ,A) |= B v A if and only if CT ,A |= B v A;
(ii) (T ,A) |= R1 v R2 if and only if CT ,A |= R1 v R2;
(iii) (T ,A) |= q(a) if and only if CT ,A |= q(a).

Observe that the forward chaining procedure only requires a polynomial num-
ber of steps to construct the canonical model (more precisely, the number of steps
is bounded by O(m2 × s), where m is the number of individual names in the
ABox and s is the number of concept and role names). Therefore, knowledge
base consistency, subsumption and instance checking are tractable in RL (the
matching lower bound will be discussed in Section 4):

Theorem 16. The problems of knowledge base consistency, concept and role
subsumption and instance checking are P-complete in RL. The problem of CQ
entailment in RL is NP-complete.

Forward chaining can be regarded as a bottom-up saturation procedure. In
datalog, however, more common is the top-down procedure, where a proof is
constructed for a given statement; see e.g., (Ceri et al., 1989). We shall return
to this topic in Section 4.3.

It is important to note that, since the clauses in the standard translation of
RL inclusions contain only universally quantified variables, the canonical model
of any RL knowledge base is finite (forward chaining does not add any new
elements to the individuals in the ABox). We now turn to the profiles where this
is not necessarily the case.

3.2 OWL 2 EL

The design of the OWL 2 EL profile8 of OWL 2 (Baader et al., 2008, 2005) was
based on the observation that biomedical ontologies such as SNOMED CT,9

NCI10 and GO11 essentially use only conjunctions and existential quantifiers.
In this section, we consider a somewhat simplified version of OWL 2 EL, which

will be called EL. Concept and role inclusions in EL look as follows:

C1 v C2 and P1 v P2,

where P1 and P2 are role names (role inverses are not allowed in EL) and C1,
C2 are concepts defined by the following grammar:

C ::= A | ∃P.> | ∃P.C | C1 u C2

(again, existential restrictions contain only role names). The following are typical
concept inclusions from the SNOMED CT ontology:

Pericardium v Tissue u containedIn.Heart,

Pericarditis v Inflammation u hasLocation.Pericardium,

Inflammation v Disease u actsOn.Tissue,

Disease u hasLocation.containedIn.Heart v HeartDisease u NeedsTreatment.

8 www.w3.org/TR/owl2-profiles/#OWL_2_EL
9 www.ihtsdo.org/snomed-ct

10 www.obofoundry.org/cgi-bin/detail.cgi?id=ncithesaurus
11 www.geneontology.org

ABoxes in EL are simple; see Section 3.1. The language we defined above is
almost identical to ELH: the only difference is that we do not allow > to occur
outside the scope of existential restrictions. Thus, the EL concepts here are
exactly those RL concepts from Section 3.1 that do not contain inverse roles.
Note that EL extended with inverse roles is not tractable; moreover reasoning
becomes as complex as in ALCHI, that is, ExpTime-complete (Baader et al.,
2008).

Since the existential restrictions can also occur on the right-hand side of
concept inclusions, the result of translating a given EL TBox into first-order
logic (see Section 3.1) is no longer a datalog program. Instead, it belongs to an
extension of datalog called datalog± (Cal̀ı et al., 2012) or existential rules (Baget
et al., 2011)12; in database theory, this language has been known since the early
1980s under the name of tuple-generating dependencies (Abiteboul et al., 1995).
More precisely, EL TBoxes can be translated into sets of sentences of the form

∀y
(
γ1(y) ∧ · · · ∧ γk(y)→ ∃x γ0(x,y)

)
,

where γ1(y), . . . , γk(y) contain only universally quantified variables y whereas
γ0(x,y) contains both universally quantified variables y and existentially quan-
tified variables x (note that the standard translations of EL TBoxes are in fact
more restricted than this general form, but it suffices for our explanations). Since
these sentences are Horn clauses, we can again apply the forward chaining pro-
cedure (chase). However, in the case of EL TBoxes the chase has to ‘invent’
new domain elements for the existential quantifiers. Following the terminology
of database theory, these fresh (previously not existing) domain elements will be
called labelled nulls. In general, the forward chaining procedure may require in-
finitely many fresh labelled nulls resulting in a possibly infinite canonical model.

The forward chaining construction of the canonical model for an EL knowl-
edge base (T ,A) can be defined by taking the standard model IA of the ABox
as I0 (see Definition 12) and applying inductively the following rules to obtain
Ik+1 from Ik:

(c′) if d ∈ CIk and C v A ∈ T , then we add d to AIk+1 ;

(r′) if (d, d′) ∈ P Ik1 and P1 v P2 ∈ T , then we add (d, d′) to P
Ik+1

2 ;

(e) if d ∈ CIk and C v ∃P.D ∈ T , where D is a concept name or >, then we
take a fresh labelled null, d′, and add d′ to DIk+1 and (d, d′) to P Ik+1

(here, we assume that only A, ∃P.A and ∃P.> can occur on the right-hand side of
concept inclusions—this restriction is inessential, as we shall see in Theorem 20).
Note that rules (c′) and (r′) are similar to the rules from Section 3.1 except that
they are applied without checking whether d and (d, d′) are already present in
the interpretation of the concept and role, respectively. This modification of the
chase procedure is usually called the oblivious chase (Johnson and Klug, 1984);
see also (Cal̀ı et al., 2013).

12 See also Chapter 6 in this volume.

A

john

d1 d2parent parent parent

Fig. 5. The infinite canonical model for the KB from Example 17.

Example 17. Consider an EL TBox T with the following concept inclusion:

Person v ∃parent.Person.

Let us apply the forward chaining procedure to the ABox A = {Person(john)}.
We begin by setting I0 = IA:

∆I0 = {john}, PersonI0 = {john} and parentI0 = ∅.

By the concept inclusion in the TBox, there must be some d1 that is parent-
related to john. So, we expand I0 to I1 by taking

∆I1 = {john, d1}, PersonI1 = {john, d1} and parentI1 = {(john, d1)}.

Now, the concept inclusion is satisfied for john but fails for d1, since there must
be some d2 that is parent-related to d1. So, we expand I1 to I2 by taking

∆I2 = {john, d1, d2}, PersonI2 = {john, d1, d2}, parentI2 = {(john, d1), (d1, d2)}.

If we take all the newly introduced labelled nulls di to be distinct then, clearly,
this process will continue ad infinitum; see Fig. 5. (A possibility of making some
of the di identical will be discussed later on in this section.)

Since our simplified definition of EL does not involve ⊥ and ¬, every EL
knowledge base (T ,A) is consistent and the (possibly infinite) forward chain-
ing procedure constructs the canonical model CT ,A of (T ,A). As in the case
of RL, the resulting canonical model is universal: it can be homomorphically
mapped into any other model of the knowledge base. Note, however, that uni-
versal models are not uniquely defined (for instance, one can take two identical
fresh labelled nulls instead of one) and, in contrast to RL, some knowledge bases
may only have infinite universal models. For instance, the knowledge base (T ,A)
from Example 17 has no finite universal model. Indeed, suppose, for the sake
of contradiction, that there is a finite universal model U of (T ,A). Then U
must contain a sequence of domain elements connected by parent into a cycle.
However, the (canonical) model constructed in Example 17 does not contain a
homomorphic image of such a cycle, contrary to our assumption.

On the other hand, if we only want to check concept and role subsumption
or find answers to instance queries, then we do not have to consider infinite
models. The ‘folding’ construction we are going describe below re-uses the la-
belled nulls and reminds of the filtration technique known from modal logic; see,
e.g., (Chagrov and Zakharyaschev, 1997).

A

john

d1parent
parent

Fig. 6. The small canonical model for the KB from Example 17.

Example 18. Consider (T ,A) from Example 17 and suppose that, on step 2 of
forward chaining, instead of introducing a fresh labelled null, d2, we take d1
instead. This will result in the following interpretation I∗ (see Fig. 6):

∆I∗ = {john, d1},
PersonI∗ = {john, d1},
parentI∗ = {(john, d1), (d1, d1)}.

Although the interpretation I∗ makes little sense from the modelling point of
view (it states that d1 is its own parent), it is clearly a model of (T ,A). Moreover,
as we shall see below, this small model is good enough for checking subsumption
and answering instance queries.

To define such small canonical models (also known as generating models)
formally, we first convert EL TBoxes to a normal form.

Definition 19. An EL TBox is said to be in normal form if any of its concept
inclusions looks as follows:

A1 uA2 v A, ∃P.D v A or A v ∃P.D,

where P is a role name, A, A1 and A2 are concept names and D is either a
concept name or >.

By introducing abbreviations for complex concepts, one can transform any
EL TBox to an equivalent one in normal form.

Theorem 20 (Baader et al. (2005)). Every EL TBox T can be transformed
into a TBox T ′ in normal form such that the size of T ′ is linear in the size of
T , and T and T ′ are equivalent in the following sense:

– every model of T can be extended to a model of T ′ by defining interpretations
of the fresh concept names,

– every model of T ′ is a model of T .

Example 21. Given a concept inclusion ∃P.A u B v ∃R.∃P.A, we first take a
fresh concept name C that will stand for ∃P.A and obtain

C uB v ∃R.C, ∃P.A v C, C v ∃P.A.︸ ︷︷ ︸
‘C is equivalent to ∃P.A’

Next, we take another fresh concept name D to replace ∃R.C, which results in
the following TBox in normal form:

C uB v D, ∃P.A v C, C v ∃P.A, D v ∃R.C, ∃R.C v D.

We are now in a position to define generating models formally. Let (T ,A) be
an EL knowledge base in normal form. We say that a concept occurs positively
in T if it occurs on the right-hand side of a concept inclusion in T . For each
concept ∃S.D occurring positively in T (where D is either a concept name or >),
we introduce a witness w∃S.D and define a generating relation ;T ,A on the set
of these witnesses together with ind(A) by taking:

a;T ,A w∃S.D if a ∈ ind(A) and (T ,A) |= (∃S.D)(a),

w∃P.A ;T ,A w∃S.D if T |= A v ∃S.D.

The generating model GT ,A for (T ,A) is defined as follows:

∆GT ,A = ind(A) ∪ {w∃S.D | ∃S.D occurs positively in T },
aGT ,A = a, for a ∈ ind(A),

AGT ,A = { a ∈ ind(A) | (T ,A) |= A(a) } ∪
{w∃S.D | T |= D v A }, for a concept name A,

PGT ,A = {(a, b) | S(a, b) ∈ A, T |= S v P} ∪
{(w,w∃S.D) | w ;T ,A w∃S.D, T |= S v P}, for a role name P.

