
Polynomial Conjunctive Query Rewriting under
Unary Inclusion Dependencies

S. Kikot, R. Kontchakov, and M. Zakharyaschev

Department of Computer Science and Information Systems,
Birkbeck College, London, U.K.

{kikot,roman,michael}@dcs.bbk.ac.uk

Abstract. Ontology-based data access (OBDA) is widely accepted as
an important ingredient of the new generation of information systems.
In the OBDA paradigm, potentially incomplete relational data is en-
riched by means of ontologies, representing intensional knowledge of the
application domain. We consider the problem of conjunctive query an-
swering in OBDA. Certain ontology languages have been identified as
FO-rewritable (e.g., DL-Lite and sticky-join sets of TGDs), which means
that the ontology can be incorporated into the user’s query, thus reduc-
ing OBDA to standard relational query evaluation. However, all known
query rewriting techniques produce queries that are exponentially large
in the size of the user’s query, which can be a serious issue for standard
relational database engines. In this paper, we present a polynomial query
rewriting for conjunctive queries under unary inclusion dependencies. On
the other hand, we show that binary inclusion dependencies do not admit
polynomial query rewriting algorithms.

1 Introduction

Ontology-based data access (OBDA) [9, 12, 18] has recently emerged as an im-
portant ingredient of the new generation of information systems. OBDA is re-
quired in those cases where data, stored in relational databases, is regarded as
potentially incomplete, and so is supplemented by ontologies describing the back-
ground knowledge of the application domain. In logical terms, OBDA involves
the following reasoning problem:

QA(D,Σ, q): given a database instance D, an ontology Σ and a query q(x),
find all certain answers a to q(x) in D under Σ.

In other words, the task is to check, given a tuple a, whether I |= q(a) for every
model I of (D,Σ). The OBDA paradigm can be viable in practice only if its
efficiency is comparable with the efficiency of standard database query evalua-
tion, where data complexity was identified as a proper efficiency measure [22].
This idea lies behind the DL-Lite family of description logics, designed with
the aim of OBDA [7, 8], and the DL-Lite-based OWL2QL profile of the OWL2
Web Ontology Language. Its distinctive feature is that ‘in OWL2QL, conjunc-
tive query answering can be implemented using conventional relational database

systems. Using a suitable reasoning technique, sound and complete conjunctive
query answering can be performed in LogSpace with respect to the size of
the data’ (www.w3.org/TR/owl2-profiles). In fact, in OWL2QL, conjunctive
query answering is in AC0 for data complexity, and this problem is first-order
rewritable in the sense that QA(D,Σ, q) can be reduced to the query evaluation
problem QE(D, q′), where the query q′ does not depend on D.

Recently, other families of languages generalising DL-Lite and featuring first-
order rewritability have emerged: linear Datalog± [5], sticky-join sets of TGDs
(tuple-generating dependencies) [6], atomic-hypothesis and domain-restricted
∀∃-rules [4]. From the complexity-theoretic point of view, all these languages
are perfectly suitable for OBDA. On the more practical side, there is a number
of different query rewriting algorithms, which have been implemented in such
systems as QuOnto [1, 19], REQUIEM [17], Presto [21] and Nyaya [10]. How-
ever, in all of these algorithms, the size of the rewritten query q′, posed to the
database system, can be O((|Σ| · |q|)|q|) in the worst case.

In this paper, we try (1) to clarify whether the exponential blow-up in the
size of the rewritten query is inevitable, and (2) to identify languages for which
polynomial rewritings are possible. We concentrate on the language of inclu-
sion dependencies, covering DL-Lite and OWL2QL. In Section 3, we give a
polynomial rewriting of conjunctive queries under unary inclusion dependen-
cies. This result improves on the polynomial rewriting from [13], which reduces
QA(D,Σ, q) to QE(D + aux , q′), where aux is a set of fresh constants encoding
the canonical model of (D,Σ). Note also the recent polynomial reduction [11] of
QA(D,Σ, q) to QE(D+{0, 1}, q′′), which uses two fresh constants 0, 1 and works
for the extension Datalog± of OWL2QL (see Remark 1). In Section 4, we show
that unary inclusion dependencies are near the border separating the languages
with polynomial rewritings by proving that no polynomial-time algorithm can
produce a query rewriting under binary inclusion dependencies.

2 Preliminaries

A relational schema R is a set of relational symbols (predicates), each associ-
ated with its arity. The ontology language we consider in this paper consists of
inclusion dependencies, which can be thought of as sentences (in the first-order
language of similarity type R) of the form

∀x
(
∃y P1(u1, . . . , un)→ ∃z P2(v1, . . . , vm)

)
,

where P1 is an n-ary predicate inR, P2 an m-ary predicate inR, all the variables
ui (and vi) are pairwise distinct and x = {u1, . . . , un} \ y = {v1, . . . , vm} \ z.
An inclusion dependency is called unary if x is a singleton. A database instance
D is a set of ground atoms. We use the standard model-theoretic notions and
notation. Thus, if I is a first-order structure, Σ a set of inclusion dependencies
and D a database instance then I |= (D,Σ) means that all formulas in D and
Σ are true in I; in this case I is called a model of (D,Σ).