It should be clear that GT ,A can be constructed in polynomial number of steps
by the modified forward chaining procedure that does not invent fresh labelled
nulls for ∃S.D but instead re-uses the existing element w∃S.D in the domain. The
following theorem shows that GT ,A is indeed a model of (T ,A) and it provides
enough information about all concept and role subsumptions and about instance
queries.

Theorem 22 (Baader et al. (2005)). Let (T ,A) be an EL knowledge base.
Then GT ,A |= (T ,A). In addition, we have the following :

(i) (T ,A) |= C1 v C2 if and only if GT ,A |= C1 v C2;
(ii) (T ,A) |= P1 v P2 if and only if GT ,A |= P1 v P2;
(iii) (T ,A) |= C(a) if and only if GT ,A |= C(a);
(iv) (T ,A) |= P (a, b) if and only if GT ,A |= P (a, b).

Since the generating model GT ,A can be constructed in polynomial time in
the size of (T ,A), concept and role subsumption are tractable; the same concerns
instance checking (matching lower bounds will be discussed in Section 4).

Theorem 23. The problems of concept and role subsumption and instance check-
ing are P-complete in EL.

However, the following example shows that GT ,A cannot be directly used to
compute answers to conjunctive queries.13

Example 24. Consider (T ,A) from Example 17 and the CQ

q = ∃x parent(x, x).

It should be clear that the answer to q over (T ,A) is ‘no’ because CT ,A 6|= q;
see Fig. 5. On the other hand, since the generating model GT ,A contains a loop
(see Fig. 6), we have GT ,A |= q.

We call GT ,A generating because the standard canonical model CT ,A of (T ,A)
can be generated by unravelling cycles of the generating relation ;T ,A into
infinite trees: for example, GT ,A in Fig. 6 can be unravelled into CT ,A in Fig. 5.
We remark that the generating model defined here was initially represented as
a pair functions by Brandt (2004) and later called the canonical model; see
e.g., (Lutz and Wolter, 2007). We prefer the term generating model to avoid
confusion with the (possibly infinite) canonical model (the chase).

In Section 4, we shall return to the problem of answering CQs over EL knowl-
edge bases and revisit the canonical model construction. In the meantime, we
consider the third profile of OWL 2.

3.3 OWL 2 QL

The OWL 2 QL profile14 of OWL 2 was designed for ontology-based data access
via query rewriting, where answering CQs over a knowledge base is reduced to
answering first-order queries over a database storing the ABox of the KB (this
will be discussed in Section 4). OWL 2 QL is based on the logics of the DL-Lite
family (Calvanese et al., 2007; Artale et al., 2009).

In this section, we consider a somewhat simplified version of OWL 2 QL,
which will be called QL. (It is almost identical to what is known as DL-LiteR (Cal-
vanese et al., 2007) or DL-LiteHcore (Artale et al., 2009).) Concept and role in-
clusions in QL are of the form

B v C and R1 v R2,

where R1 and R2 are roles (role names or their inverses) and B and C are
concepts defined by the following grammar:

B ::= A | ∃R.>,
C ::= A | ∃R.> | ∃R.C.

13 The generating model can be used the for answering CQs but the given query has to
be modified to take account of identifications of the labelled nulls. This is known as
the combined approach to query answering, see (Lutz et al., 2009) for the case of EL
and (Kontchakov et al., 2011) for the case of QL. Alternatively, a special procedure
has to filter out spurious answers resulting from identification (Lutz et al., 2013).

14 www.w3.org/TR/owl2-profiles/#OWL_2_QL

ABoxes in QL are simple; see Section 3.1. Note that the universal restrictions are
not allowed at all and the existential restrictions on the left-hand side of concept
inclusions must have > as their filler (such existential restrictions are called
unqualified and the> symbol is often omitted, making ∃R out of ∃R.>); however,
the existential restrictions on the right-hand side of concept inclusions can be
qualified. Similarly to the case of EL, the standard first-order translations of QL
TBoxes require existential quantification, which causes the canonical models to
be infinite.

Analogously to EL TBoxes, one can transform any QL TBox to an equivalent
one in normal form (see Theorem 20).

Definition 25. A QL TBox is said to be in normal form if any concept inclusion
in it looks as follows:

A′ v A, ∃R v A or A v ∃R.D,

where R is a role, A and A′ are concept names and D is either a concept name
or >.

Given a QL knowledge base (T ,A) with T in normal form, we can find all
answers to a CQ q over this KB by evaluating q over the (possibly infinite)
canonical model CT ,A, which can be constructed using forward chaining (cf. Sec-
tion 3.2). We begin by taking the standard model IA of the ABox as I0 (see
Definition 12) and apply inductively the following rules to obtain Ik+1 from Ik:

(c′) if d ∈ BIk and B v A ∈ T , then we add d to AIk+1 ;

(r′) if (d, d′) ∈ RIk1 and R1 v R2 ∈ T , then we add (d, d′) to R
Ik+1

2 ;
(e) if d ∈ BIk and B v ∃R.D ∈ T , where D is a concept name or >, then we

take a fresh labelled null, d′, and add d′ to DIk+1 and (d, d′) to RIk+1 .

(These rules are similar to the rules from Section 3.2 except that they refer to
roles with inverses and QL concepts).

The canonical model CT ,A constructed using rules (c′), (r′) and (e) in a
bottom-up fashion can alternatively be defined by unravelling the generating
structure, which is closer to the top-down approach and will be required for query
rewriting in Section 4. There are two key observations that lead us to the alter-
native definition: first, fresh labelled nulls can only be added by applying (e),
and, second, if two labelled nulls, d1 and d2, are introduced by applying (e) with
the same concept inclusion B v ∃R.D then the same rules will be applicable
to d1 and d2 in the continuation of the forward chaining procedure. So, each
labelled null d′ resulting from applying (e) to some B v ∃R.D on a domain
element d can be identified with a pair of the form (d,∃R.D). More formally, for
each concept ∃R.D that occurs positively in T , we introduce a witness w∃R.D
and define a generating relation ;T ,A on the set of these witnesses together
with ind(A) by taking:

a;T ,A w∃R.D if a ∈ ind(A), IA |= B(a) and T |= B v ∃R.D,
w∃S.B ;T ,A w∃R.D if T |= ∃S− v ∃R.D or T |= B v ∃R.D.

A ;T ,A-path σ is a finite sequence aw∃R1.D1
· · ·w∃Rn.Dn

, n ≥ 0, such that
a ∈ ind(A) and, if n > 0, then

a;T ,A w∃R1.D1
and w∃Ri.Di

;T ,A w∃Ri+1.Di+1
, for i < n.

Thus, a path of the form σw∃R.D represents the fresh labelled null introduced
by applying (e) to some B v ∃R.D on the domain element σ (and which cor-
responds to the pair (σ, ∃R.D) mentioned above). Denote by tail(σ) the last
element in σ; as we noted above, the last element in σ uniquely determines all
the subsequent rule applications. The canonical model CT ,A is defined by taking
∆CT ,A to be the set of all ;T ,A-paths and setting

aCT ,A= a, for a ∈ ind(A),

ACT ,A= {a ∈ ind(A) | IA |= B(a) and T |= B v A} ∪
{σw∃R.D | T |= ∃R− v A or T |= D v A}, for a concept name A,

P CT ,A= {(a, b) | IA |= R(a, b) and T |= R v P} ∪
{(σw∃R.D, σ) | tail(σ) ;T ,A w∃R.D, T |= R v P−} ∪
{(σ, σw∃R.D) | tail(σ) ;T ,A w∃R.D, T |= R v P}, for a role name P.

Intuitively, by the definition of rule (c′), an ABox individual a belongs to ACT ,A

just in case there is a sequence of concepts B0, B1, . . . , Bn such that IA |= B0(a),
the Bi−1 v Bi are in T , for 1 ≤ i ≤ n, and Bn = A; in other words, if
IA |= B0(a) and T |= B0 v A, for some concept B0. Similarly, by the definition
of rules (c′) and (e), a labelled null of the form σw∃R.D belongs to ACT ,A just
in case T |= ∃R− v A or T |= D v A. For a role name P , rules (r′) and (e)
provide an analogous argument. More precisely, by the definition of rule (r′), a
pair (d, d′) of domain elements belongs to P CT ,A just in case there is a sequence of

roles R0, . . . , Rn such that (d, d′) ∈ RCT ,A
0 , the Ri−1 v Ri are in T , for 1 ≤ i ≤ n,

and Rn = P ; in other words, (d, d′) ∈ RCT ,A
0 and T |= R0 v P , for some role

R0. It then follows from the definition of rule (e) that a pair (d, d′) belongs to
P CT ,A just in three cases: (i) both elements of the pair are ABox individuals with
IA |= R(d, d′) and T |= R v P (ii) the first component of the pair is created by
an application of (e) to the second component of the pair: d = σw∃R.D, d′ = σ
and T |= R v P− or (iii) the second component of the pair is created by an
application of (e) to the first component: d = σ, d′ = σw∃R.D and T |= R v P .
These three cases are reflected in the three sets in the union in the definition of
P CT ,A .

Example 26. Consider a QL TBox T with the following concept and role inclu-
sions:

RA v ∃worksOn.Project,

Project v ∃isManagedBy.Prof,

worksOn− v involves,

isManagedBy v involves

A

RA

chris

Project chrisw1

w
or
k
sO

n

in
vo

lv
es
−

Prof
chrisw1 w2

in
vo

lv
es

is
M
a
n
a
g
ed

B
y

Project

dyn

Prof
dynw2

in
vo

lv
es

is
M
a
n
a
g
ed

B
y

involves−

worksOn

Lecturer

dave
involves−

worksOn

w1 = w∃worksOn.Project

w2 = w∃isManagedBy.Prof

Fig. 7. The canonical model for the knowledge base in Example 26.

and an ABox A comprising the following assertions:

RA(chris), worksOn(chris, dyn), Project(dyn),

Lecturer(dave), worksOn(dave, dyn).

Two concepts occur positively in T : ∃worksOn.Project and ∃isManagedBy.Prof.
For brevity, the witnesses for them will be denoted by w1 and w2, respectively.
The generating relation ;T ,A is then defined by taking

chris ;T ,A w1, dyn ;T ,A w2, w1 ;T ,A w2.