A conjunctive query (CQ) q(x) is a first-order formula ∃y ϕ(x,y), where x
and y are vectors of variables and ϕ is constructed, using only ∧, from atoms
of the form P (t1, . . . , tn), with P being an n-ary predicate and ti a term (an
individual name or variable from x or y). Given a database instance D, we use
Ind(D) to denote the set of constants in D. A tuple a ⊆ Ind(D) is a certain
answer to q(x) over (D,Σ) if I |= q[a] for all models I of (D,Σ); in this case
we write (D,Σ) |= q[a]. To simplify notation, we will often identify q with the
set of its atoms; term(q) is the set of terms in q.

We are interested in data-independent reductions of the query answering
problem QA(D,Σ, q), where q is a CQ and Σ a finite set of unary inclusion
dependencies, to the query evaluation problem QE(D, q′), where q′ is a (not
necessarily conjunctive) query over D. More precisely, q′(x) is an FO-rewriting
of q(x) under Σ if, for any database instance D and any tuple a ⊆ Ind(D), we
have (D,Σ) |= q[a] iff D |= q′[a].

3 Polynomial Rewriting

Let Σ be a set of unary inclusion dependencies. Each dependency in Σ can be
regarded as a formula of the form

∀x
(
πjP1(u1, . . . , un)→ πkP2(v1, . . . , vm)

)
,

where x = uj = vk, and πj and πk denote projections onto the j-th and k-th
argument, respectively:

πjP1(u1, . . . , un) = ∃u1, . . . , uj−1, uj+1, . . . , un P1(u1, . . . , un),

πkP2(v1, . . . , um) = ∃v1, . . . , vk−1, vk+1, . . . , vm P2(v1, . . . , vm).

First we observe that answering conjunctive queries under unary inclusion
dependencies can be polynomially reduced to the case where the language does
not contain predicates of arity greater than 2. Indeed, for each n-ary predicate
R with n > 2, we can introduce n binary predicates R1, . . . , Rn, replace each
πkR(x1, . . . , xn) in Σ with ∃y Rk(xk, y) and add the following unary inclusion
dependencies:

∀y
(
∃xiRi(xi, y)→ ∃xj Rj(xj , y)

)
, 1 ≤ i 6= j ≤ n.

Let Σ′ be the resulting set of unary inclusion dependencies. We also need to
modify D accordingly: for each atom R(a1, . . . , an) ∈ D, take a fresh constant
aR(a1,...,an), replace the atom with Ri(ai, aR(a1,...,an)), for 1 ≤ i ≤ n, and denote
the result by D′. Finally, given a conjunctive query q, let q′ be the result of
replacing each R(t1, . . . , tn) in q with the conjunction ∃y (

∧n
i=1Ri(ti, y)). It is

not hard to see that (D,Σ) |= q[a] iff (D′, Σ′) |= q′[a], for any a ⊆ Ind(D).
To simplify presentation, from now on we only deal with unary inclusion

dependencies over unary and binary relations, i.e., inclusion dependencies

∀x (ψ1(x)→ ψ2(x)),

where ψ1 and ψ2 are formulas of the form A(x), ∃y P (x, y) or ∃y P (y, x). To
make notation more convenient, we often denote P (y, x) (in both queries and
dependencies) by P−(x, y). We will call P and P− the two directions of binary
predicate P .

3.1 Canonical Model (Chase)

As inclusion dependencies are in essence Horn clauses, for any (D,Σ), there is
a structure UD,Σ such that, for all conjunctive queries q(x) and a ⊆ Ind(D), we
have (D,Σ) |= q[a] iff UD,Σ |= q[a]. The structure UD,Σ , called the canonical
model (chase) of (D,Σ), is constructed as follows. For each direction of a binary
predicate P in R, we introduce fresh symbols cP and cP− , and call them the
witnesses for ∃y P (x, y) and ∃y P−(x, y), respectively. (In the case of k-ary R,
one would have to consider k distinct witnesses cR,i, for 1 ≤ i ≤ k.) A path
generated by a ∈ Ind(D) under Σ is a finite sequence acR1

· · · cRn , n ≥ 0, such
that

a;D,Σ cR1
;D,Σ · · ·;D,Σ cRn ,

where ;D,Σ is the generating relation defined as follows, for 1 ≤ i < n:

(C0) a;D,Σ cR1
if (D,Σ) |= ∃y R1(a, y) and D 6|= ∃y R1(a, y);

(C1) cRi ;D,Σ cRi+1
if Σ |= ∀x (∃y R−i (x, y)→ ∃y Ri+1(x, y)) and R−i 6= Ri+1.

(A path acR1 · · · cRn generated by a can be thought of as a labelled null con-
structed from a by the sequence cR1

, . . . , cRn .) Denote by pathΣ(a) the set of
all paths generated by a ∈ Ind(D) under Σ, and by tail(σ) the last element in
such a path σ. Now, the canonical model UD,Σ with domain ∆UD,Σ is defined
by taking:

∆UD,Σ =
⋃

a∈Ind(D)
pathΣ(a),

aUD,Σ = a, for all a ∈ Ind(D),

AUD,Σ = {a ∈ Ind(D) | (D,Σ) |= A(a)} ∪
{σ | tail(σ) = cR and Σ |= ∀x (∃y R−(x, y)→ A(x))},

PUD,Σ = {(a, b) ∈ Ind(D)× Ind(D) | (D,Σ) |= P (a, b)} ∪
{(σ, σ · cP) | tail(σ) ;D,Σ cP , } ∪ {(σ · cP− , σ) | tail(σ) ;D,Σ cP−}.

3.2 Tree Witnesses

Let CR be the set of all witnesses cP and cP− for binary predicates P in R, and
C∗R the set of all finite words over CR (including the empty word ε). We use
tail(σ) to denote the last element of σ ∈ C∗R \ {ε}; by definition, tail(ε) = ε.

Consider a conjunctive query q(x). Without loss of generality, we will assume
that (the primal graph of) q is connected. Let R be a direction P or P− for a
binary predicate P in R and t a term in q. A partial function f from term(q)
to C∗R is called a tree witness for (R, t) in q (cf. [13]) if the following conditions
hold:

– f(t) = ε,

– for all atoms S(s, s′) ∈ q with f(s) defined, we have

f(s′) =


cR, if f(s) = ε and S = R,

σ, if f(s) = σ · cS− ,
f(s) · cS , if f(s) 6= ε and tail(f(s)) 6= cS− ,

– the domain of f is minimal with respect to set-theoretic inclusion.

By definition, if a tree witness for (R, t) exists then it is unique; in this case
we denote it by fR,t and use dom fR,t for the domain of fR,t. Note that even
if q contains no atom of the form R(t, t′), the tree witness for (R, t) exists and
fR,t(t) = ε. Denote by q|R,t the set of atoms of q whose terms are in dom fR,t.
If q|R,t is regarded as a query, we assume that all of its variables are free.

Informally, a tree witness fR,t has root t and direction R, and describes the
situation when t is mapped to a database instance constant a such that the type
of a in the canonical model requires an R-successor but the database instance
does not provide it; cf. (C0). In this case, the only choice for mapping every
t′ in R(t, t′) ∈ q is acR = a · fR,t(t′). Further, every t′′ in S(t′, t′′) ∈ q has to
be mapped to acRcS = a · fR,t(t′′) provided that S 6= R−; however, if S = R−

then t′′ can only be mapped to a, which reflects the fact that acR has a single
R−-successor a in the canonical model.

Example 1. To illustrate, consider the CQ

q = {T (y0, y1), S(y1, y0), R(y1, y2), S(y2, y3), S(y4, y3)}.

The tree witnesses for (R, y1) and (S, y4) in q exist and are as depicted below:

fR,y1

y0

undef.

y1

ε

T

S

y2

cR

R

y3

cRcSS

y4

cR
S fS,y4

y0

undef.

y1

undef.

T

S

y2

ε

R

y3

cSS

y4

ε
S

On the other hand, for (S, y1) and (T−, y1), tree witnesses do not exist (because
y1 is part of the cycle).

If a term s is such that fR,t(s) is defined and fR,t(s) 6= ε, then a tree witness
exists for s and any direction S for which tail(fR,t(s)) 6= cS− ; moreover, the
tree witness for (S, s) is ‘included’ in the tree witness for (R, t). In the example
above, the existence of a tree witness for (R, y1) implies that a tree witness for
(S, y2) exists since fR,y1(y2) = cR 6= cS− ; however, one cannot guarantee that a
tree witness exists for (R−, y2); and in fact, it does not exist since the cycle is
reachable in the direction R−. On the other hand, if fR,t(s) = ε then s can also
play role of root for the same direction R, in which case the tree witnesses for
(R, t) and (R, s) coincide, e.g., fS,y2 and fS,y4 in the example above. Thus, we
obtain:

Proposition 1. Suppose a tree witness for (R, t) exists and s ∈ dom fR,t. If
fR,t(s) 6= ε then a tree witness exists for every (S, s) with tail(fR,t(s)) 6= cS− .
If fR,t(s) = ε then a tree witness exists for (S, s) with S = R. In either case,
dom fS,s ⊆ dom fR,t and fR,t(s

′) = fR,t(s) · fS,s(s′), for all s′ ∈ dom fS,s.

Even if a tree witness for (R, t) exists, q|R,t is not necessarily a tree-shaped
query. Define a relation ≡R as the set of all pairs (t, s) such that a tree witness
for (R, t) exists and fR,t(s) = ε. By Proposition 1, ≡R is an equivalence relation
(on its domain). By taking the quotient of q|R,t under ≡R, we obtain a tree
reduct of q|R,t (cf. [15]), which can be depicted as follows:

t

R

We call q a quasi-tree with root t ∈ term(q) if a tree witness for (R, t) exists for
all directions R and

⋃
R dom fR,t = term(q):

t

RS

If there are two tree witnesses with a common term that is not a root for both
of them then either one is a sub-tree of the other or they are part of the same
quasi-tree:

t1

R1

t2

R2

t1

R1

t2

R2

Proposition 2. Suppose q is not a quasi-tree and tree witnesses exist for (R1, t1)
and (R2, t2). If fR1,t1(t2) is defined, fR1,t1(t2) 6= ε then dom fR2,t2 (dom fR1,t1

and fR1,t1(s) = fR1,t1(t2) · fR2,t2(s), for all s ∈ dom fR2,t2 .