This gives the following ;T ,A-paths:

chris, chrisw1, chrisw1 w2, dyn, dynw2 and dave

(note that if the graph of ;T ,A contains a cycle then the set of ;T ,A-paths
is infinite; cf. Example 17). The resulting canonical model CT ,A is depicted in
Fig. 7.

For any QL knowledge base, the defined canonical model is universal, and
thus contains all the necessary information for checking concept and role sub-
sumptions, answering instance queries and, more generally, for answering CQs:

Theorem 27. Let (T ,A) be a QL knowledge base. Then CT ,A |= (T ,A) and,
for any CQ q(x) and any tuple a in ind(A), we have

(T ,A) |= q(a) if and only if CT ,A |= q(a).

Although the canonical models in EL and QL contain all the information
required to compute answers to conjunctive queries, these canonical models are
not necessarily finite (in contrast to RL), and therefore cannot be simply materi-
alised, say, by a datalog engine, a triple store or a database management system.
In the next section, we analyse the problem of answering CQs and develop prac-
tical techniques for dealing with infinite canonical models.

4 Conjunctive Query Answering via Query Rewriting

Database management systems implement sophisticated algorithms for evaluat-
ing SQL queries over relational data instances. The (theoretically and empirically
supported) fact that databases have been very efficient in practice suggests the
following approach to answering queries over knowledge bases. We store the as-
sertions of a given ABox A in a relational database. Given a CQ q(x), we use
the inclusions of the TBox T to ‘rewrite’ q(x) into another query q′(x) that
would return, when evaluated over the data instance A, all the certain answers
to q(x) over (T ,A). It is important to emphasise here that the rewriting q′(x)
must only depend on the TBox T and the given query q(x), and so should work
for all possible ABoxes A. Thus, we arrive to the following definition.

We call a CQ q(x) and a TBox T first-order rewritable (FO-rewritable, for
short) if there exists a first-order formula q′(x) such that, for any ABox A and
any tuple a of individuals in A, we have

(T ,A) |= q(a) if and only if IA |= q′(a), (10)

where IA is the standard model of A (see Definition 12). The formula q′(x) is
called an FO-rewriting of q and T .

This idea of reducing CQ answering over knowledge bases to database query
answering, first formulated by Calvanese et al. (2005), may sound too good to
be applicable in all cases. In fact, there are a few issues in realising this idea.

A minor one is that, from a practical point of view, if an FO-rewriting q′(x)
is to be executed by a relational database engine then q′(x) must be a domain-
independent query (Abiteboul et al., 1995). This is the case, in particular, for FO-
rewritings that contain only conjunction, disjunction and existential quantifiers.
Such rewritings (and formulas) are called positive existential rewritings (PE-
rewritings, for short).

A more serious issue is that not all DL constructs can guarantee FO-rewri-
tability of all CQs. To understand why, let us recall (Libkin, 2004) that the
problem of evaluating a first-order formula in a given interpretation belongs the
class AC0 for data complexity. Data complexity is a complexity measure that only
takes account of the size of the data (the interpretation in this case) and regards
the query to be fixed. This measure was suggested by Vardi (1982) who tried to
find a theoretical explanation of the practical efficiency of database management
systems. It is also known from the complexity theory that AC0 is a proper
subclass of LogSpace and that LogSpace ⊆ NLogSpace ⊆ P (Papadimitriou,
1994; Arora and Barak, 2009). It follows that if the problem ‘(T ,A) |= q?’ is

NLogSpace- or P-hard, for some fixed q and T , then these q and T cannot
be FO-rewritable. This observation allows us to identify the DL constructs that
can ruin FO-rewritability. Here we give two simple examples illustrating this
technique; for more consult, e.g., (Calvanese et al., 2006; Artale et al., 2009).

Example 28. A typical example of an NLogSpace-complete problem is the
reachability problem for directed graphs: given a directed graph G = (V,E) with
vertices V and arcs E and two distinguished vertices s, t ∈ V , decide whether
there is a directed path from s to t in G. We represent the graph and the target
vertex by means of an ABox AG,t comprising

edge(v1, v2), for (v1, v2) ∈ E,
ReachableFromTarget(t).

Consider now a TBox containing concept inclusion

∃edge.ReachableFromTarget v ReachableFromTarget

and the Boolean CQ

q = ReachableFromTarget(s).

It is readily seen that (T ,AG,t) |= q if and only if there is a directed path from
s to t in G. Therefore, the problem ‘(T ,AG,t) |= q?’ is NLogSpace-hard. Since
q and T are fixed (and do not depend on G or t), q and T cannot be FO-
rewritable. In other words, TBoxes capable of computing the transitive closure
of some relations in ABoxes do not allow FO-rewritability.

Example 29. Next, we consider an example of a P-complete problem. Let (V,E)
be a pair that consists of a finite set of vertices V and a relation E ⊆ V ×V ×V .
A vertex v ∈ V is said to be accessible from a set S ⊆ V of source vertices in
(V,E) if either v ∈ S or (v1, v2, v) ∈ E, for some v1 and v2 that are accessible
from S in (V,E) (v1 and v2 are called inputs and v the output; such a triple can
also be thought of as an implication of the form v1 ∧ v2 → v). The path system
accessibility problem is defined as follows: given (V,E) as above, source vertices
S ⊆ V and a terminal vertex t ∈ V , decide whether t is accessible from S in
(V,E). This problem is known to be P-complete (Garey and Johnson, 1979). The
path system (V,E) and source vertices S can be encoded by an ABox AV,E,S in
the following way:

Accessible(v), for v ∈ S,
input1(e, v1), input2(e, v2) and output(v, e), for e = (v1, v2, v) ∈ E.

Consider now a TBox T containing

∃input1.Accessible u ∃input2.Accessible v BothInputsAccessible,

∃output.BothInputsAccessible v Accessible

and the Boolean CQ
q = Accessible(t).

It should be clear that (T ,AV,E,S) |= Accessible(v) if and only if v is accessible
from S in (V,E); and (T ,A) |= BothInputsAccessible(e) if and only if both inputs
of e are accessible, that is, both are instances of Accessible. Therefore, the answer
to q is ‘yes’ if and only if t is accessible from S in (V,E). Thus, the problem
‘(T ,AV,E,S) |= q’ is P-hard, and so these fixed q and T cannot be FO-rewritable.

The OWL 2 QL profile of OWL 2 was designed so that problems such as
graph reachability and path system accessibility above could not be expressed
in it (on the other hand, observe that both of the TBoxes above belong to RL
and EL, which proves the lower complexity bounds in Theorems 16 and 23). A
number of various rewriting techniques have been proposed and implemented
for OWL 2 QL: PerfectRef (Poggi et al., 2008), Presto / Prexto (Rosati and
Almatelli, 2010; Rosati, 2012), as well as for extensions of OWL 2 QL to datalog±

and existential rules: Nyaya (Gottlob et al., 2011) and PURE (König et al., 2012)
and more expressive DLs: Requiem / Blackout (Pérez-Urbina et al., 2009, 2012),
Rapid (Chortaras et al., 2011) and Clipper (Eiter et al., 2012), which go beyond
FO-rewritability.

In this section, we discuss the tree-witness rewriting (Kikot et al., 2012b).
We require the following definitions in the sequel. Whenever convenient, we
write S(z) for either a unary atom A(z1) or a binary atom P (z1, z2); we also
identify P−(z2, z1) with P (z1, z2). Any CQ q(x) = ∃y ϕ(x,y) is regarded as
the set of atoms in ϕ, so we can write S(z) ∈ q (when referring to the query
as a set of atoms, we often omit the answer variables). Any set q of atoms can
also be viewed as an interpretation over the domain of its terms (variables and
individual names) such that an atom S(z) is true in this interpretation just in
case S(z) ∈ q. We slightly abuse notation and denote by q both the set of atoms
and the corresponding interpretation. The reason behind these definitions and
notations is as follows: it is not hard to see that I |= q(a) if and only if there is
a homomorphism from q(a) to I (see Definition 14).

4.1 PE-Rewriting for Flat QL (and RDFS)

We first consider an important special case of flat QL TBoxes that do not con-
tain existential quantifiers on the right-hand side of concept inclusions. In other
words, flat QL TBoxes in normal form can only contain concept and role inclu-
sions of the form

A v A′, ∃R v A and R v R′,

for concept names A and A′ and roles R and R′. Note that the language of flat
QL TBoxes differs from the language of RDFS15 only in that QL allows inverse
roles in role inclusions whereas RDFS restricts role inclusions to just role names.

15 www.w3.org/TR/rdf-schema

Let T be a flat QL TBox and q(x) a conjunctive query. By Theorem 27,
(T ,A) |= q(a) if and only if q(a) is true in the canonical model CT ,A. Since the
TBox is flat, the generating relation ;T ,A is empty, the canonical model CT ,A
contains no labelled nulls, and so, by the definition of CT ,A, we have

CT ,A |= A(a) if and only if IA |= B(a) and T |= B v A, for some B,

CT ,A |= P (a, b) if and only if IA |= R(a, b) and T |= R v P, for some R.

Define a PE-formula qext(x) to be the result of replacing every atom A(z) in
q(x) with Aext(z) and every atom P (z1, z2) in q(x) with Pext(z1, z2), where

Aext(u) =
∨

T |=BvA

STu(B), Pext(u, v) =
∨

T |=RvP

STu,v(R),

and ST is the standard translation defined in Section 3.1. It is not hard to see
that, for any ABox A and any tuple a from ind(A), we have CT ,A |= q(a) if and
only if IA |= qext(a).

Proposition 30. For any CQ q(x) and any flat QL TBox T , qext(x) is a PE-
rewriting of q(x) and T .

Thus, in the case of flat QL TBoxes, it is really easy to construct PE-
rewritings.

Example 31. Consider the CQ

q(x, y) = Student(x) ∧ takesCourse(x, y) ∧ teacherOf(p0, y)

and a flat QL TBox T with the following concept and role inclusions:

UndergraduateStudent v Student,

enrolledAt v Student,

teaches− v teacherOf.

We then define the following formulas for concept and role names from the query:

Studentext(u) = Student(u) ∨ UndergraduateStudent(u) ∨
∃v enrolledAt(u, v),

takesCourseext(u, v) = takesCourse(u, v),

teacherOfext(u, v) = teacherOf(u, v) ∨ teaches(v, u),

and we obtain the following PE-rewriting of q(x, y) and T :

qext(x, y) =
(
Student(x) ∨ UndergraduateStudent(x) ∨ ∃v enrolledAt(x, v)

)
∧

takesCourse(x, y) ∧
(
teacherOf(p0, y) ∨ teaches(y, p0)

)
.

Next, we turn to the case of general QL TBoxes.

4.2 Tree-Witness PE-Rewriting for Full QL

Suppose T is a QL TBox in normal form. By Theorem 27, to compute certain
answers to q(x) over (T ,A), for some A, it is enough to find answers to q(x)
in the canonical model CT ,A. To do this, we have to check, for every tuple a of
elements in ind(A), whether there exists a homomorphism from q(a) to CT ,A.
Thus, as in the case of flat TBoxes, the answer variables take values from ind(A).
However, the existentially quantified variables in q(x) can be mapped both to
ind(A) and to the labelled nulls in CT ,A. In order to define the rewriting that
does not depend on a particular ABox, we need to have a closer look at the
structure of the canonical models CT ,A with fixed T and varying A.

Let ∃R.D be a concept occurring positively in T (recall that D is either a
concept name or >). For an individual name a, we define the ∃R.D-generated T -
tree on a as the restriction of the canonical model of the KB (T , {(∃R.D)(a)}) to
the domain that consists of a and the labelled nulls with the prefix aw∃R.D. We
denote this tree by C∃R.DT (a). (Note that C∃R.DT (a) is not necessarily a model of
T .) Take now any ABox A and any a ∈ ind(A). By the definition of the canonical
model, if a;T ,A w∃R.D then CT ,A contains a sub-tree that is isomorphic to the
∃R.D-generated T -tree on a, excluding possibly the root. Moreover, such sub-
trees may intersect only on their common root a. For instance, the canonical
model in Fig. 7 contains the ∃worksOn.Project-generated T -tree on chris and the
∃isManagedBy.Prof-generated T -tree on dyn. The following example illustrates a
more complex configuration.

Example 32. Consider a TBox T with the following concept inclusions:

A v ∃R.D, D v ∃P1, D v ∃P2,

B v ∃S.C

and suppose that an ABox A contains A(a), P1(a, b), A(b), B(b), P2(b, c). The
canonical model CT ,A is depicted in Fig. 8. The individual a in this canonical
model has a single T -tree generated by ∃R.D. The individual b has two T -trees,
one generated by ∃R.D and another by ∃S.C. These two T -trees intersect only
on their common root b.

For a more formal treatment, we require the following opertation. Given
interpretations I1 and I2 (under the standard name assumption), we define
their join, I1 ⊕ I2, by taking

∆I1⊕I2 = ∆I1 ∪∆I2 ,
aI1⊕I2 = a, for an individual a in I1 or I2,
AI1⊕I2 = AI1 ∪AI2 , for a concept name A,

P I1⊕I2 = P I1 ∪ P I2 , for a role name P.

A

C∃R.D
T (a)

a
A

b

A B
c

C∃R.D
T (b) C∃S.C

T (b)

aw∃R.DD

R
P 2

P
1

bw∃R.D D

R

P
1

P
2

bw∃S.CC

S

P1

P2

Fig. 8. The canonical model CT ,A from Example 32.

Then the canonical model CT ,A of any QL knowledge base (T ,A), with T in
normal form, can be represented as the following join:

CT ,A = I∗A ⊕
⊕

a∈ind(A)
Bv∃R.D∈T with I∗A|=B(a)

C∃R.DT (a), (11)

where I∗A is a model of A with domain ind(A), which will be called the ABox
part of CT ,A; the join of the C∃R.DT (a) will be called the anonymous part of CT ,A.
We are now fully equipped to present the tree-witness rewriting of a CQ q(x)
and a QL TBox T .

Following the divide and conquer strategy, we show how the process of con-
structing FO-rewritings can be split into two steps: the first step considers only
the flat part of the TBox and uses the formulas Aext(u) and Pext(u, v) defined
in Section 4.1; the second step (to be described below) takes account of the
remaining part of the TBox, that is, inclusions of the form B v ∃R.D.

H-completeness Let T be a (not necessarily flat) QL TBox. A simple ABox
A is said to be H-complete with respect to T if, for all concept names A and role
names P , we have

A(a) ∈ A if IA |= B(a) and T |= B v A, for some B = A′ or B = ∃R,
P (a, b) ∈ A if IA |= R(a, b) and T |= R v P, for some R.

We say that a first-order formula q′(x) is an FO-rewriting of q(x) and T over
H-complete ABoxes if (10) holds for any ABox A that is H-complete with respect
to T and any tuple a from ind(A); as before, a PE-rewriting is an FO-rewriting
that contains only conjunction, disjunction and existential quantification.

Observe that if an ABox A is H-complete with respect to T then the ABox
part of CT ,A, that is, I∗A in (11), coincides with IA. Thus, if T is flat then q(x)
itself is clearly a PE- and FO-rewriting of q(x) and T over H-complete ABoxes.

More generally, we can easily obtain rewritings (over arbitrary ABoxes) from
rewritings over H-complete ABoxes:

Proposition 33. If q′(x) is an FO-rewriting (PE-rewriting) of q(x) and T
over H-complete ABoxes, then q′ext(x) is an FO-rewriting (respectively, PE-
rewriting) of q(x) and T .

Thus, we can only focus on constructing PE-rewritings over H-complete
ABoxes.

Tree Witnesses Consider a CQ q(x) and a knowledge base (T ,A). Suppose
that, for some tuple a in ind(A), there is a homomorphism h from q(a) to CT ,A.
Then h partitions q(a) into the atoms mapped by h to the ABox part and
atoms mapped by h to the ∃R.D-generated T -trees of the anonymous part of
CT ,A. The tree-witness rewriting of q(x) and T we are going to present now lists
all possible partitions of the atoms of q(x) into such subsets. We begin with an
example illustrating this idea.

Example 34. Consider the QL TBox T from Example 26 with the concept and
role inclusions

RA v ∃worksOn.Project, (12)

Project v ∃isManagedBy.Prof, (13)

worksOn− v involves, (14)

isManagedBy v involves (15)

and the CQ asking to find those who work with professors:

q(x) = ∃y, z
(
worksOn(x, y) ∧ involves(y, z) ∧ Prof(z)

)
.

Recall that if the canonical model CT ,A, for some ABox A, contains some in-

dividuals a ∈ RACT ,A and b ∈ ProjectCT ,A , then CT ,A must also contain the
∃worksOn.Project-generated T -tree on a and the ∃isManagedBy.Prof-generated
T -tree on b; see Fig. 7, where such an a is chris and such a b is dyn. Let us
consider all possible ways of obtaining certain answers to the query, that is,
all possible homomorphisms from atoms of q(x) to CT ,A such that the answer
variable x is mapped to ind(A). First, x, y and z can be mapped to ABox indi-
viduals. Alternatively, x and y can be mapped to ABox individuals, a and b, and
if b belongs to ProjectCT ,A , then there is a homomorphism h1 from the last two
atoms of q(a) to the anonymous part; see Fig. 9. Another option is to map only
x to an ABox individual, a, and if a belongs to RACT ,A then the whole q(a) can
be homomorphically mapped to the anonymous part; see h2 in Fig. 9. Finally,
another homomorphism, h3 in Fig. 9, maps both x and z to a provided that
a is in RACT ,A and Prof CT ,A at the same time. The possible ways of mapping
subsets of a query to the anonymous part of the canonical model are called tree

q

x

y

w
or
k
sO

n

Prof
z

in
vo

lv
es

RA

Project

w
or
k
sO

n

in
vo

lv
es
−

Prof

in
vo

lv
es

is
M
a
n
a
g
ed

B
y

h2

h2

h2

RA

Prof

Project

w
or
k
sO

n

in
vo

lv
es
−

Prof

in
vo

lv
es

is
M
a
n
a
g
ed

B
y

h3

h3
h
3

Project

Prof

in
vo

lv
es

is
M
a
n
a
g
ed

B
y

h
1

h
1

Fig. 9. Three homomorphisms from subsets of q to T -trees.

witnesses. The three tree witnesses for q(x) and T found above give rise to the
following PE-rewriting qtw(x) of q(x) and T over H-complete ABoxes:

qtw(x) = ∃y, z
[(

worksOn(x, y) ∧ involves(y, z) ∧ Prof(z)
)
∨(

worksOn(x, y) ∧ Project(y)
)
∨

RA(x) ∨
(
RA(x) ∧ Prof(z) ∧ (x = z)

)]
.

We now give a general definition of the tree-witness rewriting over H-complete
ABoxes. Let T be a QL TBox in normal form and q(x) a CQ. Consider a pair
t = (tr, ti) of disjoint sets of terms in q(x), where ti is non-empty and contains
only existentially quantified variables (tr, on the other hand, can be empty and
can contain answer variables and individual names). Set

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr

}
.

We say that t is a tree witness for q(x) and T generated by ∃R.D if the following
two conditions are satisfied:

(tw1) there exists a homomorphism h from qt to C∃R.DT (a), for some a, such
that tr = {z | h(z) = a} and ti contains the remaining variables in qt,

(tw2) qt is a minimal subset of q such that, for any y ∈ ti, every atom in q
containing y belongs to qt.

Note that unary atoms with arguments in tr or binary atoms with both arguments
in tr do not belong to qt and, therefore, condition (tw1) does not require them

to be homomorphically mapped into C∃R.DT (a). The terms in tr (if any) are called
the roots of t and the (existentially quantified) variables in ti the interior of t.
The homomorphism h in condition (tw1) is not necessarily unique; however, it is
important that all roots are mapped to a and all variables of the interior are not
mapped to a. Thus, qt can contain at most one individual name, a; if qt does not
contain an individual name then the choice of a is irrelevant. Condition (tw2)
reflects the fact that if a homomorphism from q to the canonical model of (T ,A),
for some A, maps a variable y of an atom R(y, z) to a non-root of a tree C∃R.DT (a)
then the other variable of the atom must be mapped to the same ∃R.D-generated
T -tree on a.)