Proof. Suppose first that tail(fR1,t1(t2)) = cR−2
. Then, by Proposition 1, tree

witnesses exists for (S, t2) in all directions S, and so q is a quasi-tree with
root t2, contrary to our assumption. So, tail(fR1,t1(t2)) 6= cR−2

and, by Proposi-

tion 1, fR1,t1(s) = fR1,t1(t2) · fR2,t2(s), for s ∈ dom fR2,t2 . Since fR1,t1(t2) 6= ε,
dom fR2,t2 (dom fR1,t1 .

3.3 Query Rewriting

We are now in a position to introduce the ingredients of our polynomial rewriting.
Fix a relational schemaR. Consider (D,Σ) and q(x) = ∃y ϕ(x,y). We can easily
compute answers to queries of the form A(x) or ∃y R(x, y):

Proposition 3. For all formulas ψ(x) of the form A(x) or ∃y R(x, y) and all
a ∈ Ind(D), we have UD,Σ |= ψ(a) iff D |= extψ(a), where

extψ(x) =
∨

∀x (ψ′(x)→ψ(x)) is a unary incl. dep. in R
Σ|=∀x (ψ′(x)→ψ(x))

ψ′(x).

Note that, for all other elements σ in the domain ∆UD,Σ of the canonical
model UD,Σ , we have UD,Σ |= ψ[σ] iff Σ |= ∀x (∃y T−(x, y) → ψ(x)), where
tail(σ) = cT .

t

a1

a2

A
a1cR a2cR1 a2cR1 · · · cRn

s
R

R1
Rn

S1

S2

q|R,t quasi-tree q′

Consider now a binary atom R(t, t′) ∈ q and the ways its terms can be
mapped in the canonical model UD,Σ .
1. If both t and t′ are mapped to database constants a, a′ ∈ Ind(D) then we have
UD,Σ |= R(a, a′) iff R(a, a′) ∈ D because the canonical model UD,Σ inherits the
binary relations between constants from D.

2. If t is mapped to a constant a ∈ Ind(D) and t′ to a labelled null in ∆UD,Σ \
Ind(D), then R(t, t′) can only be true if (i) a ;D,Σ cR, (ii) a tree witness
for (R, t) exists, and (iii) q|R,t can be embedded into the sub-tree of pathΣ(a)
beginning with the edge (a, acR); see the left-hand side of the picture above. For
condition (i) we have the following:

Proposition 4. For all directions R and all a ∈ Ind(D), we have a ;D,Σ cR
iff D |= wtR(a), where

wtR(x) = ext∃y R(x,y)(x) ∧ ¬∃wR(x,w).

For condition (iii), consider the conjunction treeAqR,t(x) of the formulas:

(t0) extA(x), for all A(s) ∈ q|R,t with fR,t(s) = ε;
(t1) > if Σ |= ∀x (∃y T−(x, y) → A(x)) and ⊥ otherwise, for all A(s) ∈ q|R,t

with tail(fR,t(s)) = cT ;
(t2) > if Σ |= ∀x (∃y T−(x, y)→ ∃y S(x, y)) and ⊥ otherwise, for all S(s, s′) ∈

q|R,t with tail(fR,t(s)) = cT .

The following lemma states that the formula treeAqR,t(x) precisely describes this
situation for the database instance constants:

Lemma 1. (i) If a tree witness for (R, t) exists and D |= wtR(a) ∧ treeAqR,t(a),
for a ∈ Ind(D), then UD,Σ |=a q|R,t holds for an assignment a such that a(s) =
a · fR,t(s), for all s ∈ dom fR,t.

(ii) If UD,Σ |=a q and there is R(t, t′) ∈ q with a(t) = a ∈ Ind(D) and
a(t′) = a · cR, then a tree witness for (R, t) exists and D |= wtR(a)∧ treeAqR,t(a).

3. If both t, t′ are mapped to anonymous elements in ∆UD,Σ \ Ind(D), then two
more cases need consideration.
3.1. Suppose first that there is a tree witness for some (S, s) such that s is
mapped to a database instance constant a ∈ Ind(D) with a ;D,Σ cS , (iv) both
t and t′ are in dom fS,s, and (v) all the terms s′ ∈ dom fS,s with fS,s(s

′) 6= ε are
existentially quantified variables in q (only existential variables can be mapped
to labelled nulls). In this case, by Lemma 1, R(t, t′) is true in UD,Σ if the formula

wtS(s) ∧ treeAqS,s(s) ∧
∧

s≡Ss′
(s = s′)

is true in D under an assignment a such that a(s′) = a·fS,s(s′), for s′ ∈ dom fS,s.
The disjunction of all such formulas for (S, s) satisfying (iv)–(v) depends only
on the choice of terms t, t′ and will be denoted by attached-treet,t′(x,y). (This
case is a generalisation of Case 2.)

3.2. Thus, it remains to consider the case (shown in the right-hand side of
the picture) when the whole query is mapped to the tree-shaped part of UD,Σ
consisting of labelled nulls. Then q a quasi-tree and all terms in q are existentially
quantified variables that are mapped to the sub-tree pathΣ(a) of UD,Σ generated
by some a ∈ Ind(D). More precisely, a generates a sequence of the form a;D,Σ

cR1 ;D,Σ · · · ;D,Σ cRn , q has a root s (i.e., term(q) =
⋃
S dom fS,s), s is

mapped to σ = acR1
· · · cRn , while all other terms s′ are mapped to σ · fS,s(s′).

The latter condition can be captured by a formula similar to the one in Case 3.1.
The difference is that now we begin with a labelled null σ with tail(σ) = cRn
(rather than a database constant a). To cope with this, consider the union q′ of q
and {Rn(v, s)}, for a fresh variable v, and let treeTqcRn ,s be treeAq

′

Rn,v
, where the

tree witnesses are computed in the query q′. Note that treeTqcRn ,s is a sentence
because q′ has no atoms for item (t0). We denote by detached-tree the disjunction
of sentences

∃wwtR1(w) ∧ treeTqcRn ,s

for all roots s of q and all pairs of directions R1, Rn such that there are directions
R2, . . . , Rn−1 with Σ |= ∀x (∃y R−i (x, y) → ∃y Ri+1(x, y)) and R−i 6= Ri+1, for
1 ≤ i < n; cf. (C1); if q is not a quasi-tree containing only existentially quantified
variables, we set detached-tree = ⊥. The following lemma is an analogue of
Lemma 1:

Lemma 2. Let q = ∃y ϕ(y).
(i) If D |= detached-tree then there is σ ∈ ∆UD,Σ such that UD,Σ |=a ϕ for

an assignment a with a(s′) = σ · fS,s(s′), for all directions S and s′ ∈ dom fS,s.
(ii) If UD,Σ |=a ϕ for an assignment a such that a(t) /∈ Ind(D), for all terms

t ∈ term(q), then q is a tree-shaped query and D |= detached-tree.

Denote by q∗ the result of replacing each atom A(t) and P (t, t′) in q with

A∗(t) = extA(x)(t) ∨ attached-treet,t(x,y) ∨ detached-tree,

P ∗(t, t′) = P (t, t′) ∨ attached-treet,t′(x,y) ∨ detached-tree,

respectively. Note that these formulas depend not only on the predicate name
but also on the terms in the atom. The length of q∗ is O(|q|2 · |T |3) and can be
made O(|q|2 · |T |) if the sentence detached-tree is computed separately (in fact,
for the majority of queries, e.g., queries with answer variables, it is simply ⊥).

Theorem 1. Let q(x) = ∃y ϕ(x,y) be a connected query. Then UD,Σ |= q[a] iff
D |= q∗[a], for all a ⊆ Ind(D).

Proof. (⇒) If UD,Σ |= q[a] then there is an assignment b such that UD,Σ |=b ϕ
and b(xi) = ai ∈ Ind(D), for all answer variables xi. If b(y) ∈ Ind(D) for all
variables y, then clearly D |= q∗[a]. Otherwise, for each y with b(y) /∈ Ind(D),
one can trace (via binary atoms) the sequence σ = b(y) back either to a =
b(y0) ∈ Ind(D) or to the shortest sequence σ′ = b(y0) ∈ ∆UD,Σ \ Ind(D). In the
latter case, by Lemma 2 (ii), q is a tree-shaped query and D |= detached-tree,
whence D |=b ϕ. In the former case, by Lemma 1 (ii), there is a tree witness
for (S, y0), where S is such that σ = acS . . . , and D |=b attached-treet,t′ for all
t, t′ ∈ dom fS,y0 . Thus, D |=b P ∗(t, t′) and D |=b A∗(t), for all P (t, t′) and A(t)
in q|S,y0 . By repeating this procedure for each variable y with b(y) /∈ Ind(D), we
can clearly cover all atoms in q, and therefore, D |= q∗[a].

(⇐) Let D |= q∗[a]. Then there is an assignment b in D such that D |=b ϕ∗

and b(xi) = ai ∈ Ind(D), for all answer variables xi, where ϕ∗ is the quantifier-
free part of q∗.

If D |= detached-tree then q has no answer variables or constants and, by
Lemma 2, UD,Σ |=b ϕ, for some assignment b. Thus, UD,Σ |= q. So, for the rest
of the proof we assume D 6|= detached-tree.

We claim that we can choose tree witnesses fS1,s1 , . . . fSn,sn such that their
domains without roots are pairwise disjoint, i.e.,(
dom fSi,si \ {s | s ≡Si si}

)
∩
(
dom fSj ,sj \ {s | s ≡Sj sj}

)
= ∅, for all i 6= j

and if D |=b attached-treet,t′ then t, t′ ∈ dom fSi,si , for some 1 ≤ i ≤ n, in which
case

D |=b treeAqSi,si(si) ∧
∧

si≡Ss′
(si = s′);

Indeed, by Proposition 2, the domains of any two tree witnesses either do not
intersect (but on the roots) or coincide or the domain of one is subsumed by the
domain of other. Consider the assignment b′ in UD,Σ given by

b′(v) =

{
b(v) · fSi,si(v), if v ∈ dom fSi,si for 1 ≤ i ≤ n,
b(v), otherwise.