Let t = (tr, ti) be a tree witness for q(x) and T . Consider the following
formula

twt = ∃u
[∧
x∈tr

(x = u) ∧
∨

Bv∃R.D∈T
t generated by ∃R.D

STu(B)
]
, (16)

whose free variables are the roots, tr, of t. The formula twt describes the ABox
individuals that root the trees in the anonymous part of CT ,A into which the
atoms qt of the tree witness t can be homomorphically mapped. More formally, if
IA |= twt(a, . . . , a), for some a ∈ ind(A), then CT ,A contains the ∃R.D-generated
T -tree on a, and so there is a homomorphism from qt to CT ,A that maps all the
roots of t to a. Conversely, if there is a homomorphism from qt to CT ,A such
that all the roots of t are mapped to a (but all the variables from the interior,
ti, of t are mapped to labelled nulls) then IA |= twt(a, . . . , a).

Let Θq
T be the set of tree witnesses for q(x) and T . Tree witnesses t and

t′ are said to be conflicting if qt ∩ qt′ 6= ∅ (in other words, the interior of one
tree witness, say, t, contains a root or an interior variable of the other, t′, or
the other way round, which makes it impossible to have both tree witnesses
mapped into the anonymous part of CT ,A at the same time). A set Θ ⊆ Θq

T of
tree witnesses is said to be independent if any two distinct tree witnesses in Θ
are non-conflicting. If Θ is independent then we can ‘cut’ the query q(x) into
independent subqueries in the following way. Consider a homomorphism that,
for each t ∈ Θ, maps the subset qt of q to the ∃R.D-generated T -tree on some
a (provided that t is generated by ∃R.D) and maps the remaining atoms in q to
the ABox part of CT ,A. By (11), such a homomorphism is possible if there is a
tuple a in ind(A) such that the formula

qΘcut(x) = ∃y
(

(q \ qΘ) ∧
∧
t∈Θ

twt

)
(17)

holds in IA on a, where q \ qΘ is the conjunction of all the atoms in q that do
not belong to qt, for any t ∈ Θ. (Recall that due to H-completeness of the ABox,
I∗A = IA.) Conversely, if there is a homomorphism from q(a) to CT ,A then there
exists an independent set Θ of tree witnesses such that IA |= qΘcut(a).

x

y

z

y′

x′

z′

x′′

y′′

t1

t2

t3

t4

R

T

T

R

S

S

R

C∃R.A
T (a)

a

A

R
T

C∃R−.B
T (a)

a

B

R
−

S

Fig. 10. Tree witnesses in Example 35.

The following PE-formula qtw(x) is called the tree-witness rewriting of q(x)
and T over H-complete ABoxes:

qtw(x) =
∨

Θ⊆Θq
T independent

qΘcut(x). (18)

Example 35. Consider a TBox with the following concept inclusions:

A0 v ∃R.A, A v ∃T,
B0 v ∃R−.B, B v ∃S

and the following CQ

q(x, y′′) = ∃y, z, y′, x′, z′, x′′
(
R(x, y) ∧ T (y, z) ∧ T (y′, z) ∧
R(x′, y′) ∧ S(x′, z′) ∧ S(x′′, z′) ∧R(x′′, y′′)

)
shown in Fig. 10 alongside the ∃R.A-generated T -tree and the ∃R−.B-generated
T -tree. There are four tree witnesses for q(x, y′′) and T :

– t1 = (t1r , t
1
i) generated by ∃T with t1r = {y, y′} and t1i = {z} and

qt1 = {T (y, z), T (y′, z) };

– t2 = (t2r , t
2
i) generated by ∃S with t2r = {x′, x′′} and t2i = {z′} and

qt2 = {S(x′, z′), S(x′′, z′) };

– t3 = (t3r , t
3
i) generated by ∃R.A with t3r = {x, x′} and t3i = {y, y′, z} and

qt3 = {R(x, y), T (y, z), T (y′, z), R(x′, y′) };

– t4 = (t4r , t
4
i) generated by ∃R−.B with t4r = {y′, y′′} and t4i = {x′, x′′, z′} and

qt4 = {R(x′, y′), S(x′, z′), S(x′′, z′), R(x′′, y′′) }.

Clearly, t3 and t4 are conflicting; t3 is also conflicting with t1 but not with t2

despite sharing a common root; symmetrically, t4 is conflicting with t2. Thus,
we have the following 8 independent sets of tree witnesses:

∅, {t1}, {t2}, {t3}, {t4}, {t1, t2}, {t1, t4}, {t2, t3},

which result in a tree-witness rewriting of 8 subqueries with the following tree-
witness formulas:

twt1(y, y′) = ∃u
(
(u = y) ∧ (u = y′) ∧A(u)

)
,

twt2(x′, x′′) = ∃u
(
(u = x′) ∧ (u = x′′) ∧B(u)

)
,

twt3(x, x′) = ∃u
(
(u = x) ∧ (u = x′) ∧A0(u)

)
,

twt4(y′, y′′) = ∃u
(
(u = y′) ∧ (u = y′′) ∧B0(u)

)
.

Theorem 36 (Kikot et al. (2012b)). Let T be a QL TBox and q(x) a CQ.
For any ABox A that is H-complete with respect to T and any tuple a in ind(A),
we have

CT ,A |= q(a) if and only if IA |= qtw(a).

By Proposition 33, to obtain a PE-rewriting of q(x) and T over arbitrary
ABoxes, it is enough to take the tree-witness rewriting qtw(x) over H-complete
ABoxes and replace every atom S(z) in it with Sext(z).

The number of tree witnesses, |Θq
T |, is bounded by 3|q|. On the other hand,

there is a sequence of queries qn and ontologies Tn with exponentially many (in
|qn|) tree witnesses (Kikot et al., 2012b). The length of qtw is O(2|Θ

q
T | · |q| · |T |).

It is to be noted that there exist CQs q and QL TBoxes T any PE-rewritings
of which are of exponential size in |q| provided that the rewritings use the same
symbols as in q and T (Kikot et al., 2012a). One can always reduce the size of
PE-rewritings to polynomial by employing two new constants that do not occur
in q; for details and further references, consult (Gottlob et al., 2014).

If any two tree-witnesses for q(x) and T are compatible—that is, they are
either non-conflicting or one is included in the other—then qtw(x) can be equiv-
alently transformed into the PE-rewriting

q′tw(x) = ∃y
∧

S(z)∈q

(
S(z) ∨

∨
t∈Θq

T with S(z)∈qt

twt

)
of size O(|Θq

T | · |q|2 · |T |); for details we refer the reader to (Kikot et al., 2012b).
As we saw in Example 29, CQ entailment over RL and EL knowledge bases

is P-hard for data complexity, and so some CQs over such knowledge bases do
not have first-order rewritings. In the next two sections, we show that one can
always rewrite CQs over RL or EL TBoxes into datalog queries of polynomial
size.

4.3 Datalog Rewriting for RL

Recall from Section 3.1 that a datalog program is a set of Horn clauses with one
positive literal, that is, universally quantified sentences of the form

γ0(x)← γ1(x) ∧ · · · ∧ γn(x),

where each variable of the head, γ0(x), occurs in at least one of the atoms in the
body, γ1(x), . . . , γn(x). (Following the datalog tradition, we omit the universal
quantifiers and write the implication from right to left.) Given a datalog program
Π, a set of ground atoms D and a ground atom Q(a), we write (Π,D) |= Q(a)
if Q(a) is true in every interpretation satisfying D and all clauses of Π, or,
equivalently, if Q(a) is true in the minimal (or canonical) model of (Π,D),
which is constructed in the same way as the canonical models of RL knowledge
bases (in general, however, the arity of predicates is not bounded by 2).

We say that a CQ q(x) and a TBox T are datalog-rewritable if there exist
a datalog program Π and a predicate Q(x) such that, for any ABox A and any
tuple a of individuals in A, we have

(T ,A) |= q(a) if and only if (Π,A) |= Q(a). (19)

(In the following two sections we view any ABox as a set of ground atoms: each
concept assertion is a unary ground atom and each role assertion is a binary
ground atom.) In this case, the pair (Π,Q(x)) is called a datalog rewriting of
q(x) and T .

Let T be a positive RL TBox, that is, an RL TBox without negative concept
inclusions of the form B v ⊥ (see Section 3.1). Denote by ΠT the datalog
program that contains the standard translations of all concept and role inclusions
in T :

STu(A)← STu(B), for each B v A in T ,
STu,v(R2)← STu,v(R1), for each R1 v R2 in T .

(Note that B can be a complex RL concept, constructed using u and ∃R.C with
possibly inverse roles.) By Theorem 15, we then obtain the following result:

Corollary 37. For any positive RL TBox T and any CQ q(x) = ∃y ϕ(x,y),

(ΠT ∪ {Q(x)← ϕ(x,y)}, Q(x))

is a datalog rewriting of q(x) and T , where Q is a fresh predicate symbol.

Note that the size of this datalog rewriting is the sum of the sizes of the
TBox and the query (thus, it is linear in both).

4.4 Tree-Witness Datalog Rewriting for EL

Let T be an EL TBox in normal form (Definition 19). As we saw in Section 3.2,
the canonical model of (T ,A) can be defined by unravelling the cycles in the

generating model GT ,A. So, the domain of the canonical model consists of ;T ,A-
paths of the form aw∃P1.D1

· · ·w∃Pn.Dn
, n ≥ 0, such that a ∈ ind(A) and, if n > 0,

then

a;T ,A w∃P1.D1 and w∃Pi.Di ;T ,A w∃Pi+1.Di+1 , for i < n.

Similarly to the case of QL, we can represent the canonical model as the join of
its ABox and anonymous parts. The latter consists of the trees C∃P.DT (a) defined
in precisely the same way as in Section 4.2: C∃P.DT (a) is the restriction of the
canonical model of (T , {(∃P.D)(a)}) to a and the labelled nulls with the prefix
aw∃P.D. More formally, CT ,A is represented as

CT ,A = I∗A ⊕
⊕

a∈ind(A)
Av∃P.D∈T with I∗A|=A(a)

C∃P.DT (a), (20)

where I∗A is a model of A with domain ind(A). We again follow the divide and
conquer strategy and split the process of query rewiring in two steps: rewriting
over H-complete ABoxes and tree witnesses.

H-completeness Let T be an EL TBox. A simple ABox A is said to be H-
complete with respect to T if, for all concept names A and role names P , we
have

A(a) ∈ A if IA |= C(a) and T |= C v A, for some EL concept C,

P (a, b) ∈ A if IA |= R(a, b) and T |= R v P, for some role name R.