Consider now terms t, t′. If D |= attached-treet,t′ then, by Lemma 1 (i), we have

UD,Σ |=b′ q|Si,si , for 1 ≤ i ≤ n with t, t′ ∈ dom fSi,si . Otherwise, both t and t′

are interpreted by database instance constants and so the atom containing them
is true in UD,Σ by Proposition 3.

Example 2. Consider the CQ from Example 1:

q = ∃y0y1y2y3y4
(
T (y0, y1) ∧ S(y1, y0) ∧R(y1, y2) ∧ S(y2, y3) ∧ S(y4, y3)

)
.

As q contains a cycle, it is not a quasi-tree, and so detached-tree = ⊥. As both
y0 and y1 are part of the cycle, attached-treey0,y1 = ⊥, whence

T ∗(y0, y1) = T (y0, y1) and S∗(y1, y0) = S(y1, y0).

Consider R(y1, y2): the only existing tree witness that has both t1 and t2 is fR,y1 ,
all others either do not include one of the terms or would reach the cycle. So, if
Σ |= ∀x (∃y R−(x, y)→ ∃y S(x, y)) then attached-treey1,y2 = wtR(y1), otherwise
it is ⊥.

Both S(y2, y3) and S(y4, y3) are considered similarly. In either case there are
three tree witnesses containing the terms: fR,y1 , fR,y2 and fR,y4 . The last two
in fact coincide and give the disjunct wtS(y2) ∧ (y2 = y4) to attached-treey2,y3 .
And similarly to the previous case, if Σ |= ∀x (∃y R−(x, y) → ∃y S(x, y)) then
attached-treey2,y3 contains another disjunct wtR(y1).

To sum up: if Σ |= ∀x (∃y R−(x, y)→ ∃y S(x, y)) then

R∗(y1, y2) = R(y1, y2) ∨ wtR(y1),

S∗(yk, y3) = S(yk, y3) ∨ wtR(y1) ∨ (wtS(y2) ∧ (y2 = y4)), for k = 2, 4;

otherwise,

R∗(y1, y2) = R(y1, y2),

S∗(yk, y3) = S(yk, y3) ∨ (wtS(y2) ∧ (y2 = y4)), for k = 2, 4.

Example 3. Consider now the CQ

q = ∃y1y2y3y4
(
R(y1, y2) ∧ S(y2, y3) ∧ S(y4, y3)

)
.

This query is a quasi-tree with three roots: y1, y2 and y4. Suppose that

Σ |= ∀x (∃y T−(x, y)→ ∃y R−(x, y)),

Σ |= ∀x (∃y T−(x, y)→ ∃y S(x, y)).

Then detached-tree will contain a disjunct ∃wwtT (w) for the root y2 (if there is
no T as above then there will be no such disjunct). Sentence detached-tree will
contain similar disjuncts for the other two roots, y1 and y4 (provided that Σ
entails inclusion dependencies required in each case).

Let us consider all tree witnesses and their contribution to the formulas
attached-treet,t′ :

– fR,y1 provides wtR(y1) only if Σ |= ∀x (∃y R−(x, y)→ ∃y S(x, y));
– fR−,y2 provides wtR−(y2);
– fS−,y3 provides wtS−(y3) only if Σ |= ∀x (∃y S(x, y)→ ∃y R−(x, y));
– fS,y2 and fS,y4 provide wtS(y2) ∧ (y2 = y4).

For R(y1, y2) we have to take three tree witnesses fR,y1 , fR−,y2 and fS−,y3 ; and
for both S(y2, y3) and S(y4, y3) we have to take four tree witnesses fR,y1 , fS−,y3 ,
fS,y2 and fS,y4 .

So, if the additional unary dependencies mentioned above do not follow from
Σ then we have

q∗ = ∃y
[(
R(y1, y2) ∨ wtR−(y2)

)
∧
(
S(y2, y3) ∨ (wtS(y2) ∧ (y2 = y4))

)
∧(

S(y4, y3) ∨ (wtS(y4) ∧ (y2 = y4))
)]
.

If Σ |= ∀x (∃y R−(x, y) → ∃y S(x, y)) then R∗(y1, y2), S∗(y2, y3) and S∗(y4, y3)
will contain the extra disjunct wtR(y1); if Σ |= ∀x (∃y S(x, y) → ∃y R−(x, y))
they all will contain wtS−(y3).

The examples above show that the rewritings often contain duplicating sub-
formulas: for instance, in Example 3, if Σ |= ∀x (∃y R−(x, y) → ∃y S(x, y))
then all conjuncts of the rewriting will contain a disjunct wtR(y1), and so, the
rewriting is equivalent to the union of a shorter query and ∃y1 wtR(y1). These
considerations suggest that some simple optimisations can significantly reduce
the size of the rewritings.

4 No Polynomial Rewriting Algorithm under Binary
Inclusion Dependencies

Theorem 2. Unless P = NP, no polynomial-time algorithm can reduce con-
junctive query answering under binary inclusion dependencies to the problem of
evaluating queries (independently of the database instance).

Proof. The result follows from NP-hardness of query answering under binary
inclusion dependencies with a singleton database instance, which is shown by
reduction of Boolean satisfiability. Given a CNF ϕ =

∧m
j=1Dj over variables

p1, . . . , pn, where Dj is a clause, we consider the following set Σ of inclusion
dependencies, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, k = 0, 1:

∀x (Ai−1(x)→ ∃y Ski (x, y)), ∀x (∃y Ski (y, x)→ Ai(x)),

∀xy (Ski (y, x)→ P (x, y)),

∀x (∃y S0
i (x, y)→ ∃y Tj(x, y)) if ¬pi ∈ Dj ,

∀x (∃y S1
i (x, y)→ ∃y Tj(x, y)) if pi ∈ Dj ,

∀x (∃y T−j (x, y)→ ∃y Tj(x, y)), ∀xy (Tj(x, y)→ P (x, y)).

The canonical model UD,Σ of D = {A0(a)} is obtained by unravelling the ‘gen-
erating’ interpretation GD,Σ shown below:

GD,Σ

a

A0

A1

S
0
1
, P
−

A1

S 1
1 , P −

A2S0
2 , P

−

S
0
2
, P
−

A2

S 1
2 , P −

S1
2 , P

−

A3S0
3 , P

−

S
0
3
, P
−

A3

S 1
3 , P −

S1
3 , P

−

A4S0
4 , P

−

S
0
4
, P
−

A4

S 1
4 , P −

S1
4 , P

−

T1 T2

q(y0)
y0

A0

y1 y2 y3 y4
A4

z10

z20

z11

z21

z12

z22

z13

z23

z14

z24

T1

T2

Consider the CQ q(y0), also depicted above:

q(y0) = ∃y1, . . . , yn ∃z10 , . . . , z1n, . . . , zm0 , . . . , zmn

A0(y0) ∧
n∧
i=1

P (yi, yi−1) ∧An(yn) ∧

m∧
j=1

(
P (yn, z

j
0) ∧

n∧
i=1

P (zji−1, z
j
i) ∧ Tj(z

j
n−1, z

j
n)
)
.

(Note n atoms P connecting yn to y0, but n + 1 atoms P connecting yn to zjn,
which means that any match of q in UD,Σ must map zjn onto a point in the infinite
chain of Tj-edges.) One can show now that ϕ is satisfiable iff (D,Σ) |= q(a).

Let us analyse the above proof. As query rewriting has to be independent of
database instances, one can always choose a simplest possible case for D: say,
a singleton D = {A(a)}, for some unary relation A. Without any dependencies,
query answering over such a D can clearly be done in polynomial time. It follows
from Theorem 1 that, under unary inclusion dependencies, conjunctive queries
to D can also be answered in polynomial time. But then the proof of Theorem 2
shows that, under binary inclusion dependencies, this is not the case anymore.
So, the combined complexity of answering conjunctive queries over a singleton
database instance of the form {A(a)} provides an indication whether polynomial
query rewriting algorithms exist or not. We will call this measure—that is, the
combined complexity of the problem QA({A(a)}, Σ, q)—the primitive combined
complexity of query answering. It follows that if conjunctive query answering
is NP-hard for primitive combined complexity, then no algorithm is capable of
constructing rewritings in polynomial time (unless P = NP).

Remark 1. If the database instance is extended with fresh constants 0 and 1
then q(y0) in the proof above can be rewritten as

A0(y0) ∧ ∃p1 . . . ∃pn
(n∧
i=1

(pi 6= y0) ∧
m∧
j=1

D′j
)
,

where D′j is obtained from Dj by replacing every literal pi with pi = 1 and
every ¬pi with pi = 0. Moreover, using ∀pi, one can polynomially encode the
PSpace-complete validity problem for QBFs. A polynomial reduction of the
query answering problem QA(D,Σ, q) to the query evaluation problem QE(D+
{0, 1}, q′) is given in [11] for Datalog±, where |T | + |q| steps of the chase are
simulated using 0 and 1.

5 Discussion

We conclude with some general (and possibly controversial) remarks on OBDA.
First-order rewritability (or AC0 data complexity) does not seem to pro-

vide enough information to judge whether an ontology language is suitable for
OBDA. When measuring the complexity of query evaluation in database sys-
tems, it is usually assumed that queries are negligibly small compared to data.
Thus, it makes sense to consider data complexity [22], which takes account of
the data but ignores the query. In OBDA, the rewritten queries can no longer
be assumed to be small. However, data complexity does not differentiate among,
e.g., unary inclusion dependencies, OWL2QL or the language of sticky-join sets
of TGDs [6], query answering in all of which is in AC0 for data complexity,
while the primitive combined complexity, reflecting the size of the rewriting (see
Section 4), ranges from P to NP and further to ExpTime. Another explana-
tion of database efficiency is that we only use queries with a bounded number
of variables, in which case query evaluation is P-complete for combined com-
plexity [23]. However, query rewritings may substantially increase the number of
variables (for example, a CQ q is rewritten in [11] into a query with O(N · logN)
auxiliary binary variables, where N = |T |+ |q|).