(Note that the definition is the same as for QL except that now C can be an
arbitrary EL concept, not only A′ or ∃R.) We say that (Π,Q(x)), for a datalog
program Π and an atom Q(x), is a datalog rewriting of q(x) and T over H-
complete ABoxes if (19) holds for any ABox A that is H-complete with respect
to T and any tuple a from ind(A).

Observe that if an ABox A is H-complete with respect to T then the ABox
part of CT ,A, that is, I∗A in (20), coincides with IA. Thus, if T is a flat EL
TBox in normal form (which does not contain concept inclusions of the form
A v ∃P.D) then

({Q(x)← ϕ(x,y)}, Q(x))

is clearly a datalog rewriting of q(x) = ∃y ϕ(x,y) and T over H-complete
ABoxes. Now, any such TBox T can also be seen as a positive RL TBox, and
so, by Corollary 37, the datalog program ΠT defined in Section 4.3 describes
precisely the conditions of H-completeness of A:

A(a) ∈ A if and only if (ΠT ,A) |= A(a),

P (a, b) ∈ A if and only if (ΠT ,A) |= P (a, b).

It follows then that we can easily obtain datalog rewritings (over arbitrary
ABoxes) from datalog rewritings over H-complete ABoxes:

Proposition 38. If (Π,Q(x)) is a datalog rewriting of q(x) and T over H-
complete ABoxes, then (Π ∪ ΠT , Q(x)) is a datalog rewriting of q(x) and T
over arbitrary ABoxes.

Thus, we can only concentrate on constructing datalog rewritings over H-
complete ABoxes.

Tree Witnesses Let T be an EL TBox in normal form and let q(x) be a
CQ. Similarly to the case of QL, to construct a rewriting of q(x) and T , we
need to consider all possible subsets of q, the atoms of the query, that can be
homomorphically mapped to the ABox part of the canonical model CT ,A and
subsets of q that can be homomorphically mapped to the anonymous part of
CT ,A. Tree witnesses for q(x) and T are defined in absolutely the same way as
in Section 4.2. A major difference, however, is that EL does not contain inverse
roles, and so each T -tree in the anonymous part is generated by a concept of the
form ∃P.D, where P is a role name. It follows that if a variable, say y, of any
CQ belongs to the interior of some tree witness and the CQ contains an atom of
the form P (y, y′), then y′ must also be in the interior of the same tree witness.
In particular, we have the following:

Proposition 39. Let T be an EL TBox and q(x) a CQ. Then, for any binary
atom P (z1, z2) in q, where P is a role name,

– there is no tree witness for q(x) and T with P (z1, z2) ∈ qt, z2 ∈ tr, z1 ∈ ti;
– there is at most one tree witness t for q(x) and T such that P (z1, z2) ∈ qt,
z1 ∈ tr and z2 ∈ ti.

These observations suggest a simple algorithm for constructing all tree wit-
nesses for any given CQ and EL TBox, which we first illustrate by a concrete
example.

Example 40. Let T be an EL TBox containing the following concept and role
inclusions:

A v ∃S.B, B v ∃R.C, R v T.

Consider the CQ

q(x) = ∃y, z, u, v
(
S(x, y) ∧ T (y, z) ∧R(u, z) ∧ T (u, v) ∧ C(v)

)
.

The algorithms begins with the smallest tree witnesses. By (tw2), each tree
witness t is uniquely defined by its interior (a non-empty set of existentially
quantified variables): the roots are all the terms that do not belong to ti but
occur in atoms with an argument in ti. The smallest tree witnesses are thus
induced by singleton sets ti. For ti = {v}, we have tr = {u}, which gives the tree
witness t1 with

qt1 = {T (u, v), C(v) },

q

x

y

S

z

T

u
R

C
v

T

C∃R.C
T (a)

a

C

T R

h
1

h
1

C∃R.C
T (a)

a

C

T R

h
2

h
2

h
2

C∃S.B
T (a)

a

B

S

C
RT

h

h

h

Fig. 11. Tree witnesses in Example 40.

which is generated by ∃R.C; see h1 in Fig. 11. For ti = {u}, we have tr = {v, z}
but, since EL contains no inverse roles, there can be no homomorphism h that
maps the set of atoms {T (y, z), R(u, z) } into a T -tree in such a way that h
takes tr to an ABox individual and ti to a labelled null. The same argument
applies to ti = {y}. However, t2i = {z} gives rise to another tree witness, t2, with

qt2 = {T (y, z), R(u, z) },

which is again generated by ∃R.C; see h2 in Fig. 11 (note that both variables in
t2r = {y, u} are mapped to a, the root of the ∃R.C-generated T -tree C∃R.CT (a)).
Thus, we have considered all singleton subsets of the existentially quantified
variables and constructed all possible tree witnesses of depth 1. Next, we observe
that larger tree witnesses must contain smaller tree witnesses in their interior.
So, suppose that ti contains both the roots and the interior of tree witness t2,
that is, {y, z, u} ⊆ ti. Then, since EL has no inverse roles, ti must also contain v
(and thus, the whole of tree witness t1). In this way, we obtain a tree witness t
of depth 2 with ti = {y, u, z, v}, tr = {x} and

qt = {S(x, y), T (y, z), R(u, z), T (u, v), C(v) },

which is generated by ∃S.B; see h in Fig. 11. We have covered all possible subsets
of the existentially quantified variables and in this way obtained all tree witnesses
for q(x) and T .

A general algorithm constructing all tree witnesses for any given CQ q(x)
and EL TBox T in normal form works as follows. It begins by identifying tree

witnesses that have a single interior variable (these are tree witnesses of depth 1).
The algorithm then considers each set of tree witnesses t1, . . . , tk sharing com-
mon roots (provided that all their roots are existentially quantified variables)—
the roots and interiors will become the interior of a potential new, larger, tree
witness. In order to satisfy (tw2), the algorithm extends the set of atoms in
q0 = qt1 ∪ · · · ∪ qtk by all atoms incident on the variables in q0 and then, to sat-
isfy (tw1), checks whether this extended set of atoms can be homomorphically
mapped to a T -tree. Since EL contains no inverse roles, any two tree witnesses
ti and tj that share a common root must become part of the interior of a larger
tree witness (if it exists at all) and therefore, the number of sets of tree witnesses
that need consideration is bounded by the number of (existentially quantified)
variables in q. Therefore, this algorithm constructs all tree witnesses and runs in
polynomial time in the size of q and T . (We note in passing that the presented al-
gorithm resembles the construction of the equivalence relation∼q defined by Lutz
et al. (2009) except that the equivalence relation does not take account of the
TBox and the distinction between answer variables and existentially quantified
variables.)

It follows that the number of tree witnesses for any q(x) and T does not
exceed the number of atoms in q. Moreover, each pair, t and t′, of tree witnesses
for q(x) and T is compatible, that is,

either qt ∩ qt′ = ∅ or qt ⊆ qt′ or qt ⊇ qt′ .

(In other words, the tree witnesses are partially ordered by the⊆ relation on their
sets of atoms.) It follows that we can use the ‘modified’ tree-witness rewriting
q′tw(x) over H-complete ABoxes defined at the end of Section 4.2, or rather its
datalog representation. Let QS(z), for each atom S(z) in q, and D be fresh k-
ary predicate symbols, for k = |x| + |y|, and let D1 be a fresh unary predicate
symbol. Intuitively, the QS(z) are the rewritings of individual atoms of the query,
the interpretation ofD1 consists of individuals from the ABox that are relevant to
the query and the interpretation of D of all tuples of such individuals. Formally,
let Ωq

T comprise the rule

Q(x)←
∧

S(z)∈q

QS(z)(x,y),

the following rules, for each atom S(z) in q:

QS(z)(x,y)← D(x,y) ∧ S(z),

QS(z)(x,y)← D(x,y) ∧ twt(tr), for t ∈ Θq
T with S(z) ∈ qt,

and the following rules defining D and D1:

D(z1, . . . , zk)← D1(z1) ∧ . . . D1(zk),

D1(z)← A(z), for a concept name A in q or T ,
D1(z)← P (z, y), for a role name P in q or T ,
D1(z)← P (y, z), for a role name P in q or T .

(Strictly speaking, D1 is not the same as the set of individuals in the ABox
because concept and role names that occur in the ABox but do not occur in
the query or the TBox are not included in the definition above: any individual
that belongs only to such a concept or role is simply not visible to the query.)
Thus we obtain a datalog rewriting (Ωq

T , Q(x)) of q(x) and T over H-complete
ABoxes:

Theorem 41. Let T be an EL TBox and q(x) a CQ. For any ABox A that is
H-complete with respect to T and any tuple a in ind(A), we have

CT ,A |= q(a) if and only if (Ωq
T , IA) |= Q(a).

Finally, since the number of tree witnesses is linear in the size of q, this
datalog rewriting is of polynomial size in the size of q and T . We also note
in passing that the datalog rewriting over H-complete ABoxes is nonrecursive
(none of the predicates is defined, even indirectly, in terms of itself) and the only
recursive component of the rewriting over arbitrary ABoxes is the rules ensuring
H-completeness of the ABox.

5 OBDA with Ontop and Databases

In the final section of this chapter, we briefly describe the ontology-based data
access (OBDA) system Ontop16 (Rodŕıguez-Muro et al., 2013) implemented at
the Free University of Bozen-Bolzano and available as a plugin for the ontology
editor Protégé 4, a SPARQL end-point and OWLAPI and Sesame libraries.
Ontop is the first system to support the W3C recommendations OWL 2 QL,
R2RML, SPARQL and the OWL 2 QL direct semantics entailment regime.

We illustrate how Ontop works using an example from (Rodŕıguez-Muro
et al., 2013), which involves a (simplified) database IMDb17 (in a typical OBDA
scenario data comes from a relational database rather than an ABox). From
a logical point of view, a database schema (Abiteboul et al., 1995) contains
predicate symbols (with their arity) for both stored database relations (also
known as tables) and views (with their definitions in terms of stored relations)
as well as a set Σ of integrity constraints (in the form of functional and inclusion
dependencies; for example, primary and foreign keys): any instance I of the
database schema must satisfy its integrity constraints Σ.

The schema of IMDb contains relations title[m, t, y] with information about
movies (ID, title, production year), and castinfo[p,m, r] with information about
movies’ cast (person ID, movie ID, person role). Thus, a data instance IIMDb of
this schema may contain the tables

title
m t y
728 ‘Django Unchained’ 2012

castinfo
p m r

n37 728 1
n38 728 1

16 ontop.inf.unibz.it
17 www.imdb.com/interfaces

The integrity constraints ΣIMDb of IMDb include the following foreign key (an
inclusion dependency):

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
(21)

(‘each tuple in castinfo must refer to an existing title’) and the following primary
key (a functional dependency with determinant m):

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
, (22)

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(23)

(‘each title is uniquely determined by its ID m’).
In the framework of OBDA, the users are not supposed to know the structure

of the database. Instead, they are given an ontology, e.g., MO18, which describes
the application domain in terms of concepts and roles. In our example we have
concepts mo:Movie and mo:Person, and roles mo:cast, mo:title and mo:year related
by OWL 2 QL TBox TMO containing, in particular, the following inclusions:

mo:Movie v ∃mo:title, mo:Movie v ∃mo:cast,

mo:Movie v ∃mo:year, ∃mo:title v mo:Movie,

∃mo:cast v mo:Movie, ∃mo:cast− v mo:Person.

The vocabularies of the database schema and the given OWL 2 QL TBox are
linked together by means of mappings produced by a domain expert or extracted
(semi)automatically. There are different known types of mappings: LAV (local-
as-views), GAV (global-as-views), GLAV, etc.; consult, e.g., (Lenzerini, 2002) for
an overview. Here we concentrate on GAV mappings because they guarantee low
complexity of query answering (in what follows we call them simply mappings)—
Ontop uses R2RML19 to specify them. A mapping, M, is a set of rules of the
form

S(x)← ϕ(x, z),

where S is a concept or role name in the ontology and ϕ(x, z) is a conjunction
of atoms with database relations (both stored and views) and a filter, that is,
a Boolean combination of built-in predicates such as = and <. (Note that, by
including views in the schema, we can express any SQL query in mappings, which
is important from the practical point of view.) In our example, a mappingMMO

that relates the terms of MO to the schema of IMDb contains the following rules:

mo:Movie(m)← title(m, t, y), (24)

mo:title(m, t)← title(m, t, y), (25)

mo:year(m, y)← title(m, t, y), (26)

mo:cast(m, p)← castinfo(p,m, r), (27)

mo:Person(p)← castinfo(p,m, r). (28)

18 www.movieontology.org
19 http://www.w3.org/TR/r2rml/

Given a mapping M from a database schema to an OWL 2 QL TBox T and
an instance I of this schema, the ground atoms

S(a), for S(x)← ϕ(x, z) in M and I |= ∃z ϕ(a, z),

comprise the ABox denoted by AI,M and called the virtual ABox for M over
I (Rodŕıguez-Muro and Calvanese, 2011). This ABox is just a convenient pre-
sentational tool and does not have to be materialised by the system. Then the
virtual ABox for MMO over IIMDb consists of the ground atoms

mo:Movie(728), mo:title(728, ‘Django Unchained’), mo:year(728, 2012),

mo:Person(n37), mo:cast(728, n37),

mo:Person(n38), mo:cast(728, n38).

The certain answers to a CQ q(x) over T linked by M to I are defined as
the certain answers to q(x) over (T ,AI,M). In order to find certain answers,
one could first construct a PE-rewriting q′(x) of q(x) and T over arbitrary
ABoxes (in the sequel, it will convenient to represent such a rewriting as a non-
recursive datalog program). The rewriting q′(x) could then be unfolded into
an SQL query using the so-called partial evaluation (Lloyd and Shepherdson,
1991), which exhaustively applies SLD-resolution to q′(x) and the mapping M
and returns those rules whose bodies contain only database atoms. Consider, for
example, CQ q(x) = mo:Movie(x). An obvious rewiring of q(x) and the TBox
TMO (over arbitrary ABoxes) contains the following three rules:

q′(x)← mo:Movie(x), (29)

q′(x)← mo:title(x, y), (30)

q′(x)← mo:cast(x, y). (31)

The unfolding applies the SLD-resolution procedure to these three rules and the
mapping MMO and produces the rules

q′(x)← title(x, t, y), (29+24)

q′(x)← title(x, t, y), (30+25)

q′(x)← castinfo(p, x, r). (31+27)

The resulting union of Select-Project-Join queries could then be forwarded
for execution to a relational database management system (RDBMS).

The same result can be achieved by using the tree-witness rewriting qtw(x)
of q(x) and T over H-complete ABoxes introduced in Section 4.2. An obvious
way to construct H-complete ABoxes is to take the composition of M and the
inclusions in T , that is, a mapping MT given by

A(x)← ϕ(x, z), if A′(x)← ϕ(x, z) ∈M and T |= A′ v A,
A(x)← ϕ(x, y,z), if R(x, y)← ϕ(x, y,z) ∈M and T |= ∃R v A,

P (x, y)← ϕ(x, y,z), if R(x, y)← ϕ(x, y,z) ∈M and T |= R v P.

(Recall that we do not distinguish between P−(y, x) and P (x, y).) Thus, for any
I and any tuple a of individuals in AI,M, we have:

(T ,AI,M) |= q(a) if and only if AI,MT |= qtw(a). (32)

So, to compute the answers to q(x) over T linked by M to I, one can unfold
the tree-witness rewriting qtw(x) over H-complete ABoxes with the help of the
compositionMT . However, the resulting query will produce duplicating answers
if the ontology axioms express the same properties of the application domain as
the integrity constraints of the database. For example, the IMDb schema ΣIMDb

contains foreign key (21): movie ID in castinfo references movie ID in title, and
therefore the unfolded rewriting above will return the same movie many times—
once from title and once for each of the cast members of the movie in castinfo.
Such a duplication is clearly an undesirable feature of this straightforward ap-
proach.

For this reason, before applying MT to unfold the tree-witness rewriting,
Ontop optimises the mapping using the database integrity constraints Σ. This
allows Ontop to reduce redundancy in answers and substantially shorten the
SQL queries, which makes the OBDA system more efficient.

5.1 T -mappings

We say that a mapping M is a T -mapping over dependencies Σ if the ABox
AI,M is H-complete with respect to T , for any data instance I satisfying Σ.
The compositionMT defined above is trivially a T -mapping over any Σ. Ontop
starts withMT and then applies a series of optimisations to construct a simpler
T -mapping.

Inclusion Dependencies. Suppose M∪ {S(x)← ψ1(x, z)} is a T -mapping over
Σ. If there is a more specific rule than S(x) ← ψ1(x, z) in M, then M itself
will also be a T -mapping. To discover such ‘more specific’ rules, we run the
standard query containment check (Abiteboul et al., 1995) taking account of the
inclusion dependencies. For example, since TMO |= ∃mo:cast v mo:Movie in our
running example, the composition of mappingMMO and ontology TMO contains
the following rules for mo:Movie:

mo:Movie(m) ← title(m, t, y),

mo:Movie(m) ← castinfo(p,m, r).

As we observed above, the latter rule is redundant because ΣIMDb contains
inclusion dependency (21), which is repeated here for reference:

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
.

concept index interval

mo:Actor 1 [1,1]

mo:Artist 2 [1,2]

mo:Director 3 [3,3]

mo:Person 4 [1,4]

4mo:Person [1,4]

3mo:Director [3,3] 2 mo:Artist[1,2]

1 mo:Actor[1,1]

Fig. 12. Semantic Index example.

Disjunctions in SQL. Another way to reduce the size of a T -mapping is to
identify pairs of rules whose bodies are equivalent up to filters with respect to
constant values. This optimisation deals with the rules introduced due to the so-
called type (discriminating) attributes (Elmasri and Navathe, 2010) in database
schemas. For example, the mappingMMO contains six rules for sub-concepts of
mo:Person:

mo:Actor(p)← castinfo(c, p,m, r), (r = 1),

mo:Actress(p)← castinfo(c, p,m, r), (v = 2),

· · ·
mo:Editor(p)← castinfo(c, p,m, r), (r = 6).

Thus, the composition of MMO and TMO contains six rules for mo:Person that
differ only in the last condition (r = k), 1 ≤ k ≤ 6. These can be reduced to a
single rule:

mo:Person(p)← castinfo(c, p,m, r),
(
(r = 1) ∨ · · · ∨ (r = 6)

)
.

Note that such disjunctions lend themselves to efficient evaluation by RDBMSs.

Materialised ABoxes and Semantic Index. In addition to working with proper
relational data sources, Ontop also supports ABox storage in the form of struc-
tureless universal tables: a binary relation CA[id, concept-id] and a ternary re-
lation RA[id1, id2, role-id] represent concept and role assertions. The universal
tables give rise to trivial mappings, and Ontop implements a technique, the se-
mantic index (Rodŕıguez-Muro and Calvanese, 2011), that takes advantage of
SQL features in T -mappings for this scenario. The key observation is that, since
the IDs in the universal tables CA and RA can be chosen by the system, each
concept and role in the TBox T can be assigned a numeric index and a set of
numerical intervals in such a way that the resulting T -mapping contains simple
SQL queries with interval filter conditions. For example, in TMO, we have

mo:Actor v mo:Artist,

mo:Artist v mo:Person,

mo:Director v mo:Person,

so we can choose indexes and intervals for these concepts as in Fig. 12. It can be
seen that these intervals respect the concept inclusions of the TBox: for instance,
[1,1] for mo:Actor is a subset of [1,2] for mo:Artist. This will generate a T -mapping
with

mo:Actor(p) ← CA(p, concept-id), (concept-id = 1),

mo:Artist(p) ← CA(p, concept-id), (1 ≤ concept-id ≤ 2),

mo:Director(p) ← CA(p, concept-id), (concept-id = 3),

mo:Person(p) ← CA(p, concept-id), (1 ≤ concept-id ≤ 4).

Thus, by choosing appropriate concept and role IDs, we effectively construct
H-complete ABoxes without the expensive forward chaining procedure (and the
need to store large amounts of the derived assertions and the extra complications
with updating the data). On the other hand, the semantic index T -mappings are
based on range expressions that can be evaluated efficiently by RDBMSs using
standard B-tree indexes (Elmasri and Navathe, 2010).

5.2 Unfolding with Semantic Query Optimisation (SQO)

Ontop applies the Semantic Query Optimisation (Chakravarthy et al., 1986) to
rules obtained at the intermediate steps of unfolding. In particular, this elimi-
nates redundant Join operations caused by reification of database relations by
means of concepts and roles. Consider, for example, the CQ

q(t, y)← mo:Movie(m), mo:title(m, t), mo:year(m, y), (y > 2010).