The W3C recommendation (www.w3.org/TR/owl2-profiles) for OBDA is
to reduce it to answering queries in database systems. Two drawbacks of this
recommendation are that it (i) disregards the complexity of possible reductions,
and (ii) excludes some useful ontology languages from consideration. As we saw
above, rewritings of CQs in OWL2QL cannot be done in polynomial time with-
out extra constants, variables and quantifiers as in [11]. One might argue that
the complex constellation used in the proof of Theorem 2 does not occur in real-
world ontologies, but then more research is needed to support this argument. A

number of ‘lightweight’ ontology languages such as EL [3] or DL-Lite
(HF)
horn (with-

out the UNA) [2] are deemed not suitable for OBDA because query answering is
P-complete for data complexity in them (note, however, that it is P-complete for
primitive combined complexity in both languages compared to NP in the case
of OWL2QL). The combined approach to OBDA [16, 14] resolves this issue by
expanding the data at a pre-processing step and then rewriting and answering
CQs. The expansion is linear in the size of the database and can be done by the
database system itself; the size of the rewritten query for EL and DL-LiteFhorn is
only quadratic [16, 13] (for OWL2QL, it is still exponential).

In this paper, we do not touch on the problem of connecting ontologies to
databases, which is typically done in OBDA by means of GLAV mappings. Such

mappings introduce additional problems as tuples in the same relation can come
from different data sources. Also, they provide certain information on the com-
pleteness of database predicates, which can (and should) be exploited in order to
minimise the rewritings [20]. Finally, with so many languages and rewritings for
OBDA suggested, it looks like the time is ripe for comprehensive experiments
that could clarify the future of OBDA.

References

1. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: QuOnto: Querying ontologies. In: Proc. of the 20th Nat. Conf.
on Artificial Intelligence (AAAI). pp. 1670–1671 (2005)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. of Artificial Intelligence Research (JAIR) 36, 1–69 (2009)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Proc. of
the 4th Int. Workshop on OWL: Experiences and Directions (OWLED 2008 DC)
(2008)

4. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, É.: Extending decidable cases for
rules with existential variables. In: Proc. of the 21st Int. Joint Conf. on Artificial
Intelligence (IJCAI). pp. 677–682 (2009)

5. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. In: Proc. of the 28th ACM SIGMOD-
SIGACT-SIGART Symp. on Principles of Database Systems (PODS). pp. 77–86.
ACM (2009)

6. Cal̀ı, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in
Datalog+/−. In: Proc. of the 4th Int. Conf. on Web Reasoning and Rule Systems
(RR). LNCS, vol. 6333, pp. 1–17. Springer (2010)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI). pp. 602–607 (2005)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3), 385–429 (2007)

9. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.:
Scalable grounded conjunctive query evaluation over large and expressive knowl-
edge bases. In: Proc. of the 7th Int. Semantic Web Conf. (ISWC 2008). LNCS,
vol. 5318, pp. 403–418. Springer (2008)

10. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization.
In: Proc. of the IEEE Int. Conf. on Data Engineering (ICDE) (2011)

11. Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive
Datalog programs. In: Proc. of the 24th Int. Workshop on Description Logics (DL).
(2011)

12. Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue,
A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench,
G., Wetzstein, B., Keller, U.: Ontology reasoning with large data repositories. In:
Ontology Management, pp. 89–128. Springer (2008)

13. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In: Proc. of the 12th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR). (2010)

14. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: Proc. of the 22nd Int. Joint
Conf. on Artificial Intelligence (IJCAI). (2011)

15. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Proc. of the 4th Int. Joint Conf. on Automated Reasoning (IJCAR). pp.
179–193. LNAI, vol. 5195, Springer (2008)

16. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence (IJCAI). pp. 2070–2075 (2009)

17. Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting tech-
niques for DL-Lite. In: Proc. of the 22nd Int. Workshop on Description Logics
(DL). CEUR Workshop Proceedings, vol. 477. CEUR-WS.org (2009)

18. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. on Data Semantics X, 133–173 (2008)

19. Poggi, A., Rodriguez, M., Ruzzi, M.: Ontology-based database access with DIG-
Mastro and the OBDA Plugin for Protégé. In: Proc. of the 4th Int. Workshop on
OWL: Experiences and Directions (OWLED 2008 DC). (2008)

20. Rodŕıguez-Muro M., Calvanese, D.: Dependencies to optimize ontology-based data
access. In: Proc. of the 24th Int. Workshop on Description Logics (DL). (2011)

21. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
Proc. of the 12th Int. Conf. on Principles of Knowledge Representation and Rea-
soning (KR). (2010)

22. Vardi, M.: The complexity of relational query languages (extended abstract). In:
Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC). pp. 137–
146 (1982)

23. Vardi, M.: On the complexity of bounded-variable queries (extended abstract).
In: Proc. of the 14th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (PODS). pp. 266–276 (1995)