It has no tree witnesses, and so qtw(t, y) = q(t, y). By straightforwardly applying
the unfolding to qtw(t, y) and the T -mapping MMO, we obtain the query

q′tw(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010),

which requires two (potentially) expensive Join operations. However, by using
functional dependencies (22) and (23) for the primary key m of title, which are
repeated below:

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
,

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
,

we can reduce two Join operations in the first three atoms of q′tw(t, y) to a single
atom title(m, t, y):

q′′tw(t, y)← title(m, t, y), (y > 2010).

Note that these two Join operations were introduced to reconstruct the ternary
relation from its reification by means of the roles mo:title and mo:year.

The role of SQO in OBDA systems appears to be much more prominent
than in conventional RDBMSs, where it was initially proposed to optimise SQL

queries. While some of SQO techniques reached industrial RDBMSs, it never
had a strong impact on the database community because it is costly compared
to statistics- and heuristics-based methods, and because most SQL queries are
written by highly-skilled experts (and so are nearly optimal anyway). In OBDA
scenarios, in contrast, SQL queries are generated automatically, and so SQO
becomes the only tool to avoid redundant and expensive Join operations.

References

Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases. Addison-
Wesley.

Arora, S. and Barak, B. (2009). Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 1st edition.

Artale, A., Calvanese, D., Kontchakov, R., and Zakharyaschev, M. (2009). The DL-Lite
family and relations. Journal of Artificial Intelligence Research (JAIR), 36:1–69.

Baader, F., Brandt, S., and Lutz, C. (2005). Pushing the EL envelope. In Kaelbling,
L. P. and Saffiotti, A., editors, Proceedings of the 19th Int. Joint Conf. on Artificial
Intelligence, IJCAI-05, pages 364–369. Professional Book Center.

Baader, F., Brandt, S., and Lutz, C. (2008). Pushing the EL envelope further. In
Clark, K. and Patel-Schneider, P. F., editors, Proceedings of the OWLED 2008 DC
Workshop on OWL: Experiences and Directions.

Baget, J.-F., Leclère, M., Mugnier, M.-L., and Salvat, E. (2011). On rules with existen-
tial variables: Walking the decidability line. Artificial Intelligence, 175(9–10):1620–
1654.

Brandt, S. (2004). Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In Proc. of the 16th European Conf. on
Artificial Intelligence (ECAI-2004), pages 298–302. IOS Press.

Cal̀ı, A., Gottlob, G., and Kifer, M. (2013). Taming the infinite chase: Query answering
under expressive relational constraints. J. of Artificial Intelligence Research, 48:115–
174.

Cal̀ı, A., Gottlob, G., and Lukasiewicz, T. (2012). A general datalog-based framework
for tractable query answering over ontologies. J. of Web Semantics, 14:57–83.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. (2005). Dl-
lite: Tractable description logics for ontologies. In Proc. of AAAI, pages 602–607.
AAAI Press / The MIT Press.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. (2006). Data
complexity of query answering in description logics. In Proc. of the 10th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2006), pages
260–270.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. (2007).
Tractable reasoning and efficient query answering in description logics: The DL-Lite
family. J. of Automated Reasoning, 39(3):385–429.

Ceri, S., Gottlob, G., and Tanca, L. (1989). What you always wanted to know about
datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng., 1(1):146–166.

Chagrov, A. and Zakharyaschev, M. (1997). Modal Logic, volume 35 of Oxford Logic
Guides. Clarendon Press, Oxford.

Chakravarthy, U. S., Fishman, D. H., and Minker, J. (1986). Semantic query optimiza-
tion in expert systems and database systems. Benjamin-Cummings Publishing Co.,
Inc.

Chortaras, A., Trivela, D., and Stamou, G. (2011). Optimized query rewriting for OWL
2 QL. In Proc. of CADE-23, volume 6803 of LNCS, pages 192–206. Springer.

Eiter, T., Lutz, C., Ortiz, M., and Simkus, M. (2009). Query answering in description
logics: the knots approach. In Proc. of WOLLIC, volume 5514 of Lecture Notes in
Computer Science, pages 26–36. Springer.

Eiter, T., Ortiz, M., Šimkus, M., Tran, T.-K., and Xiao, G. (2012). Query rewriting
for Horn-SHIQ plus rules. In Proc. of AAAI 2012. AAAI Press.

Elmasri, R. and Navathe, S. (2010). Fundamentals of Database Systems. Addison-
Wesley, 6th edition.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman.

Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V. V., Schwentick, T., and Za-
kharyaschev, M. (2014). The price of query rewriting in ontology-based data access.
Artif. Intell., 213:42–59.

Gottlob, G., Orsi, G., and Pieris, A. (2011). Ontological queries: Rewriting and opti-
mization. In Proc. of ICDE 2011, pages 2–13. IEEE Computer Society.

Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003). Description logic programs:
Combining logic programs with description logic. In Proc. of the 12th Int. World
Wide Web Conference (WWW 2003), pages 48–57.

Horrocks, I., Kutz, O., and Sattler, U. (2006). The even more irresistible SROIQ. In
Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reason-
ing (KR 2006), pages 57–67. AAAI Press.

Horrocks, I., Motik, B., and Wang, Z. (2012). The HermiT OWL reasoner. In Proc. of
ORE, volume 858 of CEUR Workshop Proceedings. CEUR-WS.org.

Johnson, D. S. and Klug, A. C. (1984). Testing containment of conjunctive queries
under functional and inclusion dependencies. J. Comput. Syst. Sci., 28(1):167–189.

Kikot, S., Kontchakov, R., Podolskii, V., and Zakharyaschev, M. (2012a). Exponential
lower bounds and separation for query rewriting. In Proc. of ICALP 2012, Part II,
volume 7392 of LNCS, pages 263–274. Springer.

Kikot, S., Kontchakov, R., and Zakharyaschev, M. (2012b). Conjunctive query answer-
ing with OWL 2 QL. In Proc. of KR 2012. AAAI Press.

König, M., Leclère, M., Mugnier, M.-L., and Thomazo, M. (2012). A sound and com-
plete backward chaining algorithm for existential rules. In Proc. of RR 2012, volume
7497 of LNCS, pages 122–138. Springer.

Kontchakov, R., Lutz, C., Toman, D., Wolter, F., and Zakharyaschev, M. (2011). The
combined approach to ontology-based data access. In Proceedings of the 20th Int.
Joint Conf. on Artificial Intelligence, IJCAI-2011, pages 2656–2661. AAAI Press.

Kozen, D. (2006). Theory of Computation. Springer.
Lenzerini, M. (2002). Data integration: A theoretical perspective. In Proc. of the 21st

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’02), pages 233–246. ACM.

Libkin, L. (2004). Elements Of Finite Model Theory. Springer.
Lloyd, J. and Shepherdson, J. (1991). Partial Evaluation in Logic Programming. The

Journal of Logic Programming, 11(3-4):217–242.
Lutz, C., Seylan, I., Toman, D., and Wolter, F. (2013). The combined approach to obda:

Taming role hierarchies using filters. In Proc. of the 12th International Semantic Web
Conference (ISWC 2013), volume 8218 of Lecture Notes in Computer Science, pages
314–330. Springer.

Lutz, C., Toman, D., and Wolter, F. (2009). Conjunctive query answering in the
description logic EL using a relational database system. In Proceedings of the 21st
Int. Joint Conf. on Artificial Intelligence, IJCAI 2009, pages 2070–2075.

Lutz, C. and Wolter, F. (2007). Conservative extensions in the lightweight description
logic EL. In Proc. of CADE, volume 4603 of Lecture Notes in Computer Science,
pages 84–99. Springer.

Motik, B. (2007). On the properties of metamodeling in owl. J. Log. Comput.,
17(4):617–637.

Papadimitriou, C. (1994). Computational Complexity. Addison-Wesley.
Pérez-Urbina, H., Motik, B., and Horrocks, I. (2009). A comparison of query rewriting

techniques for DL-lite. In Proc. of DL 2009, volume 477 of CEUR-WS.
Pérez-Urbina, H., Rodŕıguez-Dı́az, E., Grove, M., Konstantinidis, G., and Sirin, E.

(2012). Evaluation of query rewriting approaches for OWL 2. In Proc. of
SSWS+HPCSW 2012, volume 943 of CEUR-WS.

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., and Rosati, R.
(2008). Linking data to ontologies. J. on Data Semantics, X:133–173.

Rodŕıguez-Muro, M. and Calvanese, D. (2011). Dependencies: Making ontology based
data access work. In Proc. of AMW 2011, volume 749. CEUR-WS.org.

Rodŕıguez-Muro, M., Kontchakov, R., and Zakharyaschev, M. (2013). Ontology-Based
Data Access: Ontop of databases. In Proc. of the 12th International Semantic Web
Conference (ISWC 2013), volume 8218 of Lecture Notes in Computer Science, pages
558–573. Springer.

Rosati, R. (2012). Prexto: Query rewriting under extensional constraints in DL-Lite.
In Proc. of EWSC 2012, volume 7295 of LNCS, pages 360–374. Springer.

Rosati, R. and Almatelli, A. (2010). Improving query answering over DL-Lite ontolo-
gies. In Proc. of KR 2010. AAAI Press.

Schaerf, A. (1993). On the complexity of the instance checking problem in concept lan-
guages with existential quantification. J. of Intelligent Information Systems, 2:265–
278.

Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., and Katz, Y. (2007). Pellet: A
practical OWL-DL reasoner. J. of Web Semantics, 5(2):51–53.

Steigmiller, A., Liebig, T., and Glimm, B. (2014). Konclude: System description. J. of
Web Semantics.

ter Horst, H. J. (2005). Completeness, decidability and complexity of entailment for
RDF Schema and a semantic extension involving the OWL vocabulary. J. of Web
Semantics, 3(2–3):79–115.

Tobies, S. (2001). Complexity results and practical algorithms for logics in Knowledge
Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen,
Germany.

Tsarkov, D. and Horrocks, I. (2006). FaCT++ description logic reasoner: System
description. In Proc. of IJCAR, volume 4130 of Lecture Notes in Computer Science,
pages 292–297. Springer.

Vardi, M. (1982). The complexity of relational query languages (extended abstract). In
Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC’82), pages
137–146.

